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ÖNSÖZ

Bu kitap, cebirsel topolojinin temel kavramlarını grafiksel ve erişilebilir bir biçimde
sunmak amacıyla hazırlanmıştır. Özellikle homotopi teorisi, topolojik uzayların yapısal
özelliklerini anlamada merkezi bir rol oynamakta olup, günümüz matematiğinin pek çok
alanında giderek artan bir önem taşımaktadır. Bu bağlamda, kitapta yer alan bölüm-
lerin her biri, konunun kavramsal temellerini ortaya koymayı ve ilgili kavramları somut
örneklerle desteklemeyi hedeflemektedir.

Eserin hazırlanış sürecinde, hem lisansüstü düzeyde cebirsel topoloji çalışan araş
tırmacılar hem de konuya yeni başlayan öğrenciler için dengeli bir anlatım sunmaya özen
gösterilmiştir. Okuyucunun teoriyi yalnızca tanımlar ve teoremler düzeyinde değil, aynı
zamanda geometrik bir bakış açısıyla da kavrayabilmesi temel amaçlardan biridir. Bö-
lümlerde yer alan ispatlar, mümkün olduğunca açık ve takip edilebilir biçimde verilmiş ;
gerekli görülen yerlerde anlamayı kolaylaştıran açıklamalara ve notlara yer verilmiştir.
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6 İÇİNDEKİLER



Bölüm 1

Temel Topolojik Özellikler

1.1 Bağlantılılık
Tanım 1.1.1 Her n ∈ N doğal sayısı için, r yarıçaplı bir n-küre, r noktasının n+1 boyutlu
Öklidyen uzayda sabit bir c noktasına uzaklığı r olan noktalardan oluşan bir küme olarak
tanımlanır. Burada r herhangi bir pozitif reel sayı ve c, (n+1) boyutlu uzayın herhangi bir
noktası olabilir.

Tanım 1.1.2 Verilen bir kartezyen koordinat sistemi için, yarıçapı 1 olan n-boyutlu bir
birim küre orjine olan uzaklığı 1 olan noktaların kümesi

Sn = {x ∈ Rn+1 : ‖x‖ = 1}.

olarak tanımlanır.

−1 +1

S0

+1

+1

−1

−1

S1

+1

−1

+1
−1

+1

−1

S2

Örnek 1.1.3 Reel sayılar kümesi R üzerinde standart(alışılmış) topoloji ile ele alınan

S0 = {−1, 1}

kümesi üzerine indirgenen topoloji ile ayrık uzay olur.

7



8 BÖLÜM 1. TEMEL TOPOLOJİK ÖZELLİKLER

Çözüm:
R üzerindw standart topoloji U ile gösterilmek üzere, herhangi bir U ∈ U açık kümesi

için S0 üzerinde indirgenen topoloji

US0 = {U ∩ S0 | U ∈ τ}
şeklinde tanımlanır. Özellikle, R’nin standart topolojisinde açık olan bir U kümesi, her
x ∈ U için bir 0 < ϵ < 1 olmak üzere (x− ϵ, x+ ϵ) açık aralığını içermektedir.

Buradan,

V = (−1− ϵ,−1 + ϵ) ve T = (1− ϵ, 1 + ϵ)

açık kümelerini seçersek, S0 üzerindeki kesişimler

(−1− ϵ,−1 + ϵ) ∩ S0 = {−1} ∈ US0 , (1− ϵ, 1 + ϵ) ∩ S0 = {1} ∈ US0

olacaktır. Bu, her x ∈ S0 noktası için {x} tek nokta kümesinin açık bir küme olduğunu
gösterir.

Sonuç olarak S0 üzerine indirgenen alışılmış uzay ayrık uzay olur. 2

Teorem 1.1.4 R → S0 olacak şekilde örten sürekli bir dönüşüm yoktur.

İspat. Kabul edilim ki f : R → S0 sürekli ve örten bir fonksiyon olsun. S0 ayrık topolojiye
sahip olduğundan, {−1} ve {1} kümeleri S0 uzayında açık kümelerdir. f sürekli olduğundan

U = f−1({−1}) ∈ U ve V = f−1({1}) ∈ U

olmalıdır. f örten olduğundan, U ve V boş olmayan ayrık kümelerdir. Ayrıca

f−1({−1} ∩ {+1}︸ ︷︷ ︸
∅

) = f−1({−1}) ∩ f−1({+1}) = ∅

ve
f−1({−1} ∪ {+1}︸ ︷︷ ︸

S0

) = f−1({−1}) ∪ f−1({+1}) = R

olduğundan
U ∪ V = R, U ∩ V = ∅

olur. Şimdi, x ∈ U ve y ∈ V olmak üzere x < y olduğunu varsayalım. [x, y] kapalı aralığını
ele alalım. Bu aralığın orta noktası

z1 =
x+ y

2

U V

x yz1
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ya U kümesine ya da V kümesine ait olur. Eğer z1 ∈ V ise, [x, z1] aralığı bir ucu U
kümesinde, bir ucu V kümesinde olur. z1 ∈ U olsun, [z1, y] aralığı ile işleme devam edelim.

Bu işlemi tekrarlayarak, uzunluğu giderek küçülen aralıklar elde edebiliriz.

z2 =
x+ z1

2
veya z2 =

z1 + y

2
.

Bu şekilde elde edilen aralıkların sonsuz kesişimi tek bir z noktası olur. Bu nokta U
kümesinde olursa, U açık küme olduğundan

(z − δ, z + δ) ⊂ U

olur. Ancak, yeterince küçük n için [zn, zn+1] aralığının bir ucu U kümesinde, bir ucu V
kümesinde olur. Bu,

U ∩ V 6= ∅

çelişkisine yol açar. Aynı argüman z ∈ V için de geçerlidir. Sonuç olarak, U ve V kümele-
rinden biri boş küme olmalıdır. Dolayısıyla, f örten ve sürekli olamaz. 2

Tanım 1.1.5 (X, τ ) topolojik uzayında U ∪ V = X olacak şekilde boş kümeden farklı olan
ayrık ve açık kümeler varsa (X, τ ) topolojik uzayında bağlantısız uzay denir. Eğer bu tür
U ve V kümeleri mevcut değilse, (X, τ ) topolojik uzayına bağlantılı uzay denir.

Örnek 1.1.6 (R,P(R)) ayrık uzayı için x ∈ R olmak üzere

U = {x} ∧ V = R \ {x}

alınırsa
U, V 6= ∅, U ∩ V = ∅, U ∪ V = R

olacağından (R,P(R)) uzayı bağlantısız uzay olur. 1.1.4 teoreminin ispatının ikinci kısmın-
dan (R,U) alışılmış uzayının bağlantılı uzay olduğu görülür.

Sonuç 1.1.7 Bir uzayın bağlantılı uzay olması özelliği üzerinde tanımlı olan topolojiye
bağlıdır.

Sonuç 1.1.8 Birden fazla nokta içeren ayrık uzay bağlantısız uzay olur.

İspat. (X, τ ) bir ayrık uzay olsun ve X kümesi birden fazla nokta içersin. Ayrık bir uzayda
her alt küme açıktır. Bu nedenle, X uzayının herhangi iki A,B ⊂ X alt kümesi için

A ∪ B = X ve A ∩ B = ∅

olacak şekilde A ve B kümeleri seçilebilir. (Örneğin A = {a} ve B = X − {a}.)
A ve B kümeleri ayrık ve açık olduğundan, X kümesi A ∪ B şeklinde iki ayrık açık

kümenin birleşimi olarak ifade edilebilir. Dolayısıyla, X bağlantısız uzay olur. . 2

Lemma 1.1.9 Bağlantılı bir uzaydan bağlantısız bir uzaya sürekli örten dönüşüm yoktur.
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İspat. X bağlantılı bir topolojik uzay ve Y bağlantısız bir topolojik uzay olsun.

f : X → Y

sürekli ve örten bir fonksiyon olduğunu varsayalım. Y bağlantısız uzay olduğundan U, V 6= ∅
olmak üzere

Y = U ∪ V, U, V açık ve U ∩ V = ∅

yazılabilir. f sürekli olduğundan, f−1(U) ve f−1(V ) kümeleri X içinde açık kümelerdir ve

X = f−1(U) ∪ f−1(V ).

olur. Ayrıca U ∩ V = ∅ olduğundan,

f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅.

olur. Bu, X uzayının boş kümeden farklı olan ayrık iki açık kümenin birleşimi olduğunu
gösterir. Ancak X bağlantılı uzay olduğu için çelişki elde edilir. Dolayısıyla f sürekli ve
örten olamaz. 2

Örnek 1.1.10 (0, 1) açık aralığı bağlantılıdır. R için yapılan ispatla aynı şekilde gösteri-
lebilir. Dolayısıyla,

(0, 1) → S0

şeklinde sürekli ve örten bir dönüşüm yoktur. Benzer şekilde [0, 1] kapalı aralığıda bağlan-
tılıdır.

Sonuç 1.1.11 a, b ∈ R için a < b olmak üzere (a, b) ve [a, b] aralıkları üzerlerine indirgenen
alışılmış topoloji ile bağlantılı uzay olurlar.

Teorem 1.1.12 (0,1) aralığı için Sabit Nokta Teoremi: )

f : [0, 1] → [0, 1]

sürekli fonksiyonunun sabit bir noktası vardır, yani [0, 1] aralığında f(x) = x olacak şekilde
en az bir x noktası bulunur.
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0 1

1

f(x)

y = x

İspat. f : [0, 1] → [0, 1] sürekli ancak sabit noktası olmadığını varsayalım. Bu durumda,
her x ∈ [0, 1] için f(x) 6= x olur.

g(x) =
x− f(x)

|x− f(x)|

şeklinde bir fonksiyon tanımlayalımm. Burada x 6= f(x) olduğu için, g toplama ve sıfırdan
farklı sayılarla bölme işlemlerinin bileşimi olduğundan sürekli olur. x 6= f(x) için

x 6= f(x) ⇒ f(x) > x ∨ f(x) < x
⇒ g(x) = 1 ∨ g(x) = −1

olduğundan g(x) yalnızca +1 veya −1 değerlerini alır, bu nedenle g fonksiyonun

g : [0, 1] → S0

sürekli ve örten bir fonksiyon olarak düşünebiliriz. [0, 1] bağlantılı S0 bağlantısız olduğun-
dan çelişki elde ederiz. O halde f fonksiyonunun sabit bir noktası olmalıdır. 2

Teorem 1.1.13 (Ortalama Değer Teoremi)
Eğer

f : [a, b] → R

sürekli bir fonksiyon ve f(a) < 0, f(b) > 0 ise, o zaman f(x) = 0 olacak en az bir x ∈ [a, b]
vardır.
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f(a)

f(b)

a bx0

İspat. Kabul edelim ki her x ∈ [a, b] için f(x) 6= 0 olsun. Buradan

f̄(x) =
f(x)

|f(x)|
fonksiyonunu tanımlayalım. f(x) sürekli olduğu için f̄ fonksiyonu da sürekli olur. Ayrıca,
f(a) < 0 olduğundan f̄(a) = −1 ve f(b) > 0 olduğundan f̄(b) = +1 olur. Dolayısıyla

f̄ : [a, b] → S0

fonksiyonu örten olur. [a, b] aralığı bağlantılı olduğundan f̄ sürekli bir fonksiyon olamaz.
Bu bir çelişkidir. O halde varsayımımız yanlış olmalıdır, yani f(x) = 0 sağlayan en az

bir x bulunmalıdır. 2

Teorem 1.1.14 Bağlantılılık süreklilik altında korunur. Yani, eğer X bağlantılı bir uzay
ve f : X → Y sürekli bir fonksiyon ise f(X) uzayıda bağlantılı bağlantılı uzay olur.

İspat. Kabul edelim ki f(X) bağlantısız uzay olsun. Yani f(X) boş kümeden farklı iki
ayrık açık kümenin birleşimi olarak yazılabilsin.

f(X) = A ∪B, A ∩ B = ∅ veA,B açık

f sürekli olduğundan, f−1(A) ve f−1(B), X içinde açık kümeler olurlar. Ayrıca,

X = f−1(A) ∪ f−1(B)

ve
f−1(A) ∩ f−1(B) = f−1(A ∩ B) = f−1(∅) = ∅

eşitlikleri sağlanır.
Bu, X kümesininin boş kümeden farklı f−1(A) ve f−1(B) ayrık açık kümelerinin bir-

leşimi olarak ifade edilebilieceğini gösterir. Bu ise X uzayının bağlantılı olması iler çelişir.
Bu çelişkiden dolayı, f(X) bağlantılı olmalıdır. 2

Teorem 1.1.15 Rn bağlantılıdır.
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İspat. Rn uzayının bağlantılı olmadığını varsayalım. Yani, Rn boş kümeden farklı ayrık
olmayan iki açık kümenin birleşimi olarak yazılabiliyor olsun.

Rn = U ∪ V, U ∩ V = ∅ ve U, V açık

Şimdi, bir noktayı sabitleyerek bir yol oluşturacağız. Bir x0 ∈ U noktası ve bir x1 ∈ V
noktası seçelim. Birim aralık üzerinde sürekli bir fonksiyon tanımlayalım:

γ : [0, 1] → Rn

t 7→ γ(t) = (1− t)x0 + tx1

Bu fonksiyon, x0 noktasından x1 noktasına doğru uzanan bir doğru parçasıdır ve sü-
reklidir. Birim aralık bağlantılıdır, bu yüzden γ([0, 1]) kümesi de bağlantılıdır. Ancak, bu
küme hem U hem de V içinde olmalıdır çünkü U ve V ayrık kabul edilmişti. Bu, γ([0, 1])
kümesinin boş kümeden farklı ayrık olmayan iki küme şeklinde ifade edilebileceği anlamına
gelir ki bu γ([0, 1]) kümesinin bağlantılı olması ile çelişir.

Dolayısıyla, Rn ayrık iki açık küme şeklinde ifade edilemez, yani bağlantılıdır. 2

Örnek 1.1.16 Rn \ {0} kümesi n > 1 için bağlantılıdır.

Çözüm: n > 1 için Rn \ {0} kümesinin bağlantılı olmadığını varsayalım. Yani, bu küme
boş kümeden farklı ayrık olmayan iki açık kümenin birleşimi olarak yazılabiliyor olsun.

Rn \ {0} = U ∪ V, U ∩ V = ∅ ve U, V açık

Bir x ∈ U ve bir y ∈ V noktası seçelim. Eğer x ve y arasındaki doğru parçası 0 noktasını
içermiyorsa, önceki ispatı olduğu gibi uygulayabiliriz.

Ancak, x ile y arasındaki doğru 0 noktasından geçiyorsa, yeni bir nokta seçmemiz
gerekir. Bunun için, x ile y doğrusunun üzerinde olmayan herhangi bir z ∈ Rn noktası
seçelim. Bu nokta ya U kümesinde ya da V kümesinde bulunur. Eğer z ∈ U ise, x noktasını
z noktası ile değiştiririz; eğer z ∈ V ise, y noktasını z noktası ile değiştiririz.

Bu değişiklik sonucunda, U kümesinde bir nokta ve V kümesinde bir nokta seçmiş
oluruz ve bunları birleştiren doğru parçası artık 0 noktasından geçmeyecektir. Önceki ispat
bu durumda geçerli olduğu için Rn \ {0} bağlantılıdır.

Öte yandan, n = 1 için R \ {0} bağlantılı değildir. Gerçekten de,

U = (0,∞), V = (−∞, 0)

seçimleriyle U ve V açık, boş kümeden farklı, ayrık ve birleşimleri R\{0} olur. Bu nedenle
R \ {0} bağlantısızdır. 2

Lemma 1.1.17 Eğer X bağlantısız ise,

X → S0

şeklinde sürekli bir örten dönüşüm vardır.
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İspat. Eğer X bağlantısız ise, X kümesi boş kümeden farklı ayrık olmayan U ve V gibi
iki açık alt kümesi için

U, V ⊂ X, U ∩ V = ∅, U ∪ V = X

olarak yazılabilir. Şimdi, f : X → S0 fonksiyonunu

f(x) =

{
1, x ∈ U

−1, x ∈ V

şeklinde tanımlayalım.

−1 1

V
U

S0 = {−1, 1}

X

Bu tanım U ve V kümeleri ayrık olmasından dolayı iyi tanımlıdır ve f tüm S0 kümesini
kapsadığı için örten bir fonksiyondur. Ayrıca, f−1({1}) = U ve f−1({−1}) = V açık
kümeler olduğundan, f sürekli olur. 2

Önerme 1.1.18 Eğer X bağlantılı bir uzay ve Y bağlantısız bir uzay ise

X → Y

şeklinde sürekli bir örten dönüşüm yoktur.

İspat. Eğer Y bağlantısız ise
Y → S0

şeklinde sürekli bir örten dönüşüm vardır. Kabul edelim ki

X → Y

sürekli ve örten bir dönüşüm mevcut olsun. Buradan iki dönüşümü birleştirerek

X Y S0sürekli
örten

sürekli
örten

sürekli
örten

şeklinde sürekli ve örten bir dönüşüm elde ederiz. Ancak X bağlantılı olduğu için X → S0

dönüşümü sürekli ve örten olamaz. Bu çelişki varsayımımızın yanlış olduğunu gösterir.
Sonuç olarak X bağlantılı bir uzay ve Y bağlantısız bir uzay olmak üzere

X → Y

şeklinde sürekli ve örten bir dönüşüm yoktur. 2
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Örnek 1.1.19 R bağlantılı ve R \ {0} bağlantısız olduğundan

R → R \ {0}

şeklinde sürekli bir örten dönüşüm yoktur.

Teorem 1.1.20 Eğer X bağlantılı bir uzay ve Y ayrık bir uzay ise

f : X → Y

fonksiyonu sürekli ise sabit fonksiyondur.

İspat. f fonksiyonunun görüntüsünde bir u noktası seçelim, yani u = f(x) olacak şekilde
bir x ∈ X olsun.

X
u

Y \ {u}

Y

x

f

Y üzerinde ayrık uzay olduğundan {u} ve Y −{u} kümeleri bu uzayda açık küme olurlar.
f fonksiyonu sürekli olduğundan f−1({u}) ve f−1(T − {u}) kümeleri de X uzayında açık
küme olurlar. Ayrıca, bu iki küme ayrık olup birleşimleri Y kümesini kapsar:

{u} ∪ (Y − {u}) = Y

Buradan
f−1({u} ∩ {Y − {u}}︸ ︷︷ ︸

∅

) = f−1({u}) ∩ f−1({Y − {u}}) = ∅

ve
f−1({u} ∪ {Y − {u}}︸ ︷︷ ︸

Y

) = f−1({u}) ∪ f−1({Y − {u}}) = X

olduğundan 1

f−1({u}) ∪ f−1(Y − {u}) = X, f−1({u}) ∩ f−1(Y − {u}) = ∅

olur. X bağlantılı uzay olduğundan, f−1({u}) veya f−1(Y − {u}) kümelerinden biri boş
küme olmalıdır. x ∈ f−1({u}) olduğu için f−1({u}) küme boş olamaz. O halde, f−1(Y −

1Burada f öngörüntü fonksiyonu olduğundan f−1(Y ) = X her zaman sağlanır.
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{u}) boş küme olmalıdır. Bu ise f(X) = {u} olduğu, yani f fonksiyonunun sabit olduğu
anlamına gelir.

f−1({u}) ∪ f−1(Y − {u})︸ ︷︷ ︸
∅

= X ⇒ f−1({u}) = X

⇒ f (X) = u

2

Örnek 1.1.21 (R,U) uzayından Z tam sayılar kümesi üzerine indirgenen alt uzay ayrık
uzay olur.

Çözüm: a ∈ Z noktasını alalım. U =]a− 1
2
, a+ 1

2
[∈ U kümesi (R,U) uzayında açık küme

ve
U =

]
a− 1

2
, a+

1

2

[
∩ Z = {a}

olduğundan {a} ∈ UZ elde ederiz.

a a+ 1a− 1

a− 1
2

a+ 1
2

U∈ U

U ∩ Z = {a}∈ U ∈ UZ

Her a ∈ Z noktası için {a} ∈ UZ olduğundan (Z,UZ) uzayında her küme açık küme olur.
Sonuç olarak (R,U) alışılmış uzayından Z tam sayılar kümesi üzerine indirgenen alt uzay
(Z,UZ) ayrık uzay olur. 2

Sonuç 1.1.22 R uzayı bağlantılı ve Z uzayı ayrık uzay olduğundan

R → Z

olacak şekilde sadece sabit fonksiyon süreklidir.

Örnek 1.1.23 Eğer S bağlantısız bir uzay ise f(0) = x ∈ U ve f(1) = y ∈ V olacak
şekilde

f : [0, 1] → S

sürekli bir fonksiyon tanımlanamaz.

Çözüm: Kabul edelim ki, f : [0, 1] → S sürekli bir fonksiyon f(0) = x ∈ U ve f(1) = y ∈ V
olsun.

[0, 1] aralığı bağlantılı bir uzaydır. f sürekli olduğu için, f([0, 1]) kümesi de bağlantılıdır.
f([0, 1]) kümesi U ve V ayrık açık kümelerinin birleşiminde yer almak zorundadır. Bu,
f([0, 1]) kümesinin ya tamamen U ya da tamamen V içinde olması gerektiğini ifade eder.
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Fakat f(0) ∈ U ve f(1) ∈ V olduğu için, f([0, 1]) hem U hem de V içinde noktalar
içermek zorundadır. Bu bir çelişkidir. Sonuç olarak S bağlantısız bir uzay olmak üzere

f(0) = x ∈ U , f(1) = y ∈ V

eşitliklerini sağlayan sürekli bir f : [0, 1] → S fonksiyonu var olamaz. 2

Örnek 1.1.24 X kümesini X = {a, b, c} olarak tanımlayalım. Aşağıdaki topolojiler altında
X kümesininin bağlantılı olup olmadığını inceleyelim.

• τ1 = {∅, {a}, {a, b}, {a, b, c}}

• τ2 = {∅, {a}, {b, c}, {a, b, c}}

• τ3 = {∅, {a}, {a, b}, {a, c}, {c}, {a, b, c}}

Çözüm:
Bir topolojik uzayın bağlantısız olması için, uzayın boş kümeden farklı iki ayrık açık

kümenin birleşimi olarak yazılabilmesi gerekir.

• τ1 ailesinde X kümesini boş kümeden farklı iki ayrık açık kümenin birleşimi olarak
yazmak mümkün değildir. Bu nedenle X uzayı τ1 topolojisi ile bağlantılı uzay olur.

• τ2 ailesinde X, {a} ve {b, c} şeklinde boş kümeden farklı iki ayrık açık kümenin
birleşimi olarak yazılabilir. Bu nedenle X uzayı τ2 topolojisi ile bağlantısız uzay olur.

• τ3 ailesinde X, {a, b} ve {c} şeklinde boş kümeden farklı iki ayrık açık kümenin
birleşimi olarak yazılabilir. Bu nedenle X uzayı τ3 topolojisi ile bağlantısız uzay olur.

2

Lemma 1.1.25 X uzayında boş kümeden ve X kümesinden farklı bir küme hem açık hem
kapalı ise, X bağlantısız uzay olur.

İspat.
A ⊂ X hem açık hem kapalı bir küme ve ∅ 6= A 6= X olsun. Bu durumda X kümesi,

A ve X \ A kümelerinin ayrık birleşimi olarak yazılabilir.

X = A ∪ (X \A)

Burada A aynı zamnda kapalı küme olduğundan X \ A açık küme olur. Ayrıca

A ∩ (X \A) = ∅

olduğu açıktır. A 6= ∅ ve A 6= X olduğundan X\A 6= ∅ olduğundan A ve X\A kümeleri boş
kümeden farklıdır. Bu nedenle X, boş kümeden farklı iki ayrık açık kümenin birleşimi
olarak yazılabildiği için bağlantısız uzay olur.

2
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Örnek 1.1.26 Q üzerinde alışılmış uzaydan indirgenen topoloji olsun. a, b /∈ Q için A =
[a, b] ∩Q kümesi

A = [a, b] ∩Q =]a, b[∩Q∈ U
t

∈ U

∈ U t
Q

∈ U
Q

Q alt uzayında hem açık hem kapalı küme olduğundan Q bağlantısız uzay olur.

Örnek 1.1.27 f : R → Q fonksiyonu sürekli ise sabittir.2

Çözüm:
f : R → Q sürekli bir fonksiyon olsun. x1, x2 ∈ R için f(x1) = q1 ve f(x2) = q2

olduğunu varsayalım.
f sürekli olduğu için, ortalama değer teoremine göre f , q1 ile q2 arasındaki tüm değerleri

almalıdır. Eğer q1 6= q2 ise, o zaman q1 ile q2 arasında bir değer r vardır ki bu değer irrasyonel
olmalıdır; bu, f değerinin tamamen Q içinde olduğu gerçeğiyle çelişir.

Bu nedenle, q1 = q2 olmalıdır. Herhangi bir x1, x2 ∈ R için f(x1) = f(x2) olduğundan
f fonksiyonu sabittir. 2

Örnek 1.1.28 Tam sayılar kümesi üzerinde ayrık olmayan (kaba) topoloji olsun. Z tam
sayılar kümesinin bağlantılı olma durumunu inceleyelim.

Çözüm:
Tam sayılar kümesi Z üzerinde kaba topoloji τ = {∅,Z} olduğundan, açık kümeler

yalnızca boş küme ve Z kümesidir.
Bir uzay bağlantılı ise boş kümeden farklı ayrık iki açık kümenin birleşimi olarak ya-

zamayız. Burada Z yalnızca boş küme ve kendisi olan açık kümelere sahiptir. Bu nedenle,
boş kümeden farklı ayrık iki açık küme bulmak mümkün değildir.

Sonuç olarak, kaba topoloji ile Z kümesi bağlantılı uzay olur. 2

Sonuç 1.1.29 X kümesi üzerinde kaba topoloji varsa X bağlantılı uzay olur.

Sonuç 1.1.30 X kümesi üzerinde topoloji kabalaştıkça(inceldikçe) bağlantılılık özelliği ar-
tar(azalır).

Tanım 1.1.31 Bir X uzayında her x, y ∈ X için, x ile y arasında bir yol varsa bu uzaya
yol bağlantılı uzay denir.

γ : [0, 1] → X

2Burada R uzayı bağlantı uzaydır ancak Q üzerine indirgenen alışılmış uzay ayrık uzay olmadığından
Teorem 1.1.20 kullanılamaz.
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sürekli bir fonksiyon olmak üzere

γ(0) = x ve γ(1) = y

eşitlikleri sağlanıyorsa X uzayı yol bağlantılı uzay olur.

0 1

X

x = γ(0)

y = γ(1)

γ

γ(x), 0 < x < 1

Lemma 1.1.32 Bir yol bağlantılı uzay bağlantılı uzay olur.

İspat. X yol bağlantılı bir uzay ve U, V ⊂ X kümeleri U ∪ V = X olacak şekilde ayrık ve
açık kümeler olsun. Eğer U ve V her ikisi de boş kümeden farklı ise bir x ∈ U ve bir y ∈ V
seçebiliriz. Yol bağlantılı uzay tanımından, x noktasından y noktasına uzanan sürekli bir
γ yolu vardır.

0 1

X

x = γ(0)

y = γ(1)

γ

U V

γ−1(U) γ−1(V )
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γ−1(U) ve γ−1(V ) kümeleri [0, 1] aralığında birbirinden ayrık açık kümelerdir ve birleşimleri
[0, 1] kümesini verir. Ayrıca, 0 ∈ γ−1(U) ve 1 ∈ γ−1(V ) olduğundan her ikisi de boş
kümeden farklıdır. Bu durum [0, 1] aralığının bağlantılı olması ile çelişir. O halde ya U = ∅
ya da V = ∅ olmalıdır. Bu ise X uzayının bağlantılı uzay olduğunu gösterir. 2

Not. Bağlantılı uzay olma özelliği ve yol ile bağlantılı uzay olma özelliği arasındaki ilişkiyi
aşağıdaki gibi özetleyebiliriz.

Yol ile bağlantılı

⇒
⇍

Bağlantılı değil

⇒
(Tersi olmayabilir)

Bağlantılı

Yol ile bağlantılı değil

2

Örnek 1.1.33 X = R2 \ {(0, 0)} uzayı yol bağlantılıdır. x, y ∈ X için, eğer x ve y arasın-
daki doğru parçası (0, 0) noktasını içermiyorsa, bu doğru parçası X içinde bir yol oluşturur.
Eğer doğru parçası (0, 0) noktasından geçiyorsa, önce (0, 0) merkezli ve x noktasından ge-
çen bir yarım çember boyunca ilerleyerek (0, 0) noktasından kaçınabiliriz. Daha sonra düz
bir yol ile y noktasına ulaşabiliriz.

Dolayısıyla, X içinde her iki nokta bir yol ile bağlanabilir ve X yol bağlantılı uzay olur.

R2 \ 0

0

R \ 0

Buna karşılık, R\{0} = (−∞, 0)∪(0,∞) uzayı, boş kümeden farklı ayrık ve boş olmayan
iki açık kümenin birleşimi olduğundan bağlantılı uzay değildir. Dolayısıyla yol ile bağlantılı
uzay değildir.

Örnek 1.1.34 S1 uzayı yol bağlantılı uzaydır. x, y ∈ S1 için, bu noktalar arasındaki büyük
çember boyunca bir yol belirleyebiliriz. Dolayısıyla S1 yol bağlantılıdır.
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S1 S1 \ {(1, 0)}

Benzer şekilde, S1 \ {(1, 0)} uzayı da yol bağlantılı uzay olur. x, y ∈ S1 \ {(1, 0)} için, yine
büyük çember boyunca bir yol bulabiliriz. Dolayısıyla, S1 \ {(1, 0)} uzayı da yol bağlantılı
uzay olur.

Not. R bağlantılı uzay olmasına rağmen bir a ∈ R noktası için R \ {a} bağlantısız uzay
olur. Ancak S1 bağlantılı uzaydır ve bir b ∈ S1 için S1 \ {b} bağlantılı uzay olur. R ve S1

arasındaki bu ilişkiyi ilerleyen bölümlerde bu iki uzayın homeomorf olmadığını örneklen-
dirmek için kullanacağız. 2

Örnek 1.1.35 Birden fazla nokta içeren kaba uzay yol bağlantılıdır.

Çözüm:
X uzayı birden fazla noktayı içersin ve üzerinde kaba topoloji tanımlı olsun. Bu du-

rumda, X uzayında herhangi iki nokta x, y için, γ : [0, 1] → X fonksiyonunu

γ(t) =


x eğer t = 0

y eğer t = 1

x diğer durumlar için

şeklinde tanımlayalım. Görüntü kümesi üzerinde kaba topoloji olduğundan uzaydaki açık
kümeler boş küme ve X için öngörüntüleri boş küme ve [0, 1] açık küme olacağından γ
fonksiyonu [0, 1] aralığı üzerinde sürekli bir yol oluşturur. Dolayısıyla, x ve y noktaları
arasında sürekli bir yol olduğu için, X kümesi kaba uzay ile yol bağlantılı uzay olur. 2

Örnek 1.1.36 [0, 1] ⊂ R ve [2, 3] ⊂ R bağlantılı olmasına rağmen [0, 1] ∪ [2, 3] ⊂ R
bağlantılı değildir.

Sonuç 1.1.37 Bağlantılı iki uzayın birleşimi bağlantılı uzay olmayabilir.
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Örnek 1.1.38 S1 ve R bağlantılı olmasına rağmen S1 ∩ R = S0 bağlantılı değildir.

S1

R
S0

Sonuç 1.1.39 Bağlantılı iki uzayın arakesiti bağlantılı uzay olmayabilir.

1.2 Kompaktlık
Tanım 1.2.1 Bir X kümesi için {Uα}α∈A herhangi bir küme ailesi olmak üzere

X ⊆
⋃
α∈A

Uα

oluyorsa {Uα}α∈A ailesine X uzayının bir örtüsü denir.

X

Tanım 1.2.2 {Uα}α∈A ailesi bir X kümesi için örtü olsun.

• Eğer örtü sonlu sayıda kümeden oluşuyorsa, yani

X ⊆
n⋃

i=1

Ui

şeklinde yazılabiliyorsa, bu örtüye sonlu örtü denir.



1.2. KOMPAKTLIK 23

• Eğer X bir topolojik uzay ise ve {Uα} ailesindeki her küme X uzayındaki topolojide
açık bir küme ise, bu örtüye açık örtü denir.

• Eğer X bir topolojik uzay ise ve {Uα} ailesindeki her küme X uzayındaki topolojide
kapalı bir küme ise, bu örtüye kapalı örtü denir.

Örnek 1.2.3

• Örtü: X = (0, 1) ve Un =
(
0, 1 + 1

n

)
olmak üzere {Un}n∈N küme ailesi, X kümesinin

bir örtüsüdür çünkü
X ⊆

⋃
n∈N

Un

olur.

• Sonlu Örtü: X = {a, b, c} kümesi için U1 = {a, b} ve U2 = {b, c} kümeleri verildi-
ğinde, {U1, U2} bir sonlu örtüdür çünkü sonlu sayıda küme ile

X ⊆ U1 ∪ U2

olur.

• Açık Örtü: X = (0, 1) ve Un =
(
0− 1

n
, 1 + 1

n

)
olmak üzere {Un}n∈N açık kümeler

ailesi X kümesinin bir açık örtüsüdür.

• Kapalı Örtü: X = [0, 1] ve V1 = [0, 1
2
], V2 = [1

2
, 1] kapalı kümeleri verildiğinde,

{V1, V2} ailesi X kümesinin bir kapalı örtüsü olur.

Tanım 1.2.4 Bir X topolojik uzayı için, X uzayının her açık örtüsünün sonlu bir alt
örtüsü varsa, yani her {Uα}α∈A açık örtüsü için,

X ⊆
⋃
α∈A

Uα

koşulunu sağlayan sonlu sayıda Uα1 , Uα2 , . . . , Uαn açık kümesi bulunabiliyorsa, X uzayına
kompakt uzay denir.

Örnek 1.2.5 Reel sayıların kümesi R, standart topolojisiyle (açık aralıklar topolojisi) kom-
pakt değildir. Bunu göstermek için R uzayının bir açık örtüsünün sonlu bir alt örtü içer-
mediğini gösterelim.

• R için aşağıdaki açık kümeler ailesini düşünelim:

Un = (−n, n) , n ∈ N.
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• Bu kümeler R uzayını örter, çünkü

R =
⋃
n∈N

Un.

• Bu örtüden herhangi bir sonlu alt örtü seçersek, örneğin Un1 , Un2 , . . . , Unk
, o zaman

bu kümelerin birleşimi

k⋃
i=1

Uni
= (−N,N) (burada N = max{n1, n2, . . . , nk})

olur. Bu, (−N,N) aralığını kapsar, ancak R uzayının tamamını kapsamaz. Dolayı-
sıyla, sonsuzda kalan noktalar örtülememiş olur.

• Sonuç olarak, bu açık örtü için hiçbir sonlu alt örtü R uzayını tamamen örtemez.

Bu, R kümesinin alışılmış topoloji ile kompakt uzay olmadığını gösterir.

Örnek 1.2.6 R reel sayılar üzerinde sonlu tümleyenler topolojisi verilsin. Bir A kümesinin
bu uzayda açık küme olması için gerek ve yeter şart A = ∅ veya R \ A kümesinin sonlu
olmasıdır.

Şimdi, R uzayının sonlu tümleyenler topolojisi altında kompakt uzay olduğunu göstermek
için her açık örtüsünün sonlu bir sonlu alt örtüye sahip olduğunu gösterelim.

Bir açık örtü {Ai}i∈I olsun.
R ⊆

⋃
i∈I

Ai

{Ai}i∈I ailesi R için örtü olduğundan bu kümelerden en az biri boş kümeden farklıdır.
Bu açık küme diyelim ki Aj olsun. Aj açık küme olduğundan R \ Aj0 sonlu bir küme olur.
Buradan

R \ Aj0 = {a1, a2, . . . , an}

olduğundan
R = {a1, a2, . . . , an} ∪ Aj0

yazılabilir. Bu noktaların her biri başka bir açık kümenin içinde yer alacak şekilde açık
kümeler seçelim. Örneğin Aj0 = {a2} alınırsa R \Aj0 = {a2} sonlu olduğundan Aj0 kümesi
açık bir kümedir ve a1 noktasını içerir. Bu şekilde devam ederek her ai noktası için en az
bir Ajn açık kümesi bulabiliriz. Buradan

R = {Aj0 , Aj1 , . . . , Ajn}︸ ︷︷ ︸
n tane

∪Aj

yazabiliriz. Sonuç olarak, R uzayını en fazla n + 1 tane açık küme ile örtmüş oluruz. Her
açık örtü sonlu bir alt örtü içerdiğinden, R uzayı sonlu tümleyenler topolojisi ile kompakt
uzay olur.
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Sonuç 1.2.7 Yukarıdaki iki örnekten görüldüğü gibi, bir kümenin kompakt olup olmaması
yalnızca kümenin kendisine değil, üzerinde tanımlı olan topolojiye de bağlıdır.

Teorem 1.2.8 [a, b] ⊂ R kapalı aralığı standart topoloji ile kompakt uzay olur.

İspat. Kompaktlığı göstermek için, [a, b] aralığının her açık örtüsünden sonlu bir alt örtü
seçilebildiğini gösterelim.

Verilen bir açık örtü
{Ui}i∈I öyle ki [a, b] ⊆

⋃
i∈I

Ui.

olsun. Şimdi, aşağıdaki küme ailesini tanımlayalım

S = {x ∈ [a, b] | x > a ve [a, x] sonlu sayıda Ui kümeleri ile örtülebilir}

Bu kümenin bazı önemli özelliklerini inceleyelim:

• Boş olmadığını gösterelim: a noktası örtüldüğü için, a ∈ Uj olacak şekilde bir
j ∈ I vardır. Açık küme tanımına göre, Uj kümesi a etrafında bir ϵ-komsuluğu içerir.
Yani, [a, a+ δ) ⊆ Uj olacak şekilde bir δ > 0 vardır. Bu, a+ δ

2
∈ S olduğu anlamına

gelir. Bu yüzden S 6= ∅.

• Üst sınırlı olduğunu gösterelim: S ⊆ [a, b] olduğundan, S kümesi üstten sınırlıdır.

• Üst sınırını bulalım: c = supS (üst sınır) tanımlıdır ve a ⩽ c ⩽ b koşulunu sağlar.
c = b olduğunu gösterelim.

• c < b olamaz: Eğer c < b olsaydı, c ∈ Uk olacak şekilde bir k ∈ I olurdu. Açık küme
tanımından, Uk kümesi c etrafında bir δ-komşuluğu içerir:

[c, c+ δ) ⊆ Uk.

Fakat c = supS olduğundan, c + δ
2

değeri S kümesine dahil olmalıdır. Bu ise c
noktasının supremum olduğu varsayımıyla çelişir. Dolayısıyla c = b olmalıdır.

Son olarak, b noktası da kapsandığından, [a, b] kümesi gerçekten de her açık örtüden
bir sonlu alt örtü seçmeye izin veren bir yapıya sahiptir. Bu ise [a, b] aralığının kompakt
olduğunu kanıtlar. 2

Teorem 1.2.9 Eğer K kompakt bir topolojik uzay ve

f : K → R

sürekli bir fonksiyon ise, o zaman f sınırlıdır.
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İspat. R üzerinde şu açık aralıkları ele alalım:

. . . , (i− 1, i+ 1), (i, i+ 2), (i+ 1, i+ 3), . . .

Bu aralıklar R için bir açık örtü oluşturur, çünkü her x ∈ R en az bir aralığın içinde
bulunur. f fonksiyonu sürekli olduğundan, her aralığın öngörüntüsü de açıktır. Buradan

{f−1(i, i+ 2)}i∈Z

kümesi K için bir açık örtü oluşturur.
K kompakt olduğu için, bu açık örtüden sonlu bir alt örtü seçebiliriz:

f−1(i1, i1 + 2), . . . , f−1(in, in + 2).

Bunlar hala K kümesini örtmelidir, yani

K ⊆ f−1(i1, i1 + 2) ∪ · · · ∪ f−1(in, in + 2)

olmalıdır. Bu, f(K) kümesinin sonlu sayıda açık aralık içinde kaldığını gösterir:

f(K) ⊆ (i1, i1 + 2) ∪ · · · ∪ (in, in + 2).

Bu nedenle, f(K) alt ve üst sınırlara sahip olduğundan f sınırlıdır. 2

Örnek 1.2.10 f(x) = x fonksiyonu R üzerinde sınırsız olduğundan R uzayı alışılmış
topoloji ile kompakt olamaz, çünkü kompakt olsaydı

f : R → R

sürekli olan tüm fonksiyonlar sınırlı olurdu.

Lemma 1.2.11 Birim çember S1 kompakttır.

İspat. Kompakt olduğunu bildiğimiz [0, 1] aralığı ile ilişkilendirerek gösterelim.

e : [0, 1] → S1

t 7→ e(t) = (cos(2πt), sin(2πt))

fonksiyonu süreklidir ve S1 üzerine örtendir. U ailesi S1 için herhangi bir açık örtü olsun.
Her Q ∈ U için, f sürekli olduğundan f−1(Q) kümesi [0, 1] içinde açık bir küme olur.
Böylece, {f−1(Q) | Q ∈ U} ailesi [0, 1] için açık bir örtü olur.

[0, 1] kompakt olduğundan, bu açık örtü sonlu bir alt örtüsü [0, 1] aralığını örter. Yani,
V sonlu sayıda açık kümeden oluşan bir alt aile olmak üzere⋃

Q∈V

f−1(Q)
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olur. Böylece, V ailesi S1 için U örtüsünün sonlu bir alt örtüsü olur. Gerçekten de, x ∈
S1 için f örten olduğundan x = f(y) olacak şekilde bir y ∈ [0, 1] vardır. [0, 1] aralığı⋃

Q∈V f−1(Q) tarafından örtüldüğünden, y en az bir f−1(Q) kümesinin elemanıdır. Bu
durumda, f(y) ∈ Q olur ve dolayısıyla x ∈ Q sağlanır.

Böylece, S1 de bulunan her nokta V ailesine ait en az bir kümenin içinde yer almaktadır.
Bu ise V ailesinin S1 için U ailesinin sonlu bir alt örtüsü olduğunu gösterir. Sonuç olarak,
S1 kompakt bir uzaydır.

2

Sonuç 1.2.12 Herhangi bir
f : S1 → R

sürekli fonksiyonu sınırlıdır.

Örnek 1.2.13 (0, 1) açık aralığının kompakt olmadığını gösterelim.
Her n > 1 tamsayıları için açık kümeleri

U2 =

(
1

2
, 1

)
, U3 =

(
1

3
, 1

)
, . . . , Un =

(
1

n
, 1

)
, . . .

şeklinde tanımlayalım.
Bu kümeler (0, 1) kümesini örter, çünkü herhangi bir x reel sayısı 0 ile 1 arasında ise,

yeterince büyük bir n tamsayısı için x aynı zamanda (1/n, 1) aralığında da yer alır.
Ancak, bu açık örtünün herhangi bir sonlu alt örtüsünü alırsak, örneğin Ui1 , . . . , Uik , bu

sonlu alt örtü (0, 1) kümesini kapsamaz. Çünkü bu sonlu birleşim yalnızca

Ui =

(
1

i
, 1

)
kümesini verir, burada i = max(i1, . . . , ik). Ancak, (0, 1) kümesindeki bazı noktalar, örneğin
1/i, bu birleşime dahil değildir. Dolayısıyla bu örtünün herhangi bir sonlu alt örtüsü de (0, 1)
aralığını örtemez. Sonuç olarak (0, 1) aralığı kompakt değildir.

Önerme 1.2.14 f : X → Y sürekli bir fonksiyon ve X kompakt bir küme ise, f(X) kümesi
de kompakt olur.

İspat. f(X) için açık bir örtü {Vα}α∈A olsun. f sürekli olduğu için, her Vα açık kümesinin
ön görüntüsü f−1(Vα), X içinde açık bir kümedir. Bu durumda, {f−1(Vα)}α∈A kümesi X
için bir açık örtü olur.

X kompakt olduğundan, bu açık örtüden sonlu bir alt örtü seçilebilir, yani

f−1(Vα1), f
−1(Vα2), . . . , f

−1(Vαn)

kümeleri X kümesini örter. Buradan

f(f−1(Vα1)) ∪ f(f−1(Vα2)) ∪ · · · ∪ f(f−1(Vαn)) ⊆ Vα1 ∪ Vα2 ∪ · · · ∪ Vαn

olacağından f(f−1(Vα)) ⊆ Vα olduğu için, bu kümeler f(X) kümesini de örter. Bu, f(X)
için sonlu bir açık alt örtü elde ettiğimiz anlamına gelir ki bu, f(X) kümesinin kompakt
olduğunu gösterir. 2
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Sonuç 1.2.15 Kompakt bir uzaydan kompakt olmayan bir uzaya sürekli örten dönüşüm
yoktur. Örneğin

[0, 1] → (0, 1)

şeklinde örten sürekli dönüşüm yoktur.

Teorem 1.2.16 (Heine–Borel Teoremi) Rn uzayının bir alt uzayının kompakt olması
için gerek ve yeter şart kapalı ve sınırlı olmasıdır.

1.3 Hausdorff Özelliği
Tanım 1.3.1 Bir X topolojik uzayı , eğer her farklı x, y ∈ X noktaları için x ∈ U , y ∈ V
ve U ∩ V = ∅ olacak şekilde açık U, V ⊆ X kümeleri varsa, Hausdorff olarak adlandırılır.

X

x

y
U

V

∀x, y ∈ X

∃U, V ϶ U ∩ V = ∅

Örnek 1.3.2 Tek noktadan oluşan X = {x} uzayının Hausdorff olduğunu gösterelim.
Hausdorff uzay olabilmek için, farklı iki noktayı ayıran ayrık açık kümeler bulunmalıdır.

Ancak, X yalnızca tek bir noktadan oluştuğundan, X içinde farklı iki nokta yoktur. Boş
önermenin doğru olduğu kabul edildiğinden, X Hausdorff uzay olur.

Not. Bu bölümde aksi belirtilmediği sürece, bir X uzayının birden fazla nokta içerdiğini
varsayacağız. 2

Örnek 1.3.3 (R,U), alışılmış uzayının Hausdorff uzay olduğunu gösterelim.
Hausdorff uzay tanımına göre, eğer x, y ∈ R ve x 6= y ise, öyle U, V ⊆ R açık kümeleri

vardır ki x ∈ U , y ∈ V ve U ∩ V = ∅ sağlanır.
Gerçekten de, x 6= y ise ε = |x− y| seçelim. Buradan

U =
(
x− ε

3
, x+

ε

3

)
, V =

(
y − ε

3
, y +

ε

3

)
açık kümeleri x ve y noktalarını içerir ve U ∩ V = ∅ olduğu açıktır.

Sonuç olarak, R Hausdorff uzaydır.
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Rx y

ϵ

x− ϵ
3 x+ ϵ

3 y − ϵ
3 y + ϵ

3

U =]x− ϵ
3
, x+ ϵ

3
[

V =]y − ϵ
3
, y + ϵ

3
[

U ∩ V = ∅

Örnek 1.3.4 R üzerinde sağ ışın topolojisini ele alalım. Sağ ışın uzayında bir noktanın
komşulukları, o noktayı içeren ve a ∈ R olmak üzere ]a,∞[ şeklinde olan kümelerdir.

Hausdorff uzay olabilmesi için, her x 6= y çifti için ayrık açık kümeler bulunabilmelidir.
Ancak, x < y olduğunda, x noktasını içeren her açık küme her ϵ > 0 için ]x−ϵ,∞[ şeklinde
olup y noktasını da içerir. Bu durumda x ve y noktalarını ayıran iki ayrık açık küme
bulunamaz.

Örneğin, x = 1 ve y = 2 seçildiğinde, 1 noktasını içeren herhangi bir açık küme
]1− ϵ,∞[ şeklinde olmak zorundadır ve bu küme 2 noktasını da içerir. Bu yüzden sağ ışın
uzayı Hausdorff değildir.

Rx y
x− ϵ

U ∩ V 6= ∅
U =]x− ϵ,∞[

V =]y − ϵ,∞[

ϵ > 0

Sonuç 1.3.5 Hausdorff özelliği topolojiye bağlıdır. Aynı küme, farklı topolojiler altında
Hausdorff olabilir veya olmayabilir.

Önerme 1.3.6 X Hausdorff uzayı ve f : X → X sürekli bir fonksiyon olmak üzere sabit
nokta kümesi

Fix(f) = {x ∈ X | f(x) = x}

X içinde kapalı bir alt kümedir.

İspat. Bir kümenin kapalı olduğunu göstermek için tümleyeninin açık olduğunu göstermek
yeterlidir. Sabit nokta kümesinin tümleyenininde bir y noktası alalım. Yani y /∈ Fix(f),
dolayısıyla f(y) 6= y olur. Bu durumda, X Hausdorff olduğu için, y ve f(y) noktalarını
içeren ayrık açık kümeler vardır; yani y ∈ U ve f(y) ∈ V olacak şekilde U, V açık kümeleri
bulunur ve U ∩ V = ∅ olur.

f sürekli olduğu için f−1(V ) kümesi açıktır. O halde U ∩ f−1(V ), y elemanını içeren
açık bir kümedir. Ayrıca, bu küme Fix(f) ile kesişmez. Gerçekten, eğer x ∈ U ∩ f−1(V )
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ve f(x) = x olsaydı, x ∈ f−1(V ) olduğundan f(x) ∈ V olurdu. Aynı zamanda x ∈ U
olduğundan ve f(x) = x olduğundan f(x) ∈ U da olurdu. Böylece f(x) ∈ U ∩V elde edilir,
ancak U ∩ V = ∅ olduğundan bu bir çelişkidir. Yani her y ∈ X − Fix(f) için

y ∈ U ∩ f−1(V ) ⊂ X − Fix(f)

∈
τ ∈
τ

∈
τ

olacağından her y noktası X−Fix(f) kümesinin iç noktası olur. X−Fix(f) kümesinin her
noktası iç nokta olduğundan X − Fix(f) kümesi açık küme dolayısıyla tümleyeni Fix(f)
kapalı küme olur.

2

Sonuç 1.3.7 f : R → R sürekli bir fonksiyon ve f(x) 6= x ise, sabit nokta içermeyen bir
açık aralık (x−δ, x+δ) (pozitif yarıçaplı bir δ ile) bulunur. Başka bir deyişle, y ∈ (x−δ, x+δ)
için f(y) 6= y olur.

f(x) 6= x olan noktaların kümesi Fix(f) tümleyenidir. R Hausdorff bir uzay olduğu
için, önceki önermeye göre Fix(f) kapalıdır. Dolayısıyla, sabit nokta içermeyen noktaların
kümeleri açık küme olur.

Önerme 1.3.8 f : X → Y sürekli ve birebir bir fonksiyon ve Y Hausdorff ise X Hausdorff
uzay olur.

İspat. x 6= y olmak üzere x, y ∈ X alalım. f birebir olduğu için, f(x) ve f(y) de Y içinde
farklı noktalardır. Y Hausdorff olduğu için, f(x) ve f(y) noktalarını ayıran açık kümeler
U, V ⊂ Y vardır; yani f(x) ∈ U , f(y) ∈ V ve U ∩ V = ∅ yazılabilir.

f sürekli olduğundan, f−1(U) ve f−1(V ) açık kümelerdir. Ayrıca, x ∈ f−1(U) ve y ∈
f−1(V ) sağlanır. Son olarak,

f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅

olduğundan, X Hausdorff uzaydır.
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(X, τ ) (Y, σ)

x

y

x 6= y

f(x)

f(y)

f(x) 6= f(y)
f birebir

f

Y Hausdorff

U ∈ σ
V ∈ σ

∃U, V ∈ σ ϶ f(x) ∈ U, f(y) ∈ V
U ∩ V = ∅

f−1(U) ∈ τ

f−1(V ) ∈ τ

f sürekli

f(x) ∈ U ⇒ x ∈ f−1(U)
f(y) ∈ V ⇒ y ∈ f−1(V )
U ∩ V = ∅ ⇒ f−1(U) ∩ f−1(V ) = ∅

2

Örnek 1.3.9 Kaba uzayın (∅, X) Hausdorff olmadığını gösterelim.
Hausdorff olması için her x, y ∈ X ve x 6= y için, x ve y noktalarını ayıran ayrık açık

kümeler bulmamız gerekir. Ancak kaba uzayda X ve ∅ dışında başka açık küme bulunmadı-
ğından, herhangi iki farklı noktayı ayrık açık kümelerle ayırmak mümkün değildir.

Bu nedenle, kaba uzay Hausdorff değildir.

Örnek 1.3.10 Ayrık topolojiye sahip bir uzayın Hausdorff olduğunu gösterelim.
Ayrık X uzayında her alt küme açık kümedir. İki farklı x, y ∈ X seçelim. Ayrık topolojide

her {x} ve {y} kümeleri açık kümelerdir ve

{x} ∩ {y} = ∅

olduğundan, bu açık kümeler x ve y noktalarını ayırır.
Dolayısıyla, ayrık topoloji Hausdorff özelliğini sağlar.

Sonuç 1.3.11 Topoloji inceldikçe/(kabalaştıkça) Hausdorff olma özelliği artar/(azalır).

Örnek 1.3.12 X = {a, b, c} olsun. Aşağıdaki topolojiler altında X uzayının Hausdorff
olup olmadığını inceleyelim:

1. τ1 = {∅, {a}, {a, b}, {a, b, c}}
b ve c noktalarını ayıran ayrık açık kümeler bulunamaz. Bu nedenle, X uzayı τ1 topolojisi
ile Hausdorff değildir.

2. τ2 = {∅, {a}, {b, c}, {a, b, c}}
b ve c noktalarını ayıran ayrık açık kümeler bulunamaz. Bu nedenle, X uzayı τ2 topolojisi
ile Hausdorff değildir.
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3. τ3 = {∅, {a}, {a, b}, {a, c}, {c}, {a, b, c}}
b ve c noktalarını ayıran ayrık açık kümeler bulunamaz. Bu nedenle, X uzayı τ3 topolojisi
ile Hausdorff değildir. .

Sonuç olarak, verilen üç topolojinin hiçbiri X uzayını Hausdorff yapmaz.

Örnek 1.3.13 Z kümesi üzerine indirgenen alışılmış topolojinin Hausdorff olduğunu üç
farklı yöntemle gösterelim:

1. Z üzerine indirgenen topoloji ayrık uzay olur(Örnek1.1.21). Birden fazla nokta içeren
ayrık topoloji Hausdorff uzayıdır (Örnek1.3.10).

2. İki farklı nokta seçerek Hausdorff özelliğini gösterelim.
Herhangi iki farklı x, y ∈ Z noktası alalım. İndirgenmiş topolojide Z uzayında her altkümesi
açık olduğundan, U = {x} ve V = {y} açık kümeleri x ve y noktalarını ayırır ve U ∩V = ∅
sağlanır. Bu, Z uzayının Hausdorff olduğunu gösterir.

3. Hausdorff bir uzaya sürekli ve birebir bir fonksiyon tanımlayarak gösterelim.(Önerme1.3.8)
f : Z → R fonksiyonu her x ∈ Z için f(x) = x olarak tanımlayalım. Bu fonksiyon süreklidir
(Tanım kümesinde ayrık topoloji varsa fonksiyon her zaman süreklidir). R Hausdorff uzay
olduğundan, Z uzayıda Hausdorff olmak zorundadır.

Bu üç farklı yöntemle Z’nin Hausdorff olduğunu kanıtlamış olduk.



Bölüm 2

Çözümleyici Topoloji

2.1 Homeomorfizm
X ve Y uzaylarının topolojik olarak özdeş olması için, bu uzaylar arasında birebir bir
eşleme olmalı ve bu eşleme, X ve Y uzaylarının açık kümeleri arasında da birebir bir
eşleme sağlamalıdır.

• X uzayını tanım kümesi olarak alan her sürekli fonksiyon, Y uzayını tanım kümesi
olarak alan bir sürekli fonksiyonla eşlenebilir ve tersi de geçerlidir.

• Benzer şekilde, X uzayını değer kümesi olarak alan her sürekli fonksiyon, Y uzayını
değer kümesi olarak alan bir sürekli fonksiyonla eşlenebilir ve tersi de geçerlidir.

Süreklilik, topolojiye bağlı olarak tanımlandığından, bu koşul X ve Y uzaylarının tüm
topolojik bağlamlarda birbirinin yerine kullanılabileceğini gösterir.

Tanım 2.1.1 (Homeomorf Uzaylar) X ve Y iki uzay olmak üzere eğer

f ◦ g = IdY ve g ◦ f = IdX

olacak şekilde sürekli f : X → Y ve g : Y → X dönüşümleri varsa, bu uzaylara home-
omorf denir ve X ∼= Y ile gösterilir. f ve g dönüşümlerine homeomorfizm denir.

Not. Homeomorfizm, iki topolojik uzayın ”topolojik olarak özdeş” olduğunu gösterir. Bu,
uzayların topolojik özelliklerinin aynı olduğu anlamına gelir. 2

Örnek 2.1.2 (Açık Aralıkların Homeomorfizmi) Reel eksende herhangi iki açık ara-
lık homeomorftur. Örneğin, X = (−2, 3) ve Y = (1, 7) aralıkları için, f : X → Y ve
g : Y → X dönüşümlerini

f(x) =
6

5
(x+ 2) + 1, g(x) =

5

6
(x− 1)− 2

33
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ile tanımlanayalım. Bu dönüşümler toplama ve çarpma işlemlerinin bileşkesi olduğundan
süreklidir. Ayrıca

f(g(x)) = f

(
5

6
(x− 1)− 2

)
=

6

5

(
5

6
(x− 1)− 2 + 2

)
+ 1 = x = IdY (x)

ve

g(f(x)) = g

(
6

5
(x+ 2) + 1

)
=

5

6

(
6

5
(x+ 2) + 1− 1

)
− 2 = x = IdX(x)

olduğundan

f ◦ g = IdY ve g ◦ f = IdX

elde edilir. f ve g homeomorfizmler olduğundan, (−2, 3) ve (1, 7) aralıkları homeomorf
olurlar.

Örnek 2.1.3 (R ve (−1, 1) Arasındaki Homeomorfizm) R ve (−1, 1) aralığı home-
omorftur. Bu homeomorfizmi f : (−1, 1) → R

f(x) = tan
(πx

2

)
ve g : R → (−1, 1)

g(x) =
2

π
arctan(x)

ile tanımlayabilirz. f ve g dönüşümleri, trigonometrik fonksiyonların bileşkesi olduğundan
süreklidir. Ayrıca

f(g(x)) = tan

(
π

2
· 2
π
arctan(x)

)
= tan(arctan(x)) = x = IdR(x)

ve

g(f(x)) =
2

π
arctan

(
tan
(πx

2

))
=

2

π
· πx
2

= x = Id(−1,1)(x)

olduğundan R ve (−1, 1) homeomorf olur.
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−1 1

f

−1

1
g

Diyagramdan görüleceği gibi, f fonksiyonu (−1, 1) aralığını R uzayına g fonksiyonu R
uzayını (−1, 1) aralığına sürekli ve birebir olarak eşler.

Önerme 2.1.4 X herhangi bir topolojik uzay ise, (−1, 1) → X şeklindeki sürekli dönü-
şümler ile R → X şeklindeki sürekli dönüşümler arasında birebir bir eşleme vardır. Benzer
şekilde X → (−1, 1) şeklindeki sürekli dönüşümler ile X → R şeklindeki sürekli dönüşümler
arasında da birebir bir eşleme vardır.

İspat. h : (−1, 1) → X sürekli bir dönüşüm ise, h ◦ g : R → X de süreklidir. Burada
g : R → (−1, 1) dönüşümü

g(x) =
2

π
arctan(x)

ile tanımlanabilir.
Tersine, eğer j : R → X sürekli bir dönüşüm ise, j ◦ f : (−1, 1) → X de süreklidir.

Burada f : (−1, 1) → R dönüşümü

f(x) = tan
(πx

2

)
ile tanımlanabilir.

h dönüşümünü h ◦ g : R → X dönüşümüne dönüştürüp, sonra

(h ◦ g) ◦ f : (−1, 1) → X

şelinde dönüştürdüğümüzde, h ◦ (g ◦ f) : (−1, 1) → X elde ederiz. g ◦ f , (−1, 1) üzerinde
birim dönüşüm olduğundan, bu h dönüşümüdür. Benzer şekilde, (j ◦ f) ◦ g : R → X, f ◦ g
dönüşümü R üzerinde birim dönüşüm olduğundan, j dönüşümüdür.

Benzer şekilde, k : X → (−1, 1) dönüşümünden f ◦ k : X → R elde edilir. Tersine,
l : X → R dönüşümünden g ◦ l : X → (−1, 1) elde edilir. Bu iki yapı da birbirinin tersidir.

2
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Önerme 2.1.5 (Yansıyan Homeomorfizm) Her topolojik uzay kendine homeomorftur.

İspat. X herhangi bir topolojik uzay olmak üzere birim dönüşüm her x ∈ X için

IdX(x) = x

ile tanımlanır. X uzayının herhangi bir U açık kümesi için Id−1
X (U) = U açık olduğundan

birim dönüşüm IdX süreklidir. Ayrıca

IdX ◦ IdX = IdX .

olduğundan IdX bir homeomorfizm olur. Sonuç olarak her X uzayı kendine homeomorftur
denir. 2

Sonuç 2.1.6 Homeomorf olma yansıma özelliğine sahiptir.

Önerme 2.1.7 (Simetrik Homeomorfizm) X homeomorf Y ise, Y homeomorf X
olur.

İspat. X homeomorf Y olduğunu varsayalım. Bu durumda, bir f : X → Y homeomorfizmi
vardır. Tanım gereği, f süreklidir ve sürekli bir ters dönüşümü f−1 : Y → X için

f ◦ f−1 = IdY ve f−1 ◦ f = IdX

sağlanır. f−1 sürekli olduğundan ve sürekli bir tersi f olduğundan, f−1 bir homeomorfizm
olur. Buradan Y homeomorf X elde edilir. 2

Sonuç 2.1.8 Homeomorf olma simetri özelliğine sahiptir.

Önerme 2.1.9 (Homeomorfizmlerin Bileşkesi) f : X → Y ve g : Y → Z birer ho-
meomorfizm olmak üzere bileşke g ◦ f : X → Z bir homeomorfizm olur.

İspat.
g ◦ f , iki sürekli dönüşümün bileşkesi olduğundan süreklidir. f ve g homeomorfizm

olduğundan, sürekli ters dönüşümleri f−1 : Y → X ve g−1 : Z → Y vardır. Ayrıca iki
sürekli fonksiyonun bileşkesi sürekli olacağından bileşke f−1 ◦ g−1 de süreklidir. Ayrıca

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ (f ◦ f−1) ◦ g−1 = g ◦ g−1 = IdZ

ve
(f−1 ◦ g−1) ◦ (g ◦ f) = IdX

olduğundan (f−1 ◦ g−1, g ◦ f dönüşümünün tersidir. Sonuç olarak g ◦ f bir homeomorfizm
olur. 2
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Sonuç 2.1.10 Homeomorf olma geçişme özelliğine sahiptir. Eğer X ∼= Y ve Y ∼= Z ise, o
zaman X ∼= Z olur.

X ∼= Y ∧ Y ∼= Z ⇒ X ∼= Z

Sonuç 2.1.11 Homeomorf olma denklik bağıntısıdır. Topolojik uzayları homeomorf olma
ilişkisine göre sınıflandırabiliriz.

Örnek 2.1.12 Reel eksen üzerindeki herhangi bir açık aralık, R uzayının kendisiyle ho-
meomorf olur.

Çözüm:
R ∼= (−1, 1) ve Reel eksen üzerindeki herhangi iki açık aralık homeomorf olduğundan

herhangi bir (a, b) açık aralığı (−1, 1) ile homeomorf olur.
Homeomorf olma bağıntısı geçişmeli olduğundan

(a, b) ∼= (−1, 1) ∼= R

olmasından
(a, b) ∼= R

elde edilir. 2

Örnek 2.1.13 [1, 2) ve (−1, 0] aralıklarının homeomorf olduğunu gösterelim.

f : [1, 2) → (−1, 0]

fonksiyonu

f(x) = 1− x

ile tanımlansın. f fonksiyonu

f(x1) = f(x2) =⇒ 1− x1 = 1− x2 =⇒ x1 = x2

olduğundan birebir ve y ∈ (−1, 0] için

x = 1− y ∈ [1, 2)

olduğundan örtendir. f fonksiyonunun tanımı gereği her V ⊂ (−1, 0] açık kümesi için
f−1(V ) öngörüntüsü [1, 2) uzayında açık kümedir.

f fonksiyonunun tersi:
g(y) = 1− y,

sürekli bir fonksiyondur. Benzer şekilde g fonksiyonunun sürekliliği gösterilebilir.
f sürekli, birebir ve örten fonksiyon olup, tersi de süreklidir. Bu nedenle [1, 2) ve (−1, 0]

homeomorf olur.
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Örnek 2.1.14 S1 çemberinden bir nokta çıkarıldığında, kalan uzay R ile homeomorftur.
Benzer şekilde, S2 küresinden bir nokta çıkarıldığında, kalan uzay R2 ile homeomorftur.
Bu homeomorfizmleri göstermek için stereografik projeksiyon tekniğini kullanabiliriz.

S1

R

S1 çemberinden kuzey kutbunu, (0, 1), çıkardığımızı düşünelim. Stereografik projeksiyon S1

çemberindeki bir (x, y) noktası, R uzayındaki 2x
1−y

noktasına eşlenir. Bu dönüşüm y 6= 1
olan noktalara uygulandığından süreklidir.

Tersine, R uzayındaki bir t noktası, S1 çemberindeki
(

4t

t2 + 4
,
t2 − 4

t2 + 4

)
noktasına eşlenir.

Bu ters dönüşüm de süreklidir.
Stereografik projeksiyon, S2 küresinin farklı bölgelerini R2 uzayının bölgeleriyle eşleş-

tirmek için de kullanılabilir. S2 küresinin güney yarıküresi (ekvator dahil), R2 uzayındaki
kapalı bir disk ile homeomorftur. S2 küresinin kuzey kutup dairesi’nin güneyindeki bölgesi
(kuzey kutup dairesi hariç), R2 zayındaki açık bir disk ile homeomorftur.

R uzayına ∞ noktası eklersek, S1 − {(0, 1)} ↔ R homeomorfizmini S1 ↔ R ∪ {∞}
şeklinde genişletebiliriz. R∪{∞} üzerinde uygun bir topoloji tanımlayarak, bu genişletilmiş
eşlemeyi bir homeomorfizm yapabiliriz.

Benzer şekilde, uygun bir topoloji ile S2 ve R2 ∪ {∞} (veya C ∪ {∞}) arasında bir
homeomorfizm tanımlabilir. S2 için bu model Riemann küresi olarak adlandırılır.

Örnek 2.1.15 (Bir Kare ile Bir Diskin Homeomorfizmi) Bir kare

Q = {(x, y) ∈ R2 : −1 ⩽ x ⩽ 1,−1 ⩽ y ⩽ 1}

ve disk
D = {(x, y) ∈ R2 : x2 + y2 ⩽ 1}

homeomorftur. Diskten kareye bir dönüşüm f : D → Q

f(x, y) =


x2 + y2

max(|x|, |y|)
(x, y), eğer (x, y) 6= (0, 0),

(0, 0), eğer (x, y) = (0, 0)

ve kareden diske dönüşüm g : Q → D

g(x, y) =


max(|x|, |y|)

x2 + y2
(x, y), eğer (x, y) 6= (0, 0),

(0, 0), eğer (x, y) = (0, 0)
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olsun. f diski radyal olarak dışarı doğru iterek bir kare oluştururken g, kareyi radyal olarak
içeri doğru çekerek bir disk oluşturur.

Q’daki bir açık kümenin f altındaki ön görüntüsü D’de açık ve D’deki bir açık kümenin
g altındaki ön görüntüsü Q’da açık olduğundan f ile g sürekli dönüşümlerdir. Ayrıca

f(g(x, y)) = (x, y) = IdQ(x, y) ve g(f(x, y)) = (x, y) = IdD(x, y)

olduğundan f ve g birbirinin tersidir. f ve g homeomorfizm olduğundan, Q ve D home-
omorftur.

Örnek 2.1.16 Bir
[0, 1]3 = {(x, y, z) ∈ R3 : 0 ⩽ x, y, z ⩽ 1}

ile verilen küp
G := {(x, y, z) ∈ R3 : x2 + y2 + z2 ⩽ 1}

3-küresi homeomorftur.

İspat. Bir homeomorfizm tanımlamak için, küpü önce [−1, 1]3 aralığına genişletip, ardın-
dan bu aralığı dolu 3-küreye projekte edeceğiz.

f : [0, 1]3 → {(x, y, z) ∈ R3 : x2 + y2 + z2 ⩽ 1}

fonksiyonunu

f(x, y, z) =
(2x− 1, 2y − 1, 2z − 1)

max{|2x− 1|, |2y − 1|, |2z − 1|, 1}

ile tanımlayalım.
g : [0, 1]3 → [−1, 1]3, g(x, y, z) = (2x− 1, 2y− 1, 2z− 1) fonksiyonu sürekli ve lineerdir.

Ayrıca, h : [0, 1]3 → G

h(x, y, z) =
(x, y, z)

max{|x|, |y|, |z|, 1}
.

fonksiyonu da süreklidir. f(x, y, z) = h(g(x, y, z)) olduğundan, f süreklidir.
Her (x, y, z) ∈ [0, 1]3 noktası, 3-kürede bir ve yalnız bir noktaya eşlendiğinden birebir

ve 3-küredeki her nokta, [0, 1]3 den bir noktadan geldiğinden örtendir.
f fonksiyonunun tersi :

f−1(x, y, z) =

(
x+ 1

2
,
y + 1

2
,
z + 1

2

)
sürekli olduğundan, f bir homeomorfizm olur. f sürekli, birebir ve örten bir fonksiyon olup,
tersi de süreklidir. Bu nedenle [0, 1]3 ve 3-küre homeomorftur. 2
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Örnek 2.1.17 n-boyutlu disk

Dn = {(x1, . . . , xn) ∈ Rn :
n∑

i=1

x2
i ⩽ 1}

ve n-boyutlu küp
[0, 1]n = {(x1, . . . , xn) ∈ Rn : 0 ⩽ xi ⩽ 1}

homeomorftur.

Örnek 2.1.18 Bir
A = {(x, y) ∈ R2 : 1 ⩽ x2 + y2 ⩽ 4}

halkası ve bir
C = {(x, y, z) ∈ R3 : x2 + y2 = 1, 0 ⩽ z ⩽ 1}

silindiri homeomorftur. f : C → A ve g : A → C fonksiyonlarını

f : C → A, f(x, y, z) = ((1 + z)x, (1 + z)y),

ve

g : A → C, g(x, y) =

(
x√

x2 + y2
,

y√
x2 + y2

,
√

x2 + y2 − 1

)
.

ile tanımlayalım.
f ve g birebir ve

f(g(x, y)) = (x, y) = IdA(x, y), g(f(x, y, z)) = (x, y, z) = IdC(x, y, z)

olduğundan birbirinin tersidir. Ayrıca (1+z)x, (1+z)y, x√
x2 + y2

, y√
x2 + y2

, ve
√
x2 + y2−

1 sürekli fonksiyonlar olduklarından f ve g fonksiyonları süreklidir.
f ve g sürekli, birebir ve örten fonksiyonlardır. Ayrıca, f ve g birbirinin tersidir. Bu

nedenle A halkası ve C silindiri homeomorftur.

Örnek 2.1.19 Bir donut, bir çay fincanı ile homeomorftur. Donut üzerindeki delik, çay
fincanının kulbuna karşılık gelir. Çay fincanının geri kalanı, tıpkı bir kareden bir diskin
oluşturulması sırasında köşelerin ”kaybolması” gibi, homeomorfizm yoluyla ”kaybolur”. Bu
nedenle, topologların bir donut ile bir çay fincanını ayırt edemediği söylenir.

Örnek 2.1.20 Birden fazla nokta içeren X ve Y uzayları için X üzerinde kaba topoloji ve
Y üzerinde ayrık topoloji varsa X ve Y arasında bir homeomorfizm tanımlanamaz.

f : X → Y birebir bir fonksiyon olsun.

f : (X, {∅, X}) → (Y,P(Y ))

fonksiyonu kaba topolojiden ayrık topolojiye sürekli olabilmesi için, ayrık topolojideki her
açık kümenin ön görüntüsünün kaba topolojide açık olması gerekir. a ∈ Y alalım. Ayrık
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topolojideki {a} açık kümedir. f birebir bir fonksiyon olduğundan, {a}’nın ön görüntüsü
yine tek nokta kümesi olur. Kaba topolojide tek nokta kümesi açık küme olmayacağından f
sürekli olamaz.

Bu nedenle, f homeomorfizm olamaz.

Sonuç 2.1.21 Birden fazla nokta içeren X uzayı için (X, {∅, X}) ve (X,P(X)) uzayları
arasında homeomorfizm tanımlanamaz.

Not. Birden fazla nokta içeren X ve Y uzayları için

f : (X, {∅, X}) → (Y,P(Y ))

fonksiyonunun sürekli olması sadece sabit fonksiyon için mümkün olur. Sabit bir fonksiyo-
nun tersi fonksiyon olmayacağından (çünkü tek noktayı birden fazla noktaya götürür) bir
homeomorfizm tanımlanamaz. 2

Sonuç 2.1.22 Z → R her fonksiyon sürekli olmasına rağmen (tanım kümesinde ayrık uzay
olduğundan) R → Z sadece sabit fonksiyon süreklidir. Sabit fonksiyonun tersi fonksiyon
olmayacağından Z ve R arasında homeomorfizm tanımlanamaz. Benzer şekilde N ve S0

uzayları ile R ile arasında homeomorfizm tanımlanamaz.

Örnek 2.1.23 [0, 1] aralığı kompakt bir uzaydır. f : [0, 1] → (0, 1) bir homeomorfizm
ise sürekli ve örten olacağından (0, 1) aralığının kompakt olması ile çelişki elde edilir.
Dolayısıyla [0, 1] ve (0, 1) arasında bir homeomorfizm tanımlanamaz.

Örnek 2.1.24 Birim çember S1 kompakt olduğundan S1 → R tanımlı her sürekli fonksiyon
sınırlıdır. Ancak, R sınırsız bir uzay olduğundan, S1 → R sürekli bir fonksiyon örten
olamaz. Birim çember S1 ile R homeomorf değildir.

Önerme 2.1.25 Eğer X ve Y uzayları homeomorf ise

1. X bağlantılı ise, Y de bağlantılı olur.

2. X kompakt ise, Y de kompakt olur.

3. X Hausdorff ise, Y de Hausdorff olur.

İspat. 1. Bağlantılılık: X ve Y homeomorf olduğundan, f : X → Y bir homeomorfizmdir
ve dolayısıyla sürekli ve örtendir. Bağlantılı bir uzaydan bağlantılı olmayan bir uzaya sürekli
bir örten fonksiyon tanımlanamaz. Bu nedenle, Y bağlantılı uzay olur.

2. Kompaktlık: f : X → Y bir homeomorfizm olduğundan, f sürekli ve birebir-
dir. Kompakt bir uzayın sürekli fonksiyon ile görüntüsü kompakttır. f bir homeomorfizm
olduğundan, f(X) = Y olur. Bu nedenle, Y kompakt uzay olur.

3. Hausdorff Olma: f : X → Y bir homeomorfizm olduğundan, f−1 : Y → X
de bir homeomorfizmdir ve dolayısıyla sürekli ve birebirdir. X Hausdorff olduğundan,
Önerme1.3.8 göre, Y de Hausdorff olur. 2
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Sonuç 2.1.26 Homeomorfizm olma özelliği topolojik özellikleri korur. Bağlantılılık, kom-
paktlık ve Hausdorff olma gibi özellikler topolojik özelliklerdir.

Örnek 2.1.27 S0 (0-küresi) bağlantısız ve S1 (çember) bağlantılı olduğundan bu iki uzay
homeomorf değildir.

Örnek 2.1.28 Kapalı aralık [0, 1] kompakt ve R kompakt olmadığından bu iki uzay home-
omorf değildir.

Örnek 2.1.29 R hausdorff Q hausdorff olmadığından bu iki uzay homeomorf değildir.

Örnek 2.1.30 Çember S1 ve kapalı aralık [0, 1] homeomorf değildir.
[0, 1] aralığından bir nokta (örneğin 1/2) çıkarıldığında, uzay bağlantısız hale gelir. S1

çemberinden herhangi bir nokta çıkarıldığında, uzay hala bağlantılıdır.
Eğer S1 ve [0, 1] homeomorf olsaydı, bir noktayı çıkardıktan sonra da homeomorf kal-

maları gerekirdi. Ancak bağlantılılık bu durumda korunmadığı için S1 ve [0, 1] homeomorf
olamaz.

Sonuç 2.1.31 Bir topolojik özelliğin her iki uzayda da bulunması veya her iki uzayda da
bulunmaması, homeomorf olup olmadıklarını ayırt etmek için yeterli değildir. Homeomorf
olmayan iki uzayı ayırt etmek için, bir uzayda bulunan ancak diğerinde bulunmayan bir
topolojik özellik gereklidir.

Lemma 2.1.32 X kompakt bir uzay ve U ⊂ X kapalı ise, U da kompakttır.

İspat. U kümesinin herhangi bir açık örtüsünü ele alalım. U bir altuzay olduğundan, bu
örtüdeki her küme, U ile X ile uzayında bulunan bir açık kümenin kesişimidir. Bu açık
kümeler X uzayının bir açık örtüsünü oluşturmayabilir, ancak U kapalı olduğundan, X−U
kümesi açıktır. X − U kümesini bu kümelere eklersek, X uzayının bir açık örtüsünü elde
ederiz.

X kompakt olduğundan, bu açık örtüden sonlu bir alt örtü seçebiliriz. Eğer X − U
kümesini bu sonlu alt örtüden çıkarır ve her kümeyi U ile kesiştirirsek, U kümesinin açık
örtüsünün sonlu bir alt örtüsünü elde ederiz. Bu nedenle, U kompakt olur. 2

Lemma 2.1.33 Y Hausdorff bir uzay ve V ⊂ Y kompakt bir altuzay ise, V kapalıdır.

İspat. Y − V kümesinin açık olduğunu gösterelim. y ∈ Y − V ve v ∈ V olmak üzere, y ve
v farklı noktalardır. Y Hausdorff olduğundan

y ∈ Uy,v, v ∈ Uv, ve Uy,v ∩ Uv = ∅
olacak şekilde Uy,v ve Uv açık kümeleri vardır. Burada v ∈ V noktası değiştikçe Uv ve Uy,v

açık kümeleri değişecektir. v ∈ V için bu işlemi tekrarlayarak, V kümesini örten {Uv}v∈V
açık küme ailesini elde ederiz. V kompakt olduğundan bu açık örtüden sonlu bir

Uv1 , Uv2 , . . . , Uvn



2.1. HOMEOMORFİZM 43

alt örtü seçebiliriz. y için Uy,v1 , Uy,v2 , . . . , Uy,vn açık kümelerinin her biri y noktasını içerir
ve V ile ayrıktır. Buradan

Uy = Uy,v1 ∩ Uy,v2 ∩ · · · ∩ Uy,vn

kümesi y noktasını içerir ve V ile ayrıktır.
Bu işlemi her y ∈ Y − V için yaparak, Y − V kümesini örten açık kümeler ailesi elde

ederiz. Bu, Y − V kümesinin açık olduğunu gösterir. Dolayısıyla, V kapalıdır. 2

Sonuç 2.1.34 Hausdorff bir uzayın kompakt bir altuzayı kapalıdır.

Lemma 2.1.35 X ve Y iki topolojik uzay ve f : X → Y bir fonksiyon olsun. Bu durumda,
f sürekli olması için gerek ve yeter şart Y uzayının her kapalı alt kümesinin f altındaki ön
görüntüsünün X uzayında kapalı olmasıdır.

İspat. (⇒) f sürekli olsun:
f sürekli olduğundan, Y uzayındaki her açık kümenin ön görüntüsü X uzayında açık-

tır. U ⊂ Y kapalı bir küme olsun. Bu durumda Y − U açıktır ve f sürekli olduğundan,
f−1(Y −U) açıktır. Buradan f−1(Y −U) = X−f−1(U) açık küme olur. Dolayısıyla f−1(U)
tümleyeni açık olduğundan f−1(U) kapalıdır.

(⇐) Her kapalı kümenin ön görüntüsü kapalı olsun.
V ⊂ Y açık bir küme olsun. Bu durumda Y −V kapalıdır. Varsayım gereği f−1(Y −V )

kapalıdır. Buradan f−1(Y − V ) = X − f−1(V ) olur. f−1(V ) tümleyeni kapalı yani f−1(V )
açıktır. Bu da f fonksiyonunun sürekli olduğunu gösterir.

2

Teorem 2.1.36 X kompakt bir uzay, Y Hausdorff bir uzay ve f : X → Y sürekli birebir
ve örten bir fonksiyon ise, f fonksiyonunun tersi g : Y → X de süreklidir. Bu durumda f
bir homeomorfizm olur.

İspat. f : X → Y sürekli birebir ve örten bir fonksiyon olsun. f birebir ve örten olduğundan
fonksiyonunun tersi g : Y → X vardır.

U ⊂ X kapalı bir küme olsun. X kompakt olduğundan, U da kompakttır. g fonksiyon
tanımı gereği g−1(U) = f(U) olur. f sürekli olduğundan, kompakt bir kümenin görün-
tüsü kompakttır. Bu nedenle f(U) kompakt olur. Y Hausdorff olduğundan, Y uzayındaki
her kompakt küme kapalı olur. Dolayısıyla f(U) kapalıdır. Bu, g−1(U)’nun kapalı oldu-
ğunu gösterir. g fonksiyonunun ön görüntüsü her kapalı küme için kapalı olduğundan, g
süreklidir.

Sonuç olarak, f bir homeomorfizm olur. 2
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2.2 Ayrık Birleşim Uzayı
Tanım 2.2.1 X ve Y iki küme olsun. X ve Y ’nin ayrık birleşimi, X t Y veya X

∐
Y ile

gösterilir ve
X t Y = (X × {0}) ∪ (Y × {1})

ile tanımlanır. Burada X × {0} = {(x, 0) : x ∈ X} ve Y × {1} = {(y, 1) : y ∈ Y }’dir.

Not.

• Ayrık birleşim, X ve Y kümelerinin elemanlarını bir araya getirirken, her elemanın
hangi kümeden geldiğini de belirtir.

• X ve Y kesişiyor olsa bile, ayrık birleşimde her eleman farklı bir etiketle (0 veya 1)
işaretlenir, böylece elemanlar ayırt edilebilir.

• X ve Y topolojik uzayları kullanılarak X tY üzerine bir topoloji tanımlanabilir. Bu
topolojiye ayrık birleşim topolojisi denir.

2

Tanım 2.2.2 X ve Y topolojik uzaylar ise, X t Y üzerindeki ayrık birleşim topolojisi

U ⊂ X t Y açıktır ⇐⇒ U ∩ (X × {0}) ve U ∩ (Y × {1}) açıktır

ile tanımlanır.

Örnek 2.2.3 S0 = {−1,+1} uzayı {−1} ve {+1} noktalarının

S0 = {−1} t {+1}.

ayrık birleşimidir.

Önerme 2.2.4 X, Y , ve Z topolojik uzayları için X t Y → Z sürekli fonksiyonu X → Z
ve Y → Z sürekli fonksiyonlarının bir çiftine karşılık gelir. Eğer Q bağlantılı bir topolojik
uzay ise, Q → X t Y sürekli fonksiyonu ya Q → X ya da Q → Y sürekli bir fonksiyonuna
karşılık gelir.

İspat.
g : X t Y → Z sürekli fonksiyonu X ve Y üzerindeki

gX : X → Z, gX(x) = g(x)

gY : Y → Z, gY (y) = g(y)

sürekli fonksiyonlara ayırabiliriz. g sürekli ve X ile Y ayrık birleşim topolojisine sahip
olduğundan bu fonksiyonlar süreklidir.
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Tersine, gX : X → Z ve gY : Y → Z sürekli fonksiyonları verildiğinde, g : X t Y → Z
fonksiyonu

g(x) =

{
gX(x), eğer x ∈ X,

gY (x), eğer x ∈ Y.

ile tanımlanabilir. X ve Y ayrık birleşim topolojisine sahip olduğundan bu fonksiyon sü-
reklidir.

f : Q → X t Y sürekli bir fonksiyon ise, f−1(X) ve f−1(Y ) açık kümeler ve

f−1(X t Y ) = Q, f−1(X) ∩ f−1(Y ) = ∅

olur. Q bağlantılı olduğundan f−1(X) = ∅ ya da f−1(Y ) = ∅ olmalıdır.

• Eğer f−1(X) = ∅ ise f , Q → Y sürekli bir fonksiyon olarak düşünülebilir.

• Eğer f−1(Y ) = ∅ ise f , Q → X sürekli bir fonksiyon olarak düşünülebilir.

2

Örnek 2.2.5 f : S0 → R sürekli fonksiyonu, {−1} → R ve {+1} → R sürekli fonksiyon-
larının bir çiftine karşılık gelir. Tek noktalı bir uzaydan R uzayına sürekli bir fonksiyon bir
noktayı R uzayında bir noktaya eşler. Buradan a, b ∈ R için

f(−1) = a ve f(+1) = b

olur. S0 → R sürekli fonksiyonu, R2 uzayındaki sıralı çiftlere (a, b) ∈ R2 karşılık gelir.

Örnek 2.2.6 R− {0} uzayı R uzayının kendisi ile ayrık birleşimi ile homeomorf

R− {0} ∼= R t R

olur. f : R t R → R− {0} homeomorfizmini

• İlk R kopyası için f1 : R → (0,∞), örneğin f1(x) = ex.

• İkinci R kopyası için f2 : R → (−∞, 0), örneğin f2(x) = −ex.

ile tanımlayalım. f fonksiyonu

f(x) =

{
f1(x), eğer x ∈ ilk R,
f2(x), eğer x ∈ ikinci R.

olur.
f1 ve f2 birebir ve örten olduğundan, f de birebir ve örten bir fonksiyon olur. Ayrıca

f1 ve f2 sürekli olduğundan, f fonksiyonuda sürekli olur.
f fonksiyonunun tersi g : R− {0} → R t R

g1(y) = ln(y), g2(y) = ln(−y).
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olmak üzere

g(y) =

{
g1(y), eğer y > 0,

g2(y), eğer y < 0,

ile tanımlanır. g1 ve g2 sürekli olduğundan, g de süreklidir.
f ve g sürekli, birebir ve örten fonksiyonlardır. Ayrıca, f ve g birbirinin tersidir. Bu

nedenle R− {0} ve R t R homeomorf olur.

Teorem 2.2.7 X ve Y uzaylarının ayrık birleşimleri X t Y kompakt olması için gerek ve
yeter şart X ve Y uzaylarının kompakt olmasıdır.

İspat.
⇒ X t Y kompakt olsun. X için bir açık örtü OX alalım. Bu açık örtüyü X t Y için

bir açık örtüye genişletmek için Y uzayında

O = OX ∪ {Y }

bir açık küme olarak ekleyelim. X t Y kompakt olduğundan, O ailesinin sonlu bir

O′ = {U1, U2, . . . , Um, Y }

alt örtüsü vardır. Bu sonlu alt örtüden Y uzayını çıkarırsak, OX ailesinin sonlu bir

O′
X = {U1, U2, . . . , Um}

alt örtüsünü elde ederiz. Bu, X uzayının kompakt olduğunu gösterir. Benzer şekilde Y
uzayının kompakt olduğu gösterilir.

⇐ X t Y uzayının açık bir örtüsü O olsun. Ayrık birleşim topolojisinin tanımına göre,
O ailesindeki her açık küme, X uzayının bir açık alt kümesi ve Y uzayının bir açık alt
kümesinin birleşimidir. Buradan O ailesi X ve Y için birer

OX = {U ∩X : U ∈ O}, OY = {U ∩ Y : U ∈ O}

açık örtü içerir. X ve Y kompakt olduğundan, OX ve OY ailelerinin sonlu

O′
X = {U1, U2, . . . , Um}, O′

Y = {V1, V2, . . . , Vn}

alt örtüleri vardır. Bu sonlu alt örtüleri birleştirerek O ailesinin sonlu bir

O′ = {U1, U2, . . . , Um, V1, V2, . . . , Vn}

alt örtüsünü elde ederiz. Dolayısıyla, X t Y kompakt olur.
2

Teorem 2.2.8 X ve Y uzaylarının ayrık birleşimleri X t Y hausdorff olması için gerek
ve yeter şart X ve Y uzaylarının hausdorff olmasıdır.
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İspat.
⇒ X t Y Hausdorff olsun. x1, x2 ∈ X ve x1 6= x2 olsun. X t Y Hausdorff olduğundan,

x1 ve x2 noktalarını ayıran ayrık açık kümeler U1, U2 ⊂ X t Y vardır. Buradan U1 ∩X ve
U2 ∩X kümeleri X uzayında ayrık açık kümeler olur. Bu, X uzayının Hausdorff olduğunu
gösterir. Benzer şekilde Y uzayının Hausdorff olduğunu gösterilir.

⇐ X ve Y Hausdorff iki uzay olsun. XtY uzayının Hausdorff olduğunu göstermek için,
X t Y uzayındaki herhangi iki farklı noktayı ayıran ayrık açık kümeler bulmamız gerekir.
Bu durumları dört farklı şekilde inceleyebiliriz.

1. Durum: (x1, a) ve (x2, a) için (x1, x2 ∈ X):
x1, x2 ∈ X ve x1 6= x2 ise, X Hausdorff olduğundan, x1 ve x2 noktalarını ayıran ayrık

açık kümeler U1, U2 ⊂ X vardır. Bu kümeler aynı zamanda X t Y uzayında da ayrık açık
kümelerdir.

U1 ∩ U2 = ∅, x1 ∈ U1, x2 ∈ U2

2. Durum: (y1, b) ve (y2, b) için (y1, y2 ∈ Y ):
y1, y2 ∈ Y ve y1 6= y2 ise, Y Hausdorff olduğundan, y1 ve y2 noktalarını ayıran ayrık

açık kümeler V1, V2 ⊂ Y vardır. Bu kümeler aynı zamanda X t Y uzayında da ayrık açık
kümelerdir.

V1 ∩ V2 = ∅, y1 ∈ V1, y2 ∈ V2

3. Durum: (x, a) ve (y, b) için (x, y ∈ X ∩ Y ):
x, y ∈ X ∩ Y ve x 6= y ise, hem X hem de Y Hausdorff olduğundan, x ve y noktalarını

ayıran ayrık açık kümeler Ux ⊂ X ve Vy ⊂ Y vardır. Bu kümeler aynı zamanda X t Y
uzayında ayrık açık kümelerdir.

Ux ∩ Vy = ∅, x ∈ Ux, y ∈ Vy

4. Durum: (x, a) ve (y, b) için (x, y /∈ X ∩ Y ):
x ∈ X ve y ∈ Y ise, X ve Y ayrık birleşim topolojisine sahip olduğundan, X ve Y

birbirinden tamamen ayrıdır. Bu durumda, x noktasını içeren Ux ve y noktasını içeren Vy

kümeleri X t Y ayrık açık kümelerdir:

Ux ∩ Vy = ∅, x ∈ Ux, y ∈ Vy

Her durumda, X t Y uzayındaki herhangi iki farklı noktayı ayıran ayrık açık kümeler
bulanabilir. Buradan X t Y Hausdorff olur. 2

Lemma 2.2.9 X ve Y boş olmayan topolojik uzaylar olmak üzere ayrık birleşimleri X tY
bağlantılı değildir.

İspat. X ve Y boş olmayan uzaylar olsun. U = X×{0}, V = Y ×{1} alalım. U kümesi Xt
Y uzayının topolojisinde X uzayının açık kümesidir. V kümesi XtY uzayının topolojisinde
Y uzayının açık kümesidir.

X × {0} ve Y × {1} olduğundan

U ∩ V = ∅
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ve X t Y = (X × {0}) ∪ (Y × {1}) olduğundan

U ∪ V = X t Y

elde edilir. X ve Y boş olmayan kümeler olduğundan U 6= ∅ ve V 6= ∅ olur.
U ve V kümeleri X t Y uzayının boş olmayan ayrık açık alt kümeleridir ve birleşimleri

X t Y uzayına eşittir. Bu ise X t Y uzayının bağlantılı olmadığını gösterir.
2

2.3 Çarpım Uzayları
Tanım 2.3.1 (Çarpım Uzayı) X ve Y topolojik uzaylar olsun. X×Y kartezyen çarpımı

X × Y = {(x, y) : x ∈ X, y ∈ Y }

ile tanımlanır. X × Y üzerindeki çarpım topolojisi, X ve Y uzayları üzerinde tanımlı
olan topolojilerinden türetilir. X×Y uzayında bir açık küme X uzayının açık bir alt kümesi
ile Y uzayının açık bir alt kümesinin kartezyen çarpımlarıdır.

Not. X × Y uzayındaki bir kümenin çarpım topolojisinde açık bir küme olması için, her
bir (x, y) ∈ X × Y noktası için U kümesi X uzayında bir açık, V kümesi Y uzayında bir
açık olmak üzere (x, y) ∈ U × V olmasıdır.

X × Y uzayında U × V kümesinin açık küme olması için gerek ve yeter şart π1(U × V )
kümesinin X uzayında bir açık π2(U × V ) kümesinin Y uzayında bir açık küme olmasıdır.

2

Örnek 2.3.2 R2 üzerindeki topolojinin bir tabanı, R uzayındaki açık kümelerin kartezyen
çarpımları olan kümelerden oluşur.

A ⊂ R ve B ⊂ R açık kümeler olmak üzere A×B ⊂ R2 bir açık dikdörtgendir. Örneğin:

A = (a, b), B = (c, d) =⇒ A× B = (a, b)× (c, d)

R2 uzayında bir açık dikdörtgeni ifade eder.
R2 uzayında bir açık disk bir merkez noktası ve bir yarıçap

D = {(x, y) ∈ R2 :
√
(x− x0)2 + (y − y0)2 < r}

ile tanımlanır. Burada (x0, y0) disk merkezidir ve r > 0 yarıçaptır. Bu açık diski, R2

uzayındaki açık dikdörtgenlerin bir birleşimi olarak ifade edebiliriz. Diskin çevresi üzerinde
köşeleri bulunan tüm açık dikdörtgenlerin birleşimini alarak disk

D =
⋃

(a,b)×(c,d)⊂D

(a, b)× (c, d)

oluşur. Burada (a, b)× (c, d), diskin içinde kalan açık dikdörtgenlerdir.
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Sonuç olarak R2 uzayındaki her açık disk, R uzayındaki açık kümelerin kartezyen çar-
pımlarının bir birleşimi olarak ifade edilebilir. Daha genel olarak, R2 uzayındaki her açık
küme Ai, Bi ⊂ R açık kümeler olmak üzere⋃

i∈I

(Ai × Bi),

ile tanımlanabilir.

Örnek 2.3.3 Rm × Rn ve Rm+n uzayları

f : Rm × Rn → Rm+n

dönüşümü
f((x1, . . . , xm), (y1, . . . , yn)) = (x1, . . . , xm, y1, . . . , yn)

ile homeomorftur.

Örnek 2.3.4 Bir C = {(x, y, z) ∈ R3 : x2 + y2 = 1, 0 ⩽ z ⩽ 1} silindiri S1 × [0, 1]

h : R2 × R → R3

h((x, y), z) = (x, y, z).

dönüşümü ile homeomorftur.

Teorem 2.3.5 f : Z → X × Y sürekli fonksiyonu f1 : Z → X ve f2 : Z → Y sürekli
fonksiyonların çiftine birebir karşılık gelir.

İspat.
f : Z → X × Y fonksiyonu verilsin f1 ve f2 fonksiyonlarını

f1 = π1 ◦ f, f2 = π2 ◦ f,

ile tanımlayalım. Burada π1 : X × Y → X ve π2 : X × Y → Y

π1(x, y) = x, π2(x, y) = y

projeksiyon fonksiyonlarıdır. π1 ve π2 sürekli fonksiyonlardır.

f1 = π1 ◦ f, f2 = π2 ◦ f

olduğundan, f1 ve f2 sürekli fonksiyonlardır.
f1 : Z → X ve f2 : Z → Y sürekli fonksiyonları için f

f(z) = (f1(z), f2(z)).
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ile tanımlanır. U ⊂ X ve V ⊂ Y açık kümeler olsun. f1 ve f2 sürekli olduğundan, f−1
1 (U)

ve f−1
2 (V ) açık kümeleri için

f−1(U × V ) = f−1
1 (U) ∩ f−1

2 (V ).

olduğundan f−1(U × V ) de açık bir kümedir (f−1
1 (U) ∩ f−1

2 (V ) açık küme). Ayrıca

f1 = π1 ◦ f, f2 = π2 ◦ f =⇒ f(z) = (f1(z), f2(z)).

olduğundan f ↔ (f1, f2) birebir bir eşleşmedir. 2

Örnek 2.3.6 (Torus ve S1 × S1 Homeomorfizmi) Torus T 2 ve S1 × S1 çarpım uzayı
homeomorftur.

f : S1 × S1 → T 2

fonksiyonu
f((x, y), (x′, y′)) = ((x′ + 2)x, (x′ + 2)y, y′).

ve
g : T 2 → S1 × S1

fonksiyonu

g(x, y, z) =

((
x√

x2 + y2
,

y√
x2 + y2

)
, (
√
x2 + y2 − 2, z)

)
.

ile tanımlayalım. f ve g süreklidir. T 2 kompakt ve S1 × S1 Hausdorff olduğundan, birebir
ve örten sürekli bir fonksiyonun tersi de süreklidir.

Sonuç olarak T 2 ve S1 × S1 homeomorftur. Bu homeomorfizm, torusun bir çember
boyunca başka bir çemberin dönmesiyle elde edildiğini geometrik olarak gösterir.

Teorem 2.3.7 X × Y çarpım uzayının Hausdorff olması için gerek ve yeter şart X ve Y
uzaylarının Hausdorff olmasıdır.
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İspat. ⇒ X×Y uzayının Hausdorff olduğunu varsayalım. X uzayının Hausdorff olduğunu
göstermek istiyoruz. x1, x2 ∈ X olmak üzere, x1 6= x2 iki farklı nokta alalım ve y ∈ Y
herhangi bir nokta olsun. Bu durumda (x1, y) 6= (x2, y) olur. X × Y Hausdorff olduğu
için, (x1, y) ve (x2, y) noktalarını içeren ayrık açık kümeler A1, A2 ⊂ X × Y vardır; öyle ki
(x1, y) ∈ A1 ve (x2, y) ∈ A2 olur.

A1 çarpım topolojisinde açık olduğundan, A1 kümesi U × V biçimindeki alt kümelerin
birleşimi şeklinde yazılabilir. Burada U , X uzayının açık bir alt kümesi ve V , Y uzayının
açık bir alt kümesidir. Özellikle (x1, y) ∈ A1 olduğundan x1 ∈ U ve y ∈ V olur. Benzer
şekilde, (x2, y) ∈ A2 olduğundan x2, X uzayının açık bir alt kümesi olan U ′ içinde yer alır.

Şimdi, U ∩U ′ 6= ∅ olduğunu varsayalım. Bu durumda, U ∩U ′ içinde bir x ∈ X elemanı
vardır. Bu eleman için (x, y) ∈ U × V olur. Ayrıca y ∈ V ve (x, y) ∈ U ′ × V ′ olur çünkü
y ∈ V ′. Bu durumda U × V ve U ′ × V ′ kümeleri kesişir. Ancak bu, A1 ve A2 kümelerinin
ayrık olması varsayımına aykırıdır. Dolayısıyla U ∩ U ′ = ∅ olmalıdır.

Benzer şekilde, Y uzayının da Hausdorff olduğu gösterilebilir.
⇐ X ve Y uzaylarının Hausdorff olduğunu varsayalım. X × Y uzayının Hausdorff

olduğunu göstermek için, X × Y uzayında herhangi iki farklı nokta alalım: (x1, y1) ve
(x2, y2). Burada iki durum söz konusudur.

Durum 1: Eğer x1 6= x2 ise,
X Hausdorff olduğundan, öyle U1, U2 ⊂ X açık kümeleri vardır ki

x1 ∈ U1, x2 ∈ U2 ϶ U1 ∩ U2 = ∅

olur. Bu durumda U1×Y ve U2×Y kümeleri X×Y uzayında açıktır ve (x1, y1) ∈ U1×Y ,
(x2, y2) ∈ U2 × Y olur. U1 ∩ U2 = ∅ olduğundan

(U1 × Y ) ∩ (U2 × Y ) = ∅
elde edilir.

Durum 2: Eğer x1 = x2 ise, zorunlu olarak y1 6= y2 olmalıdır.
Y Hausdorff olduğundan, öyle V1, V2 ⊂ Y açık kümeleri vardır ki, y1 ∈ V1, y2 ∈ V2 ve
V1 ∩ V2 = ∅ olur.

X × V1 ve X × V2 kümeleri X × Y ’de açıktır ve (x1, y1) ∈ X × V1, (x2, y2) ∈ X × V2

olur. V1 ∩ V2 = ∅ olduğundan

(X × V1) ∩ (X × V2) = ∅

elde edilir.
Her iki durumda da, X×Y uzayındaki herhangi iki farklı nokta için ayrık açık kümeler

bulunabilir. Dolayısıyla X × Y Hausdorff olur. 2

Teorem 2.3.8 X × Y çarpım uzayı bağlantılıdır ancak ve ancak X ve Y uzayları bağlan-
tılıdır.

İspat. ⇒ X×Y uzayı bağlantılı olsun. Kabul edelim ki X bağlantılı olmasın. Bu durumda,
X = U1 ∪ U2 olacak şekilde U1 ve U2 ayrık, açık ve boş olmayan kümeler, vardır.



52 BÖLÜM 2. ÇÖZÜMLEYİCİ TOPOLOJİ

X × Y uzayını
X × Y = (U1 × Y ) ∪ (U2 × Y ).

olarak yazabiliriz. Buradan

(U1 × Y ) ∩ (U2 × Y ) = (U1 ∩ U2)× Y = ∅ × Y = ∅.

olur. U1 6= ∅, U2 6= ∅ oldğundan

U1 × Y 6= ∅, U2 × Y 6= ∅

ve X × Y bağlantılı olduğundan Y boş küme olamayacağından

U2 × Y 6= ∅

elde edilir. Bu durumda, X × Y ayrık iki açık kümenin birleşimi olarak yazılmış olur.

X × Y = (U1 × Y ) ∪ (U2 × Y )

Bu ise X×Y uzayının bağlantılı olduğu varsayımına aykırıdır. Dolayısıyla, X bağlantılıdır.
Benzer şekilde, Y uzayının bağlantılı olduğunu gösterilir.
⇐ X ve Y uzaylarının bağlantılı olduğunu varsayalım. X ×Y uzayının bağlantılı oldu-

ğunu göstermek için, X×Y uzayından S0 = {−1, 1} ayrık uzayına sürekli bir f fonksiyonu
alalım ve bunun sabit olduğunu gösterelim.

x0 ∈ X herhangi bir nokta olsun. Bu durumda alt uzay {x0} × Y ⊂ X × Y , Y ile
homeomorftur ve dolayısıyla bağlantılıdır. Buradan f fonksiyonunun {x0} × Y üzerindeki
kısıtlaması sabit olmalıdır.

Varsayalım ki her y ∈ Y için f(x0, y) = 1 olsun. Her y ∈ Y için, f fonksiyonunu X×{y}
alt kümesine kısıtlayalım. Bu alt kümelerin her biri, X ×Y uzayının alt uzayı olarak X ile
homeomorftur ve dolayısıyla bağlantılıdır. Buradan f bu şekildeki her alt küme üzerinde
sabittir.

Fakat (x0, y) ∈ X×{y} ve f(x0, y) = 1 olduğundan, her (x, y) ∈ X×{y} için f(x, y) = 1
olmalıdır.

Aynı argüman tüm y ∈ Y için geçerlidir; dolayısıyla her (x, y) ∈ X×Y için f(x, y) = 1
olur.

Başka bir deyişle, f fonksiyonu X × Y üzerinde sabittir. Bu da X × Y uzayından S0

uzayına sürekli ve örten olamayacağını gösterir.
Dolayısıyla X × Y bağlantılı olur. 2

Teorem 2.3.9 (Tychonov Teoremi) X×Y çarpım uzayı kompakttır ancak ve ancak X
ve Y kompakt uzaylardır.

İspat.
⇒ X × Y kompakt olsun. X uzayının bir açık örtüsü

U = {Uα}α∈A
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olsun. y0 ∈ Y sabit bir nokta seçelim. Her Uα için Wα = Uα × Y kümesini tanımlayalım.
{Wα}α∈A kümesi, Uα ve Y açık olduğundan çarpım topolojisinde açıktır ve U bir örtü
oldğundan her (x, y) ∈ X × Y için, x ∈ Uα olacak şekilde bir α vardır. Buradan

(x, y) ∈ Uα × Y = Wα

olur. X×Y kompakt olduğundan, {Wα}α∈A örtüsünün sonlu bir alt örtüsü vardır. A0 ⊂ A
için bu alt örtü

X × Y =
⋃

α∈A0

Wα =
⋃

α∈A0

(Uα × Y )

olsun. {Uα}α∈A0 kümesinin X uzayının bir örtüsü olduğunu gösterelim. Herhangi bir x ∈ X
için, (x, y0) ∈ X × Y noktasını ele alalım. Bu nokta,

⋃
α∈A0

(Uα × Y ) içinde olmalıdır.
Dolayısıyla öyle bir α ∈ A0 vardır ki (x, y0) ∈ Uα × Y olur. Bu da x ∈ Uα olduğunu
gösterir. Böylece

X =
⋃

α∈A0

Uα

olması {Uα}α∈A0 kümesinin X uzayının sonlu bir alt örtüsü olduğunu gösterir. Dolayısıyla
X kompakt olur.

Y uzayının kompaktlığı benzer şekilde gösterilir.
Sonuç olarak, X × Y kompakt ise hem X hem de Y kompakt olur.
⇐ X ve Y uzaylarının kompakt olduğunu varsayalım. X × Y uzayının bir açık örtüsü

O = {Oi}i∈I olsun. Oi çarpım topolojisinde açık olduğundan, her (x, y) ∈ X × Y için öyle
Sx,y × Tx,y vardır ki Sx,y, X uzayının açık kümesi Tx,y, Y açık kümesi olmak üzere

(x, y) ∈ Sx,y × Tx,y ⊂ Oi

olur. X×Y uzayındaki tüm (x, y) noktalarını alarak, {Sx,y×Tx,y}(x,y)∈X×Y kümeleri X×Y
için bir açık örtü oluşturur.

Her x ∈ X için, {x}×Y alt kümesi, {Si×Ti}i∈I açık örtüsü ile kesişimi alınarak bir açık
örtüye sahiptir. {x} × Y , Y ile homeomorf olduğundan kompakttır, dolayısıyla sonlu bir
Si1 × Ti1 , . . . , Sin × Tin alt örtüsü vardır ve {x}× Y ile kesişimi bu alt uzayın bir örtüsünü
verir.

Sx = Si1 ∩Si2 ∩· · ·∩Sin olsun. Bu, X uzayının sonlu sayıda açık kümesinin kesişimidir,
dolayısıyla yine X uzayının açık kümesidir ve x noktasını içerir. Bu işlemi her x ∈ X için
yaparak, X uzayının {Sx}x∈X açık örtüsünü elde ederiz.

X kompakt olduğundan, bu örtü sonlu bir alt örtüye sahiptir, yani sonlu sayıda x1, . . . , xm ∈
X noktaları vardır ki Sx1 , . . . , Sxm kümeleri X uzayını örter. Bu noktaların her biri için,
yukarıdaki süreç X × Y uzayının örtüsünün sonlu bir inceltmesini verir ki bu Sxi

× Y
kümesini örter.

Eğer bu sonlu inceltmelerin tümünü, (sonlu sayıdaki) x1, . . . , xm noktalarının her biri
için alırsak, X × Y uzayını örten ve {Si × Ti}i∈I örtüsünün sonlu bir inceltmesi olan açık
kümelerin bir koleksiyonunu elde ederiz.

Dolayısıyla X × Y kompakttır. 2
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2.4 Bölüm Uzayları
Tanım 2.4.1 (Bölüm Uzayı) X bir topolojik uzay ve ∼ bu uzay üzerinde bir denklik
bağıntısı olsun. X/∼ kümesi, X uzayındaki denklik sınıflarının kümesidir:

X/∼ = {[x] : x ∈ X}

burada [x] = {y ∈ X : y ∼ x} denklik sınıfıdır. π : X → X/∼ doğal projeksiyonu

π(x) = [x]

olmak üzere X/∼ üzerindeki topolojinin açıkları

U ⊂ X/∼ açıktır ⇐⇒ π−1(U) kümesi X uzayında açıktır

ile belirlenir. Bu topolojiye bölüm topolojisi denir.

Sonuç 2.4.2 Bölüm uzayının tanımından π bölüm dönüşümü süreklidir.

Örnek 2.4.3 X = R uzayını ele alalım ve bir denklik bağıntısı ∼

x ∼ y ⇐⇒ x = y veya (x, y ∈ Z)

ile tanımlayalım. Bu, R üzerindeki tam sayıların tek bir denklik sınıfı oluşturduğu anlamına
gelir. Yani, Her x ∈ R \ Z için [x] = {x} ve Tüm tam sayılar için [n] = Z olur.

R

∼
[−1] [0] [1]

· · · · · ·==
=

· ·
·

··
·

R/Z

Bölüm uzayı X/ ∼
X/ ∼= {[x] : x ∈ R}.

tanımından R uzayının bir ”sıkıştırılmış” halidir, çünkü tüm tam sayılar tek bir noktaya
indirgenmiştir.

Önerme 2.4.4 (Evrensel Özellik) f : X → Y sürekli bir fonksiyon ve

x1 ∼ x2 =⇒ f(x1) = f(x2)

ise
f = f̃ ◦ π,
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eşitliğini sağlayan f̃ : X/∼ → Y sürekli fonksiyonu tektir.

X Y

f = f̃ ◦ π

X/ ∼

f

π
f̃

İspat. f̃ : X/∼ → Y fonksiyonu
f̃([x]) = f(x),

ile tanımlayalım. x1 ∼ x2 =⇒ f(x1) = f(x2) varsayımı, aynı denklik sınıfındaki tüm
elemanlar için f fonksiyonunun aynı değeri verdiğini garanti edeceğinden f iyi tanımlıdır.

V ⊂ Y açık bir küme olsun.

f̃−1(V ) = {[x] ∈ X/∼ : f̃([x]) ∈ V }.

tanıma göre f̃([x]) = f(x) olduğundan

f̃−1(V ) = {[x] ∈ X/∼ : f(x) ∈ V }

olur. Bu doğal projeksiyon π kullanılarak

f̃−1(V ) = π(f−1(V )).

şeklinde yazabilir. f sürekli olduğundan f−1(V ), X uzayında açık bir kümedir. Ayrıca
π tanım gereği açık kümeleri açık kümelere götürür. Buradan π(f−1(V )) kümesi X/∼
uzayında açık bir küme olur. Böylece f̃ süreklidir.

Her x ∈ X için
(f̃ ◦ π)(x) = f̃(π(x)) = f̃([x]) = f(x)

olduğundan f = f̃ ◦ π eşitliği elde edilir.
Dolayısıyla, f̃ sürekli bir fonksiyondur ve f = f̃ ◦ π eşitliğini sağlar.
Kabul edelim ki f̃1, f̃2 : X/∼ → Y sürekli fonksiyonlar ve f = f̃1 ◦ π, f = f̃2 ◦ π

eşitlikleri sağlansın. Bu durumda, her [x] ∈ X/∼ için:

f̃1([x]) = f(x) ve f̃2([x]) = f(x)

olacağından
f̃1([x]) = f̃2([x]).

elde edilir. Yani f̃ tektir. 2



56 BÖLÜM 2. ÇÖZÜMLEYİCİ TOPOLOJİ

Örnek 2.4.5 [0, 1]×[0, 1] karesinin karşılıklı iki kenarı yapıştıralım. Bunun için bir denklik
bağıntısı ∼

(x, y) ∼ (x′, y′) ⇐⇒ x = x′ ve y − y′ ∈ Z.

ile tanımlayalım. Bu bağıntı x koordinatları aynı olan noktalar yapıştırılır, y koordinatları
ya aynı olmalıdır ya da biri 0, diğeri 1 olmalıdır (örneğin (x, 0) ∼ (x, 1)).

∼

Bu yapıştırma işlemi sonucunda elde edilen uzay, bir silindir ile homeomorftur.

Örnek 2.4.6 (Möbius Şeridi) [0, 1]× [0, 1] karesi üzerinde kenarları ters yönde yapıştı-
rarak bir Möbius şeridi elde edebiliriz. Bunun için bir denklik bağıntısı ∼

(x, y) ∼ (x′, y′) ⇐⇒

{
(x, y) = (x′, y′) veya
x = 1− x′ ve y − y′ ∈ {−1, 1}

ile tanımlayalım. Bu bağıntıda x koordinatları 1 − x′ ile terslenir, y koordinatları ya aynı
kalır ya da biri 0, diğeri 1 olur (örneğin (x, 0) ∼ (1− x, 1) ve (x, 1) ∼ (1− x, 0)).

... ...
∼

Örnek 2.4.7 [0, 1]× [0, 1] karesi üzerinde her iki çift karşılıklı kenarı yapıştırarak bir torus
elde edebiliriz. Bunun için bir denklik bağıntısı ∼

(x, y) ∼ (x′, y′) ⇐⇒ x− x′ ∈ Z ve y − y′ ∈ Z.

ile tanımlanır. Bu bağıntı için (x, 0) ∼ (x, 1) (üst ve alt kenarların yapıştırılması), (0, y) ∼
(1, y) (sol ve sağ kenarların yapıştırılması) olur.
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Örnek 2.4.8 [0, 1]× [0, 1] karesi üzerinde her iki çift karşılıklı kenarı yapıştırarak, ancak
bir çift kenarın yönünü ters çevirerek bir Klein şişesi elde edebiliriz. Bunun için bir denklik
bağıntısı ∼

(x, y) ∼ (x′, y′) ⇐⇒

{
x− x′ ∈ Z ve y = y′, (sol ve sağ kenarların aynı yönde yapıştırılması)
x = 1− x′ ve y − y′ ∈ {−1, 1}, (üst ve alt kenarların ters yönde yapıştırılması)

ile tanımlanır. Bu bağıntı, sol ve sağ kenarlar (x = 0 ve x = 1) aynı yönde (0, y) ∼ (1, y)
yapıştırır, üst ve alt kenarlar (y = 0 ve y = 1) ters yönde (x, 0) ∼ (1− x, 1) yapıştırır.

Önerme 2.4.9 Q = X/ ∼ bir bölüm uzayı ve X kompakt bir uzay ise, Q uzayı da kompakt
olur.
İspat. Bölüm uzayı Q = X/ ∼ tanımına göre, doğal izdüşüm fonksiyonu π : X → Q
sürekli ve örten olduğundan Q kompakt olur. 2

Önerme 2.4.10 Q = X/ ∼ bir bölüm uzayı ve X bağlantılı bir uzay ise, Q da bağlantılıdır.
İspat. Bölüm uzayı Q = X/ ∼ tanımına göre, doğal izdüşüm fonksiyonu π : X → Q
sürekli ve örten olduğundan Q bağlantılı olur. 2

Lemma 2.4.11 X bir topolojik uzay ve f : [0, 1/2] → S, g : [1/2, 1] → S sürekli fonksi-
yonlar ise ve f(1/2) = g(1/2) koşulunu sağlıyorlarsa, h : [0, 1] → S fonksiyonu

h(t) =

{
f(t), eğer t ⩽ 1/2,

g(t), eğer t ⩾ 1/2.

ile birleştirilebilir.
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Bölüm 3

Homotopi

3.1 Homotopi
Topoloji, sürekli fonksiyonların incelenmesiyle ilgilenir ve bu nedenle topolojinin amacı,
herhangi iki topolojik uzay arasındaki tüm sürekli fonksiyonları tanımlamak olmalıdır. An-
cak, hemen hemen her uzay çifti için aralarında çok fazla sürekli fonksiyon bulunmaktadır.
Bu fonksiyonlar o kadar fazladır ki, bunları listelemek veya tamamen anlamak neredeyse
imkansızdır. Örneğin, [0, 1] aralığından kendisine sürekli olan fonksiyonları listelemek bile
mümkün değildir.

Ancak bu problem bazı ihmaller ile aşılabilir. Buradaki temel fikir, iki fonksiyonun
birbirine denk, yani “homotop” kabul edilmesidir; eğer bir fonksiyon diğerine sürekli bir
şekilde dönüştürülebiliyorsa, bu iki fonksiyon homotop olarak kabul edilir.

f : [0, 2] → R fonksiyonunu

f(x) = 1 + x2(x− 2)2

şeklinde tanımlayalım. Bu fonksiyon 1 sabit fonksiyonuna hemen hemen eşittir, ancak x = 1
civarında küçük bir sapma gösterir.

20

1

f(x)

Eğer

f1(x) = 1 +
1

2
x2(x− 2)2

59
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şeklinde bir fonksiyon alırsak, bu da benzer bir şekle sahiptir ancak sapma daha küçüktür.
Benzer şekilde,

f2(x) = 1 +
1

3
x2(x− 2)2

fonksiyonu aynı şekli korur ancak sapma daha da küçülür.

x = 1

f(x)

f1(x)

f2(x)

Bu şekilde devam edilierek, her n ⩾ 1 için

fn(x) = 1 +
1

n+ 1
x2(x− 2)2

şeklinde bir fonksiyonlar tanımlayabiliriz ve böylece f fonksiyonunu sabit fonksiyona ka-
demeli olarak yaklaştıran bir fonksiyonlar ailesi elde ederiz.

Ancak, bu interpolasyon yapan fonksiyon ailesinin, bir fonksiyondan diğerine sürekli
bir deformasyon sağlamasını istiyoruz. Bunu sağlamak için, interpolasyon fonksiyonlarını
f1, f2, . . . gibi tamsayılarla parametrize etmek yerine, onları belirli bir aralıktaki reel sayı-
larla indekslemeliyiz. Örneğin, aralık olarak [0, 1] alalım. Bu durumda,

{ft}t∈[0,1]
şeklinde bir fonksiyon ailesi istiyoruz ki f0 = f ve f1 = 1 sabit fonksiyon olsun.

f1(x) = 1

f0 = f

ft(x) , t ∈ [0, 1]

...

Yukarıdaki örnekte,
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ft(x) = 1 + (1− t)x2(x− 2)2, t ∈ [0, 1]

olarak tanımlarsa,

f0(x) = 1 + x2(x− 2)2 = f(x)

ve

f1(x) = 1

elde edilir.
Bu dönüşümler tanım kümesi [0, 1], görüntü kümesi [0, 2] −→ R olan sürekli dönüşümler

olarak düşünebilir. Yani het t ∈ [0, 1] için ft sürekli dönüşüm olacak şekilde

∗ : [0, 1] −→ ([0, 2] −→ R)
t 7→ ft : [0, 2] −→ R

olur. Bu tanımladığımız dönüşümlerin sürekli olması için bu tanımlanan ∗ dönüşümü sürekli
olmalıdır. Süreklilikten bahsedebilmemiz için tanım kümesi ve görüntü kümesi üzerindeki
topolojiler bilinmelidir. Bu durumda [0, 2] −→ R sürekli olan fonksiyonların kümesi üzerine
bir topoloji tanımlı olmalıdır. Daha genel olarak herhangi X ve Y topolojik uzayları için
X −→ Y dönüşümleri üzerine topoloji tanımlanmalıdır. Şimdi bu dönüşümlerin sürekli
olduklarını gösterelim.

{ft}t ∈ [0, 1] ailesi her bir t ∈ [0, 1] noktasını

ft : [0, 2] −→ R
fonksiyonuna götürür. Buradan her x ∈ [0, 2] noktası ft(x) ∈ R reel sayı değerini alır.

[0, 1] −→ ([0, 2] −→ R)

t 7→ ft : [0, 2] −→ R
x 7→ ft(x)

X Y

f(t)

X → Y
t 7→ f(t)

şeklinde bir fonksiyon
olarak düşünebiliriz.

Böylece bu fonksiyon ailesini (x, t) ∈ [0, 2]× [0, 1] ikilisini ft(x) ∈ R noktasına götüren
bir dönüşüm olarak düşünebiliriz. Başka bir deyişle

φ : [0, 2]× [0, 1] −→ R
(x, t) 7→ ft(x)

şeklinde bir fonksiyon elde etmiş oluruz. [0, 2] üzerinde ve [0, 1] üzerinde topoloji ta-
nımlı olduğundan (alışılmış uzayın [0, 2] ve [0, 1] aralıklarına indirgenmesi yani alt uzay
[0, 2]Uve [0, 1]U)
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[0, 2]× [0, 1] üzerinde çarpım topolojisini tanımlayabiliriz. Bu topolojide R2 üzerindeki
alışılmış topolojinin [0, 2]× [0, 1] ⊆ R2 alt kümesi indirgenen alt uzay topolojisidir. Böylece
değişen fonksiyonlar ailesi iki topolojik uzay (([0, 2] × [0, 1])U , (R,U)) arasında bir fonksi-
yona karşılık gelmiş olur.

Sonuç olarak ft fonksiyonlar ailesinin sürekli olabilmesine karşılık gelen φ fonksiyonun
sürekli olmasıdır.

φ sürekli ⇒ (ft)t∈[0,1] sürekli

Tanım 3.1.1 f, g : X → Y iki fonksiyon olmak üzere eğer sürekli bir

F : X × [0, 1] → Y

fonksiyonu
F (x, 0) = f(s), ∀s ∈ X

F (x, 1) = g(s), ∀s ∈ X

eşitliklerini sağlıyorsa f ve g fonksiyonlarına homotop fonksiyonlar denir. F dönüşümüne,
f ile g fonksiyonları arasındaki bir homotopi denir ve f ' g ile gösterilir.

Örnek 3.1.2 f : [0, 2] → R fonksiyonu

f(x) = 1 + x2(x− 2)2

şeklinde tanımlansın. Eğer F dönüşümü

F : [0, 2]× [0, 1] → R
(x, t) 7→ F (x, t) = 1 + (1− t)x2(x− 2)2

olarak tanımlanırsa bir polinom olduğu için süreklidir. Ayrıca,

F (x, 0) = 1 + x2(x− 2)2 = f(x)

ve
F (x, 1) = 1

eşitlikleri sağlanır. Dolayısıyla, F dönüşümü f fonksiyonundan 1 sabit fonksiyonuna bir
homotopi tanımlar.

Örnek 3.1.3 f : S1 → R2 içine fonksiyon

f(x, y) = (x, y)

ve g : S1 → R2 fonksiyonu
g(x, y) = (0, 0)

sabit fonksiyon olsun. Bu iki fonksiyonun homotop olduğunu gösterelim. F dönüşümü
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F : S1 × [0, 1] → R2

((x, y), t) 7→ F ((x, y), t) = (1− t)f(x, y)

olarak tanımlayalım. F dönüşümü süreklidir ve

F ((x, y), 0) = (1− 0)f(x, y) = f(x, y)

ve
F ((x, y), 1) = (1− 1)f(x, y) = (0, 0) = g(x, y)

sağlanır. Dolayısıyla, F fonksiyonu, f ile g arasında bir homotopi tanımlar.

S1

R2

f

g

F

Tanım 3.1.4 Bir homotopi dönüşümünde sürekliliği sağlamak amacıyla kullanılan ve ge-
nellikle birim aralık olarak alınan

I = [0, 1]

ifadesine homotopi parametresi denir. Burada t ∈ I, homotopinin başlangıç ve bitiş nokta-
ları arasında sürekli bir geçişi ifade eden parametredir.

Örnek 3.1.5 Her x ∈ [0, 1] için

f : [0, 1] → [0, 1]
x 7→ f(x) = x

birim fonksiyonu ve

g : [0, 1] → [0, 1]
x 7→ g(x) = 0

sabit fonksiyonu verilsin. F dönüşümünü

F : [0, 1]× [0, 1] → [0, 1]
(x, t) 7→ F (x, t) = (1− t)x

olarak tanımlayalım. F bir polinom olduğundan alışılmış uzayda süreklidir. Ayrıca
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F (x, 0) = (1− 0)x = x = f(x)

ve
F (x, 1) = (1− 1)x = 0 = g(x)

olur. Bu ise f(x) = x fonksiyonunun sürekli bir şekilde g(x) = 0 fonksiyonuna dönüşebile-
ceğini gösterir. Dolayısıyla, F fonksiyonu, f ile g arasında bir homotopi tanımlar.

R20 01

1

1

f

g

...
F

Örnek 3.1.6 f, g : R → R herhangi iki sürekli fonksiyon olsun. F dönüşümünü

F : R× I → R
(x, t) 7→ F (x, t) = (1− t)f(x) + tg(x)

şeklinde tanımlayalım. F sürekli fonksiyonların bileşkesi olduğundan süreklidir. Ayrıca,

F (x, 0) = (1− 0)f(x) + 0 · g(x) = f(x)

ve
F (x, 1) = 0 · f(x) + 1 · g(x) = g(x)

olduğundan, F dönüşümü f ile g arasında bir homotopi tanımlar.

Sonuç 3.1.7 R üzerindeki herhangi iki sürekli fonksiyon homotoptur.

Tanım 3.1.8 Rn içinde bulunan bir Xalt uzayı, eğer her x, y ∈ X ve her t ∈ I değeri için

tx+ (1− t)y ∈ X

eşitliğini sağlıyorsa, konveks olarak adlandırılır.
Başka bir deyişle X içindeki herhangi iki nokta arasındaki doğru parçası yine X içinde

bulunuyorsa X alt uzayına konvekstir denir.
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Örnek 3.1.9 X konveks bir uzay olmak üzere, f, g : R → X fonksiyonları ele alalım. F
dönüşümünü

F : R× I → X
(x, t) 7→ F (x, t) = tf(x) + (1− t)g(x)

şeklinde tanımlayalım.
X konveks olduğu için F (x, t) ∈ T sağlanır ve R üzerinde doğrusal fonksiyonlar her

zaman sürekli olduğundan F süreklidir. Ayrıca,

F (x, 0) = g(x), F (x, 1) = f(x)

eşitlikleri sağlanır.
Bu durumda, F dönüşümü f ile g arasında bir homotopi tanımlar. Dolayısıyla, konveks

bir uzay içinde tanımlı reel değerli her iki fonksiyon homotoptur.

Örnek 3.1.10 f, g : R → S1 sürekli fonksiyonları verilsin. F dönüşümünü

F (x, t) = tf(x) + (1− t)g(x)

şeklinde tanımlayalım. Burada S1 uzayı konveks değildir. Gerçekten de, eğer f(x) ve g(x)
birim çember S1 üzerinde iki farklı nokta ise, genellikle

tf(x) + (1− t)g(x)

ifadesi çember üzerinde olmayacaktır. Çünkü bu ifade iki nokta arasındaki doğru parçası
üzerinde yer alır, fakat bu doğru parçası her zaman S1 içinde kalmaz.

Örneğin,
f(x) = (1, 0), g(x) = (0, 1)

noktalarını ele alalım. Eğer t = 1
2

seçersek,

F (x, t) =
1

2
(1, 0) +

1

2
(0, 1) =

(
1

2
,
1

2

)
elde edilir ki, bu nokta birim çember üzerinde değildir.

(1, 0)

(0, 1)

(
1
2
, 1
2

)

Dolayısıyla, F dönüşümünü bu şekilde tanımlama S1 gibi konveks olmayan uzaylarda ho-
motopi tanımlamak için kullanılamaz.
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Lemma 3.1.11 f : X → Y fonksiyonu sürekli ise f ' f olur.

X Y

f

f

F

İspat. F dönüşümünü
F : X × I → Y

(x, t) 7→ F (x, t) = f(x)

olarak tanımlayalım. F dönüşümü f fonksiyonunun tanımından sürekli olur ve

F (x, 0) = f(x), F (x, 1) = f(x)

eşitlikleri sağlanır. Dolayısıyla F dönüşümü f ile kendisi arasında bir homotopi tanımlar
ve f ' f elde edilir. 2

Lemma 3.1.12 f, g : X → Y sürekli iki fonksiyon olsun. Eğer F dönüşümü f ile g
arasında bir homotopi ise, o zaman g ile f arasında da bir homotopi vardır.

X Y

f

f

F

g

G

İspat. F dönüşümü f ile g arasında bir homotopi olsun. Buradan

F (x, 0) = f(x), F (x, 1) = g(x)

olacak şekilde sürekli F : X × I → Y dönüşümü vardır. G dönüşümü

G : X × I → Y
(x, t) 7→ G(x, t) = F (x, 1− t)
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şeklinde tanımlayalım. G dönüşümü F dönüşümünün tanımından sürekli olur ve

G(x, 0) = F (x, 1) = g(x), G(x, 1) = F (x, 0) = f(x)

eşitlikleri sağlanır. Sonuç olarak G dönüşümü g ile f arasında bir homotopi tanımlar ve
g ' f elde edilir. 2

Lemma 3.1.13 f, g, h : X → Y sürekli fonksiyonları için, eğer f ile g homotop ve g ile h
homotop ise f ile h fonksiyonlarıda homotoptur.

X Y

f

h

F

g

G

H

İspat. F dönüşümü f ile g arasında bir homotopi olsun. Buradan F : X × I → Y sürekli
fonksiyonu

F (x, 0) = f(x), F (x, 1) = g(x)

eşitliklerini sağlar. Benzer şekilde, G dönüşümü g ile h arasında bir homotopi olsun. G :
X × I → Y sürekli fonksiyonu

G(x, 0) = g(x), G(x, 1) = h(x).

eşitliklerini sağlar. H dönüşümünü

H(x, t) =

{
F (x, 2t), 0 ⩽ t ⩽ 1

2
,

G(x, 2t− 1), 1
2
⩽ t ⩽ 1.

olarak tanımlayalım. F ve G dönüşümleri sürekli olduğundan H süreklidir. Ayrıca,

H(x, 0) = F (x, 0) = f(x)

ve
H(x, 1) = G(x, 1) = h(x)

eşitlikleri sağlanır. Buradan H dönüşümü f ile h arasında bir homotopi tanımlar. Böylece,
f ∼ h olduğu gösterilmiş olur. 2
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Sonuç 3.1.14 Homotop olma bir denklik bağıntısıdır.

Tanım 3.1.15 X → Y sürekli fonksiyonlarının homotopi sınıflarının kümesi [X,Y ] ile
gösterilir.

Örnek 3.1.16 R → R arasındaki tüm sürekli fonksiyonlar homotop olduğundan (Ör-
nek3.1.6) [R,R] yalnızca bir elemandan oluşur.

Örnek 3.1.17 [S1, S1] homotopi sınıfının her tam sayı için bir eleman içerirdiğini göste-
relim.

f : S1 → S1 fonksiyonunu ele alalım. Her sürekli fonksiyon, temel olarak bir noktayı
çember üzerinde nasıl dolaştırdığını belirler. Bu dönüş hareketi, sarma sayısı (winding
number) olarak adlandırılan bir tam sayı ile ifade edilir ve

deg(f) =
1

2π

∫
S1

f ∗dθ

şeklinde tanımlanır. Bu sayı, fonksiyonun çember etrafında kaç kez dolaştığını ve hangi
yönde hareket ettiğini belirtir. Örneğin: eğer f bir noktayı çember etrafında

• saat yönünde bir kez dolaştırıyorsa, deg(f) = −1 olur.

• saat yönünün tersine bir kez dolaştırıyorsa, deg(f) = 1 olur.

• saat yönünde n kez dolanıyorsa, deg(f) = n olur.

• saat yönünün tersine n kez dolanıyorsa, deg(f) = n olur.

Bu nedenle, [S1, S1] kümesi, her tam sayı için bir homotopi sınıfı içerir. Bu da, homotopi
sınıflarının Z ile indekslendiğini gösterir:

[S1, S1] ∼= Z

Yani, her sürekli fonksiyon, yalnızca sarma sayısına bağlı olarak bir homotopi sınıfına
aittir ve bu sınıflar tam sayılarla gösterilebilir.

Önerme 3.1.18 f ∼ g : X → Y ve h ∼ j : Y → Z ise (h ◦ f) ∼ (j ◦ g) : X → Z.



3.1. HOMOTOPİ 69

X Y

f h

F

g

H

G

X

j

h ◦ f

j ◦ g

İspat. f ile g arasında bir homotopi F : X × [0, 1] → Y ve h ile j arasında bir homotopi
H : Y × [0, 1] → Z olsun. G : X × I → Z dönüşümünü

G(s, t) = H(F (s, t), t)

şeklinde tanımlayalım. F ve H sürekli olduğundan, G dönüşümü sürekli olur. Ayrıca

G(s, 0) = H(F (s, 0), 0) = H(f(s), 0) = h(f(s))

ve
G(s, 1) = H(F (s, 1), 1) = H(g(s), 1) = j(g(s))

eşitlikleri sağlanır. Buradan G dönüşümü f ◦ h ve g ◦ j arasında homotopi tanımlar.
2

Sonuç 3.1.19 Homotopi sınıfları fonksiyonların kompozisyon işlemini korur.

Örnek 3.1.20 X herhangi bir topolojik uzay ve f : X → Sn sürekli bir fonksiyon olsun.
Eğer f örten değilse, f fonksiyonunun bir sabit fonksiyona homotop olduğunu gösterelim.

f örten olmadığından, öyle bir p ∈ Sn noktası vardır öyle ki p /∈ Im(f) olur. Buradan

T = Sn \ {p}

kümesini tanımlayalım.
T uzayı konveks bir uzaydır. Örnek3.1.9 den yararlanarak X uzayından T uzayına

giden herhangi iki sürekli fonksiyon homotop olur. Özel olarak, f (ki X uzayını T uzayına
resmeder) sabit bir c : X → T fonksiyonuna homotop olacağını gösterelim. Burada c(x) = q
olup, q ∈ T sabittir.

Homotopi dönüşümünü

H(x, t) = (1− t)f(x) + tc(x), x ∈ X, t ∈ [0, 1]

şeklinde tanımlayabiliriz. Örnek olarak, n = 1 durumunda, yani birim çember S1 için:
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• f : [0, 1] → S1 fonksiyonu çemberin yarısını dolaşsın

• p ∈ S1 noktası f fonksiyonunun görüntüsünde olmayan bir nokta olsun

• Bu durumda f sabit bir noktaya homotop olacaktır

Böylece, örten olmayan herhangi bir f fonksiyonu sabit fonksiyona homotoptur.

Örnek 3.1.21 f : S1 → S1 fonksiyonu f(x, y) = (−x,−y) şeklinde tanımlayalım. Bu
fonksiyonun birim fonksiyona homotop olduğunu gösterelim.

Birim çember üzerindeki bu dönüşüm, geometrik olarak 180◦ dönmeye karşılık gelir.
Bunu birim fonksiyona bağlayan bir homotopi H : S1 × [0, 1] → S1

H(x, y, t) =

(
cos(πt)(x)− sin(πt)(y)√

(cos(πt)x− sin(πt)y)2 + (sin(πt)x+ cos(πt)y)2
,

sin(πt)(x) + cos(πt)(y)√
(cos(πt)x− sin(πt)y)2 + (sin(πt)x+ cos(πt)y)2

)

şeklinde tanımlanabilir. Burada her t ∈ [0, 1] için H(x, y, t)

(
cos(πt)x− sin(πt)y√

(cos(πt)x− sin(πt)y)2 + (sin(πt)x+ cos(πt)y)2

)2

+

(
sin(πt)x+ cos(πt)y√

(cos(πt)x− sin(πt)y)2 + (sin(πt)x+ cos(πt)y)2

)2

= 1

olduğndan birim çember üzerindedir.H fonksiyonu trigonometrik ve rasyonel fonksiyonların
bileşkesi olduğundan süreklidir. Ayrıca

H(x, y, 0) = (x, y) = Id(x, y)

ve
H(x, y, 1) = (−x,−y) = f(x, y)

eşitlikleri sağlanır. Buradan H dönüşümü Id birim fonksiyon ve f arasında homotopi
tanımlar.

Geometrik olarak H dönüşümü birim çemberi t parametresine bağlı olarak sürekli bir
şekilde döndürür:

• t = 0 anında hiç dönme yoktur (birim fonksiyon)

• t arttıkça, çember saat yönünde dönmeye başlar

• t = 1
2

anında 90◦ dönmüş olur

• t = 1 anında toplam 180◦ dönmüş olur (f fonksiyonu)

Örnek 3.1.22 f, g : S1 → S1 sürekli iki fonksiyon olsun. Bu fonksiyonların birleşiminin
derecesini (degree) deg(f ◦g), deg(f) ve deg(g) cinsinden ifade edelim. f ◦g fonksiyonunun
g ◦ f fonksiyonuna homotop olduğunu gösterelim.

Birim çember üzerindeki sürekli bir fonksiyonun derecesi, çemberin etrafında kaç kez
”dolaştığını” ölçer. Eğer f ve g sürekli ise birleşimin derecesi

deg(f ◦ g) = deg(f) · deg(g)
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ile verilir.
f ◦ g : S1 → S1 fonksiyonu önce g fonksiyonunun S1 üzerindeki etkisini ardından f

fonksiyonunun etkisini uygular. Derece çemberin etrafında kaç kez dolaşıldığını ölçtüğü için
g fonksiyonunun derecesi kadar ”dolaşma” f tarafından deg(f) kez tekrar edilir. Buradan

deg(f ◦ g) = deg(f) · deg(g)

olarak tanımlanır.
Derece, homotopi altında değişmeyen bir özelliktir. Yani, eğer iki fonksiyon homotop

ise dereceleri aynıdır. Şimdi f ◦ g ve g ◦ f fonksiyonlarının homotop olduğunu gösterelim.
f ◦ g ve g ◦ f için dereceleri

deg(f ◦ g) = deg(f) · deg(g)

deg(g ◦ f) = deg(g) · deg(f)

olur. Çarpma işlemi değişmeli (komütatif) olduğu için

deg(f ◦ g) = deg(g ◦ f)

elde ederiz. Bu, f ◦g ve g◦f fonksiyonlarının aynı dereceye sahip olduğunu gösterir. Derece
homotopi altında değişmediğinden, f ◦ g ve g ◦ f homotop olur.

f ◦ g ve g ◦ f fonksiyonları arasında H : S1 × [0, 1] → S1 homotopisi

H(x, t) = (1− t)(f ◦ g)(x) + t(g ◦ f)(x)

şeklinde tanımlanabilir. H dönüşümü süreklidir. Ayrıca, t = 0 için H(x, 0) = f ◦ g(x) ve
t = 1 için H(x, 1) = g ◦ f(x) eşitlikleri sağlanır. Böylece f ◦ g ve g ◦ f homotop olur.

3.2 Homotopi Denklik
İki fonksiyonu yalnızca homotop olduklarında denk kabul etmek homeomorfizm tanımını

buna uygun şekilde değiştirerek elde edilir. Bu durumda, eşitlik işaretlerini homotopilerle
değiştirmeliyiz. Böyle bir yaklaşım, topolojik uzayların daha genel bir şekilde sınıflandırıl-
masını sağlar ve bizi ”homotopi denkliği” kavramına götürür.

Homotopi denkliği, iki uzayın aynı ”temel topolojik yapıya” sahip olduğunu ifade eder,
ancak bu denklik, birebir bir eşleme gerektirmez. Bunun yerine, bir uzaydan diğerine sürekli
bir dönüşüm ve bunun tersi bir dönüşüm bulunması, bu dönüşümlerin bileşimlerinin birim
fonksiyona homotop olması yeterlidir. Bu, homeomorfizmden daha zayıf bir ilişki tanımlar,
ancak birçok durumda uzayların temel özelliklerini anlamak için yeterli bir araçtır.

Tanım 3.2.1 X ve Y iki topolojik uzay olmak üzere f : X → Y ve g : Y → X sürekli
fonksiyonları verilsin. Eğer,

• g ◦ f fonksiyonu X üzerindeki birim fonksiyona homotop, yani g ◦ f ' IdX
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• f ◦ g fonksiyonu Y üzerindeki birim fonksiyona homotop, yani f ◦ g ' IdY

ise X ve Y uzaylarına homotopi denk uzaylar denir.

X YIdX

f

g
IdY

f ve g fonksiyonlarına homotopi denklikleri denir. Eğer X ve Y homotopi denk ise

X ' Y

ile gösterilir.

Lemma 3.2.2 X ' Y ve Z herhangi bir topolojik uzay olmak üzere

[X,Z] = [Y, Z]

ve
[Z,X] = [Z, Y ]

eşitlikleri sağlanır.

İspat. X ' Y olsun. f : X → Y ve g : Y → X sürekli fonksiyonları vardır ve bu
fonksiyonların bileşimleri ilgili birim fonksiyonlara homotop olur.

g ◦ f ' IdX ve f ◦ g ' IdY

h : X → Z bir fonksiyon olsun. g ile bileşke alarak h ◦ g : Y → Z fonksiyonunu elde
ederiz. Benzer şekilde, j : Y → Z bir fonksiyon olsun. f ile bileşke alarak j ◦ f : X → Z
fonksiyonunu elde ederiz. Buradan

(h ◦ g) ◦ f = h ◦ (g ◦ f) ' h ◦ idX = h

(j ◦ f) ◦ g = j ◦ (f ◦ g) ' j ◦ idY = j

elde ederiz. Bu iki işlem homotopi açısından birbirinin tersidir. Çünkü h fonksiyonunu g
ve f ile bileşke alıp tekrar h fonksiyonuna geri dönebiliriz. Benzer şekilde j fonksiyonunu
f ve g ile bileşke alıp tekrar j fonksiyonuna geri dönebiliriz.

X Y

Z

IdX

f

h

j◦f

g
IdY

j

h◦g
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Bu iki durum, h ve j fonksiyonlarının homotopi açısından birbirine ters işlemlerle eşlendi-
ğini gösterir. Dolayısıyla, [X,Z] ve [Y, Z] arasında birebir bir eşleme vardır ve bu eşleme
homotopi sınıflarını korur. Dolayısıyla, [X,Z] ve [Y, Z] arasında birebir bir eşleme oldu-
ğundan

[X,Z] = [Y, Z]

elde edilir.
Benzer şekilde, Z → X ve Z → Y fonksiyonları için f ve g ile bileşke alarak [Z,X] ve

[Z, Y ] arasında birebir bir eşleme elde ederiz. Bu da [Z,X] = [Z, Y ] olduğunu gösterir. 2

Not. İki uzayın “homotopi denk” olduğunu söylemek yerine, onların homotop olduğunu
ifade etmek daha yaygın olarak kullanılır. “Homotopi denk” terimi daha kesin ve geleneksel
bir kullanım olsa da, özellikle gayri resmi tartışmalarda “homotop” terimi daha sık tercih
edilmektedir. Ancak, “homotop” teriminin teknik olarak uzaylardan ziyade dönüşümleri
tanımlamak için kullanıldığı unutulmamalıdır. Bu nedenle, karışıklığı önlemek için dikkatli
olunmalıdır. 2

Lemma 3.2.3 X ve Y uzayları homeomorf ise, bu uzaylar aynı zamanda homotopi denktir.

İspat. X ve Y homeomorf olduğundan, öyle f : X → Y ve g : Y → X homeomorfizmleri
vardır ki:

1) f ve g süreklidir
2) f ve g birebir ve örtendir
3) f ◦ g = IdY ve g ◦ f = IdX

Lemma3.1.11 gereği her sürekli fonksiyon kendisine homotop olduğundan

f ◦ g ' f ◦ g = IdY =⇒ f ◦ g ' IdY

ve
g ◦ f ' g ◦ f = IdX =⇒ g ◦ f ' IdX

olur. Bu durumda, f ve g fonksiyonları homotopi denkliği tanımındaki koşulları sağlar.
Dolayısıyla X ve Y homotopi denktir

X ' Y

2

Örnek 3.2.4 X tek bir noktadan oluşan bir uzay ve Y = R olsun. Bu iki uzayın homotopi
denk olduğunu gösterelim.

f : R → X fonksiyonu tek türlü tanımlabilir. Çünkü X uzayının tek bir noktası vardır.
Her r ∈ R için f(r) = x0 olarak tanımlayalım. Burada x0, X uzayının tek noktasıdır.

g : X → R fonksiyonu X uzayının tek noktasını R uzayında bir noktaya, diyelim ki 0
noktasına götüren fonksiyon olsun. Yani g(x0) = 0 olsun. Buradan

(f ◦ g)(x0) = f(g(x0)) = f(0) = x0 = IdX(x0)
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ve
(g ◦ f)(r) = g(f(r)) = g(x0) = 0

olur. Her fonksiyon kendisine homotop olduğundan lemma3.1.11 gereği

g ◦ f = IdX =⇒ g ◦ f ' IdX

elde edilir. g ◦ f fonksiyonu R üzerinde 0 noktasına giden sabit fonksiyondur ve sabit
fonksiyon her uzayda süreklidir. Birim fonksiyon alışılmış uzayda süreklidir. R üzerindeki
herhangi iki sürekli fonksiyon homotop olduğundan Lemma3.1.6 gereği

g ◦ f ' IdR

elde edilir. Sonuç olarak X ve R uzayları homotopi denk olur.

X ' R

Burada (g ◦ f) ve IdR fonksiyonları arasındaki homotopi t ∈ [0, 1] ve r ∈ R için

H(r, t) = (1− t)(g ◦ f)(r) + t · idR(r) = (1− t) · 0 + t · r = t · r

ile verilebilir.

Sonuç 3.2.5 [R,R] = [{0}, {0}]. Çünkü {0} → {0} arasında yalnızca bir sürekli fonksiyon
tanımlanabilir. Bu nedenle, {0} → {0} fonksiyonlarının homotopi sınıfı yalnızca bir eleman
içerir. Dolayısıyla, [R,R] de yalnızca bir eleman içerdiğinden (örnek3.1.16)

[R,R] = [{0}, {0}]

elde edilir.

Not. Örnek3.2.4 tek noktadan oluşan uzayın R ile homotopi denk olduğunu gösterir. Bu
sonuç, topolojik uzayların homotopi tiplerini anlamak açısından önemlidir, çünkü R gibi
sonsuz bir uzayın tek bir noktaya ”büzülebileceğini” gösterir.

2

Tanım 3.2.6 Bir uzay, tek bir noktadan oluşan bir uzayla homotopi denk ise, bu uzaya
büzülebilir uzay denir.

Örnek 3.2.7 R büzülebilir uzaydır.(Örnek3.2.4)

Örnek 3.2.8 [0, 1] aralığı ile tek bir noktadan oluşan {0} uzayının homotopi denk olduğunu
gösterelim. f : [0, 1] → {0} fonksiyonunu her x ∈ [0, 1] için f(x) = 0 ve g : {0} → [0, 1]
fonksiyonunu g(0) = 0 olarak tanımlayalım. Buradan

(f ◦ g)(0) = f(g(0)) = f(0) = 0 = Id{0}(0)



3.2. HOMOTOPİ DENKLİK 75

ve her x ∈ [0, 1] için
(g ◦ f)(x) = g(f(x)) = g(0) = 0

olur. g ◦ f fonksiyonunun [0, 1] üzerindeki birim fonksiyona homotop olduğunu gösterelim:
H(x, t) = (1− t) · 0 + t · x = t · x

için

H(x, 0) = 0, H(x, 1) = x

olur. Dolayısıyla, g ◦ f ' Id[0,1] elde edilir. Sonuç olarak f ◦ g = Id{0} ve g ◦ f ' Id[0,1]

olduğundan, [0, 1] ve {0} homotopi denk olur
[0, 1] ' {0}.

Bu, [0, 1] aralığının büzülebilir olduğunu gösterir.
Örnek 3.2.9 (0, 1) açık aralığının tek bir noktadan oluşan {0} uzayı ile homotopi denk
olduğunu gösterelim.

f : (0, 1) → {0} fonksiyonunu her x ∈ (0, 1) için f(x) = 0 ve g : {0} → (0, 1)
fonksiyonunu g(0) = 1

2
ile tanımlayalım. Buradan

(f ◦ g)(0) = f(g(0)) = f

(
1

2

)
= 0 = Id{0}0

ve her x ∈ (0, 1) için
(g ◦ f)(x) = g(f(x)) = g(0) =

1

2
olur. g ◦ f fonksiyonunun (0, 1) üzerindeki birim fonksiyona homotop olduğunu gösterelim:

H(x, t) =
1− t

2
+ t · x

için
H(x, 0) =

1− 0

2
+ 0 · x =

1

2
ve

(x, 1) =
1− 1

2
+ 1 · x = x

olur. Ayrıca,
H(x, t) =

1− t

2
+ t · x

için x ∈ (0, 1) ve t ∈ [0, 1] olduğundan
0 < x < 1 =⇒ 0 < H(x, t) < 1.

olur. Dolayısıyla, H(x, t), (0, 1) aralığında kalır ve H süreklidir. Sonuç olarak f ◦ g = Id{0}
ve g ◦ f ' Id(0,1) olduğundan, (0, 1) ve {0} homotopi denktir:

(0, 1) ' {0}

Bu, (0, 1) aralığının büzülebilir olduğunu gösterir.
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Örnek 3.2.10 Herhangi bir (a, b) açık aralığı tek bir noktadan oluşan {0} uzay ile homo-
topi denk olduğunu gösterelim. Ayrıca, bu durum sonsuz aralıklar (a,∞) ve (−∞, b) için
de geçerlidir.

Her açık aralık birbirine homeomorf olduğundan

(a,∞) ' (−∞, b) ' (a, b) ' (0, 1) ' {0}.

olur. Herhangi bir açık aralık (a, b), (a,∞) veya (−∞, b), tek bir noktadan oluşan bir uzay
{0} ile homotopi denktir. Bu, R üzerinde açık aralıkların büzülebilir olduğunu gösterir.

Örnek 3.2.11 (0, 1) açık aralığı ile [0, 1] kapalı aralığı arasında bir homotopi denkliğini
tanımlayalım.

f : [0, 1] → (0, 1) fonksiyonunu

f(x) =
1

2
+

x

2

ve g : (0, 1) → [0, 1] fonksiyonunu

g(x) = 2x− 1

ile tanımlayalım. Buradan

(g ◦ f)(x) = g (f(x)) = g

(
1

2
+

x

2

)
= 2

(
1

2
+

x

2

)
− 1 = x

ve

(f ◦ g)(x) = f (g(x)) = f (2x− 1) =
1

2
+

2x− 1

2
= x

elde edilir. Sonuç olarak g ◦f = Id[0,1] ve f ◦g = Id(0,1) olduğundan, (0, 1) ve [0, 1] homotopi
denktir:

(0, 1) ' [0, 1]

Önerme 3.2.12 Eğer X büzülebilir bir uzay ve Y herhangi bir topolojik uzay ise

f, g : Y → X

sürekli fonksiyonları homotoptur. Özellikle, büzülebilir bir uzaya giden herhangi bir sürekli
fonksiyon sabit bir fonksiyona homotop olur.

İspat. f, g : Y → X sürekli iki fonksiyon olsun. X büzülebilir bir uzay olduğundan h :
X → {0} ve j : {0} → X sürekli fonksiyonları için

h ◦ j ' Id{0}, j ◦ h ' IdX

olur. Bu durumda:
f = (IdX ◦ f) ' (j ◦ h ◦ f)
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g = (IdX ◦ g) ' (j ◦ h ◦ g)

olur. Burada h ◦ f : Y → {0} olduğundan j ◦ h ◦ f : Y → X sabit bir fonksiyon olur. Yani,
her y ∈ Y için

(j ◦ h ◦ f)(y) = j(0)

olur. Benzer şekilde, j ◦ h ◦ g :
(j ◦ h ◦ g)(y) = j(0)

sabit fonksiyon olur. Dolayısıyla

f ' j ◦ h ◦ f, g ' j ◦ h ◦ g

elde edilir. Sonuç olarak:
f ' g

olur. Bu, f ve g fonksiyonlarının homotop olduğunu gösterir. Ayrıca j ◦ h ◦ f ve j ◦ h ◦ g
sabit fonksiyonlar olduğundan f ve g fonksiyonları sabit bir fonksiyona homotop olurlar.
2

Sonuç 3.2.13 Büzülebilir bir uzaya giden herhangi bir sürekli fonksiyon, sabit bir fonksi-
yona homotoptur.

Örnek 3.2.14 A = {(x, y) ∈ R2 : 1 ⩽ x2 + y2 ⩽ 2} halkasının birim çember S1 ile
homotopi denk olduğunu gösterelim.

f : S1 → A fonksiyonunu f(x, y) = (x, y) içine dönüşüm ve g : A → S1 fonksiyonunu

g(x, y) =
1√

x2 + y2
(x, y)

ile tanımlayalım.

S1

A

· · ·
· · ·

· · ·

· · · ··· ···

···

···

· ·
·
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Buradan

(g ◦ f)(x, y) = g(f(x, y)) = g(x, y) = (x, y)

ve

(f ◦ g)(x, y) = f (g(x, y)) = f

(
1√

x2 + y2
(x, y)

)
=

1√
x2 + y2

(x, y)

olur. Bu, A üzerinde bir fonksiyondur ve (x, y) noktasını radyal olarak ölçeklendirilmiş bir
noktaya götürür. f ◦ g fonksiyonunun A üzerindeki birim fonksiyona homotop olduğunu
gösterelim

F ((x, y), t) =
t√

x2 + y2
(x, y) +

1− t√
x2 + y2

(x, y)

dönüşümü

F ((x, y), 0) =
1√

x2 + y2
(x, y) = (f ◦ g)(x, y)

ve
F ((x, y), 1) = (x, y) = IdA(x, y)

eşitliklerini sağlar. Ayrıca,

1 ⩽ x2 + y2 ⩽ 2 =⇒ F ((x, y), t) ∈ A.

olduğundan F ((x, y), t), A içinde kalır. F fonksiyonu çarpma ve toplama işlemlerinin bi-
leşkesi olduğundan süreklidir.

Sonuç olarak f ◦ g ' IdA ve g ◦ f = IdS1 olduğundan, A ve S1 homotopi denktir:

A ' S1

Örnek 3.2.15 Orijinden delinmiş düzlem C× = R2 − {(0, 0)} ile S1 birim çemberin ho-
motopi denk olduğunu gösterelim.

f : S1 → C× fonksiyonunu f(x, y) = (x, y) ve g : C× → S1 fonksiyonunu

g(x, y) =
1√

x2 + y2
(x, y)

olarak tanımlayalım. Buradan

(g ◦ f)(x, y) = g(f(x, y)) = g(x, y) =
1√

x2 + y2
(x, y) = (x, y)

olduğundan
g ◦ f = IdS1
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ve

(f ◦ g)(x, y) = f

(
1√

x2 + y2
(x, y)

)
=

1√
x2 + y2

(x, y)

elde edilir. f ◦ g fonksiyonunun C× üzerindeki birim fonksiyona homotop olduğunu göste-
relim

H((x, y), t) = ((1− t)
1√

x2 + y2
+ t)(x, y)

için
H((x, y), 0) =

1√
x2 + y2

(x, y) = (f ◦ g)(x, y)

ve
H((x, y), 1) = (x, y) = IdC×(x, y)

olur. (x, y) 6= (0, 0) olduğundan t ∈ [0, 1] için

(1− t)
1√

x2 + y2
+ t > 0

H((x, y), t) hiçbir zaman orijine gitmez. H fonksiyonu çarpma ve toplama işlemlerinin
bileşkesi olduğundan süreklidir.

Sonuç olarak g ◦ f = IdS1 ve f ◦ g ' IdC× olduğundan, C× ve S1 homotopi denktir:

C× ' S1

Sonuç 3.2.16 Orijinden delinmiş düzlem birim çembere büzülebilir.

Örnek 3.2.17 S0 büzülebilir değildir.
Kabul edelim ki S0 büzülebilir bir uzay olsun. Bu durumda, S0 ile tek bir noktadan

oluşan {0} uzayı arasında homotopi denklik vardır. Yani, f : S0 → {0} ve g : {0} → S0

sürekli fonksiyonları vardır için

f ◦ g = Id{0} ve g ◦ f ' IdS0

olur. Bu durumda, g ◦ f : S0 → S0 fonksiyonu S0 üzerindeki birim fonksiyona homotoptur.
Yani, bir F : S0 × I → S0 dönüşümü için

F (x, 0) = x ve F (x, 1) = g(f(x)) = g(0)

olur. Şimdi, I = [0, 1] birim aralığından S0 uzayına sürekli bir fonksiyon

h : I → S0, h(t) = F (−g(0), t)

tanımlayalım. Buradan

h(0) = F (−g(0), 0) = −g(0)
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ve
h(1) = F (−g(0), 1) = g(0)

olur. S0 yalnızca iki noktadan oluştuğu için (g(0) ve −g(0)), h fonksiyonu S0 üzerinde
örten olmalıdır. Ancak, I = [0, 1] aralığı bağlantılı bir uzaydır(sonuç1.1.11) ve bağlantılı bir
uzaydan bağlantılı olmayan bir uzaya sürekli örten fonksiyon tanımlanamaz(Önerme1.1.18).
Bu çelişki, S0 uzayının büzülebilir olduğu varsayımımızın yanlış olduğunu gösterir.

Önerme 3.2.18 m tane noktadan oluşan ayrık uzay ve n tane noktadan oluşan ayrık
uzayın homotopi denk olması için gerek ve yeter şart m = n olmasıdır.

İspat. X ve Y ayrık uzayları sırasıyla m ve n noktadan oluşsun.

X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}

⇒ X ve Y homotopi denk olsun. Bu durumda f : X → Y ve g : X → Y sürekli
fonksiyonları için

f ◦ g ' IdY ve g ◦ f ' IdX

olur. f ◦g bileşkesi Y üzerindeki birim fonksiyona homotop olduğundan bir h : Y × [0, 1] →
Y sürekli fonksiyonu vardır öyle ki her i ∈ [n] için

h(i, 0) = f(g(i)), h(i, 1) = i

olur. Burada h(i, t) : [0, 1] → Y sürekli bir fonksiyondur. [0, 1] bağlantılı bir uzaydır ol-
duğundan h(i, t) fonksiyonunun görüntüsü Y uzayında bağlantılı bir altküme olmalıdır.
Ancak, Y ayrık bir uzay olduğundan ayrık bir uzayın bağlantılı altkümeleri yalnızca tek
bir noktadan oluşabilir. Bu nedenle, h(i, t) fonksiyonunun görüntüsü yalnızca {i} olabilir.
Yani her t ∈ [0, 1] için

h(i, t) = i

olur. Özel olarak t = 0 alınırsa

h(i, 0) = f(g(i)) = i

elde ederiz. Bu, f ◦ g = IdY olduğunu gösterir. Benzer şekilde, g ◦ f = IdX olduğu gösteri-
lebilir. Bu ise

• f örten bir fonksiyon olduğundan n ⩽ m

• g birebir bir fonksiyondur olduğundan m ⩽ n

olduğunu gösterir. Dolayısıyla,
m = n

olmalıdır.
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⇐ m = n olduğunu varsayalım. Bu durumda, X ve Y arasında birebir ve örten bir
fonksiyon tanımlanabilir. Örneğin:

f : X → Y, f(i) = i

ve
g : Y → X, g(i) = i

olur. Buradan
f ◦ g = IdY ve g ◦ f = IdX

elde ederiz. Dolayısıyla, X ve Y homotopi denktir.
2

Önerme 3.2.19 X ve Y homotopi denk ise X uzayından Y uzayına sürekli ve örten
dönüşüm vardır.

İspat. Kabul edelim ki X ve Y homotopi denk olsun. Bu durumda, f : X → Y ve
g : Y → X sürekli fonksiyonları vardır öyle ki:

g ◦ f ' IdX

ve
f ◦ g ' IdY

olur. Şimdi f fonksiyonunun sürekli ve örten olduğunu gösterelim. Homotopi denkliğin
tanımında f sürekli olarak tanımlanmıştır. Ayrıca f ◦ g ' IdY olduğundan, f ◦ g(y) ' y
her y ∈ Y için sağlanır. Bu, f fonksiyonunun örten olduğunu gösterir.

2

Önerme 3.2.20 X bağlantılı ve Y bağlantısız bir uzay ise, X ve Y homotopi denk olamaz.

İspat. Kabul edelim ki X ve Y homotopi denk olsun. Bu durumda f : X → Y ve g : Y →
X sürekli fonksiyonları vardır öyle ki

f ◦ g ' IdY

ve
g ◦ f ' IdX

olur. Bu, f ◦ g fonksiyonunun Y üzerindeki birim fonksiyona homotop olduğu anlamına
gelir. Yani, öyle bir F : Y × [0, 1] → Y sürekli fonksiyonu vardır ki her y ∈ Y için

F (y, 0) = f(g(y)) ve F (y, 1) = y

olur. Y bağlantısız uzay olduğundan ayrık, açık ve boş olmayan iki alt kümeye ayrılabilir:

Y = U t V
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burada U ve V açık, ayrık ve boş olmayan alt kümelerdir. Bu durumda, Y uzayından
S0 uzayına sürekli örten p : Y → S0 fonksiyonu tanımlanabilir. X ve Y homotopi denk
olduğundan h : X → Y sürekli örten dönüşüm vardır(Önerme3.2.19). Buradan h ◦ p :
X → S0 sürekli ve örten iki fonksiyonun bileşkesi olduğundan sürekli ve örten olur. Bu
ise bağlantılı bir uzaydan ayrık bir uzaya sürekli örten dönüşüm olmaması ile çelişir. Bu
çelişki, X ve Y uzaylarının homotopi denk olamayacağını gösterir.

2

Sonuç 3.2.21 Bağlantılı bir uzay ve bağlantısız bir uzay homotopi denk olamaz.

Sonuç 3.2.22 Bağlantılı olma özelliği, homotopi denk olmayan uzayları ayırt etmek için
kullanabilir.

Örnek 3.2.23 S1 bağlantılı bir uzay S0 bağlantısız bir uzay olduğundan S1 ve S0 homotopi
denk değildir.

Örnek 3.2.24 X = {1, 2} kaba topolojiye sahip bir uzay ve Y = {0} tek noktalı bir uzay
olsun. X ve Y uzaylarının homotopi denk olduğunu gösterelim.

f : Y → X fonksiyonunu f(0) = 1 olarak tanımlayalım. X kaba topolojiye sahip
olduğundan, f sürekli bir fonksiyondur. g : X → Y fonksiyonunu g(x) = 0 olarak tek türlü
tanımlanabilir. Y kaba topolojiye sahip olduğundan, g de sürekli bir fonksiyondur. Buradan

(g ◦ f)(0) = g(f(0)) = g(1) = 0

ve her x ∈ X için
(f ◦ g)(x) = f(g(x)) = f(0) = 1

olur. f ◦ g fonksiyonunun X üzerindeki birim fonksiyona homotop olduğunu gösterelim. F
dönüşümünü

F : X × [0, 1] → X, F (x, t) =

{
x, eğer t ⩽ 1

2
,

1, eğer t > 1
2
.

ile tanımlayalım. Buradan

F (x, 0) = s

ve
F (x, 1) = 1

elde edilir. Ayrıca, X kaba topolojiye sahip olduğundan, F her durumda sürekli bir fonksi-
yondur. Sonuç olarak g ◦ f = IdY ve f ◦ g ' IdX olduğundan, X ve Y homotopi denktir:

X ' Y

Burada dikkat edilirse X kaba topolojiye sahip olduğundan Hausdorff değildir, ancak Y
Hausdorff uzayıdır.

Sonuç 3.2.25 Hausdorff olma özelliğini homotopi denkliğini ayırt etmek için kullanılamaz.
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3.3 Çember
Lemma 3.3.1 (Yapıştırma Lemması (Gluing Lemma)) X herhangi bir topolojik uzay
ve U1, . . . , Un, X uzayında kapalı alt kümeler olsun. X uzayındaki her noktanın en az bir
Ui kümesine ait olduğunu varsayalım. Y herhangi bir topolojik uzay ve her i = 1, . . . , n
için fi : Ui → Y fonksiyonları, Ui üzerindeki alt uzay topolojisine göre sürekli olsun. Eğer
her x ∈ Ui ∩ Uj için fi(x) = fj(x) koşulu sağlanıyorsa, bu fonksiyonlar birleştirilerek bir
f : X → Y

f(x) = fi(x) eğer x ∈ Ui

sürekli fonksiyonu elde edilir.

İspat. f : X → Y fonksiyonunu x ∈ Ui için

f(x) = fi(x)

ile tanımlayalım. x ∈ Ui ∩ Uj ise, varsayım gereği fi(x) = fj(x) olacağından bu fonksiyon
iyi tanımlıdır.

Y uzayında herhangi bir kapalı küme K olsun. f fonksiyonunun sürekli olduğnu gös-
termek için, f−1(K) kümesinin X uzayında kapalı olduğunu gösterelim.

Her i = 1, . . . , n için, fi sürekli olduğundan, f−1
i (K) kümeleri kapalıdır.

f−1(C) = {x ∈ X : f(x) ∈ C}

= {x ∈ X : ∃ ϶ x ∈ Ui ve fi(x) ∈ C}.

⇒ f−1(C) =
n⋃

i=1

(Ui ∩ f−1
i (C))

...(sonlu sayıda kapalı
kümenin birleşimi kapalı)

⇒ f−1(C) kapalı

elde edilir. Dolayısıyla, f : X → Y sürekli bir fonksiyon olur. 2

Önerme 3.3.2 (Path Lifting) g : [0, 1] → S1 sürekli bir fonksiyon ve x ∈ R için e(x) =
g(0) olacak şekilde bir nokta olmak üzere her t ∈ [0, 1] için

e ◦ g̃(t) = g(t)

ve
g̃(0) = x

eşitliklerini sağlayan g̃ : [0, 1] → R sürekli fonksiyonu tektir.
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0 1
S1

R

g

g̃
e

değişmeli e(x) = (cos(2πx), sin(2πx))

İspat. Adım 1: g̃ fonksiyonunu parça parça tanımlama.
S1 üzerindeki örtme fonksiyonu e : R → S1 şeklindedir ve bu fonksiyon

e(x) = (cos(2πx), sin(2πx))

olarak tanımlanır. g : [0, 1] → S1 sürekli bir fonksiyon olsun. [0, 1] aralığını, g fonksiyonun
görüntüsünün S1 uzayında uygun alt kümelerine düştüğü küçük aralıklara bölelim.

U = S1 \ {(1, 0)}, V = S1 \ {(−1, 0)}

olarak seçilim. U ve V açık kümelerdir ve S1 uzayını örter. g sürekli olduğundan g−1(U) ve
g−1(V ) öngörüntüleri [0, 1] uzayında açık alt kümelerdir ve birleşimleri [0, 1] uzayını örter.
[0, 1] kompakt olduğundan bu açık kümelerden sonlu bir alt örtü

I1, I2, . . . , In

seçilebilir. Her Ii aralığında, g(Ii) ya U kümesinde ya da V kümesinin elemanı olur. Bu
durumda, e fonksiyonu için U veya V üzerindeki ön görüntüsünü kullanarak g̃ fonksiyonunu
tanımlayalım. Örneğin, I1 = [δ0, δ1] ve g̃(δ0) = x olarak tanımlansın. g(I1), U kümesinde
ise , e fonksiyonunun U üzerindeki bir kopyasını kullanarak g̃ fonksiyonunu I1 üzerinde
sürekli bir şekilde tanımlayabiliriz.

Adım 2: g̃ fonksiyonunu tüm [0, 1] üzerinde tanımlama.
Bu işlemi her Ii aralığı için tekrarlayarak g̃ fonksiyonunu parça parça tanımlarız. Her

adımda, g̃ fonksiyonunu bir önceki aralıkla uyumlu olmasını sağlarız. Bu, g̃ fonksiyonunu
sürekli olmasını garanti eder. Yapıştırma Lemmasına göre, bu parçaların birleşimi [0, 1]
üzerinde sürekli bir fonksiyon tanımlar.

Adım 3: g̃ fonksiyonunun teklik ispatı.
Şimdi, g̃ fonksiyonunun tek olduğunu gösterelim. Kabul edelim ki ḡ : [0, 1] → R, g

fonksiyonu için başka bir lifting ve ḡ(0) = g̃(0) = x olsun. Buradan her t ∈ [0, 1] için

e ◦ ḡ(t) = g(t) = e ◦ g̃(t)
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olur. Bu ise ḡ(t) − g̃(t) ∈ Z olduğunu gösterir. Ancak, ḡ − g̃ : [0, 1] → Z sürekli bir
fonksiyondur ve Z ayrık bir uzaydır. Sürekli bir fonksiyonun görüntüsü bağlantılı bir küme
olmalıdır, bu nedenle ḡ − g̃ sabit fonksiyon olmalıdır. Başlangıç koşulundan dolayı ḡ(0) =
g̃(0) olduğundan, ḡ(t) = g̃(t) her t ∈ [0, 1] için geçerlidir. Sonuç olarak g̃ tektir. 2

Örnek 3.3.3 S1 → S1 şeklindeki herhangi bir sabit fonksiyonun derecesinin 0 olduğunu
gösterelim.

f : S1 → S1 sabit bir fonksiyon olsun. Yani z ∈ S1 için f(z) = p olsun. π : [0, 1] → S1

standart örtme fonksiyonunu

π(t) = (cos(2πt), sin(2πt))

ele alalım. Buradan
g = f ◦ π : [0, 1] → S1

bileşke fonksiyonu her t ∈ [0, 1]

g(t) = (f ◦ π)(t) = f(π(t)) = p

sabit olur. Path Lifting Teoremi’ne göre

e ◦ g̃ = g ve g̃(0) = x,

olacak şekilde sürekli g̃ : [0, 1] → R fonksiyonu vardır. Burada x ∈ R için e(x) = g(0) = p
sağlanır.

g sabit bir fonksiyon olduğundan, g̃ fonksiyonunu da her t ∈ [0, 1] için

g̃(t) = x

sabit bir fonksiyon olarak seçelim. Buradan

(e ◦ g̃)(t) = e(g̃(t)) = e(x) = p = g(t)

olur. Sonuç olarak g̃ fonksiyonu g için bir lifting olur.
f fonksiyonunun derecesi g̃ sabit bir fonksiyon olduğundan

deg(f) = g̃(1)− g̃(0) ...(g̃(1) = g̃(0) = x)

= x− x

= 0

olarak bulunur.

Örnek 3.3.4 f : S1 → S1 birim fonksiyonunun derecesinin 1 olduğunu gösterelim.
f : S1 → S1 birim fonksiyon olsun, yani her z ∈ S1 için f(z) = z olsun. Bu fonksiyo-

nun derecesini hesaplamak için, standart örtme fonksiyonu π : [0, 1] → S1 ile bileşkesini
inceleyelim.
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g = f ◦ π : [0, 1] → S1 fonksiyonunu

g(t) = (f ◦ π)(t) = f(π(t)) = π(t) = (cos(2πt), sin(2πt))

ile tanımlayalım. g için bir lifting bulalım. Path Lifting Teoremi’ne göre,

e ◦ g̃ = g ve g̃(0) = 0,

olacak şekilde g̃ : [0, 1] → R sürekli fonksiyonu vardır. Burada

e : R → S1, e(x) = (cos(2πx), sin(2πx))

örtme fonksiyonudur.
g̃(t) = t fonksiyonunun g için bir lifting olduğunu gösterelim. Burada

(e ◦ g̃)(t) = e(g̃(t)) = e(t) = (cos(2πt), sin(2πt)) = g(t)

olur. Ayrıca, g̃(0) = 0 olduğundan, g̃ fonksiyonu g için bir lifting olur.
f fonksiyonunun derecesi

deg(f) = g̃(1)− g̃(0) = 1− 0 = 1

olur.

Sonuç 3.3.5 Geometrik olarak birim fonksiyonun derecesinin 1 olması, fonksiyonun S1

çemberini tam bir kez dolaştığını gösterir.

Örnek 3.3.6 f : S1 → S1 fonksiyonu, n bir tamsayı olmak üzere

f(cos(θ), sin(θ)) = (cos(nθ), sin(nθ))

ile verilsin. Bu fonksiyonun derecesinin n olduğunu gösterelim.
f : S1 → S1 fonksiyonu, S1 çemberini kendisine dönüştüren ve her noktayı açısal olarak

n katına götüren bir fonksiyondur. Bu fonksiyonun derecesini hesaplamak için, standart
örtme fonksiyonu π : [0, 1] → S1 ile bileşkesini inceleyelim.

g = f ◦ π : [0, 1] → S1 fonksiyonunu

g(t) = (f ◦ π)(t)
= f(π(t))

= f(cos(2πt), sin(2πt))

= (cos(n · 2πt), sin(n · 2πt))
= (cos(2nπt), sin(2nπt))

ile tanımlayalım. g için bir lifting bulalım. Path Lifting Teoremi’ne göre

e ◦ g̃ = g ve g̃(0) = 0,
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olacak şekilde g̃ : [0, 1] → R sürekli fonksiyon vardır. Burada

e : R → S1, e(x) = (cos(2πx), sin(2πx))

örtme fonksiyonudur.
g̃(t) = nt fonksiyonunun g için bir lifting olduğunu gösterelim. Burada

(e ◦ g̃)(t) = e(g̃(t))

= e(nt)

= (cos(2π · nt), sin(2π · nt))
= (cos(2nπt), sin(2nπt))

= g(t)

olur. Ayrıca, g̃(0) = n · 0 = 0 olduğundan, g̃ fonksiyonu g için bir lifting olur.
f fonksiyonunun derecesi

deg(f) = g̃(1)− g̃(0) = n · 1− 0 = n

olur.

Sonuç 3.3.7 Geometrik olarak

f(cos(θ), sin(θ)) = (cos(nθ), sin(nθ))

fonksiyonu S1 çemberini kendisine n kez dolayarak eşler. Eğer n > 0 ise, dönüş yönü
korunur; eğer n < 0 ise, dönüş yönü tersine çevrilir. n = 0 durumunda, fonksiyon sabittir
ve çemberi bir noktaya eşler.

Önerme 3.3.8 (Alan Bölme (Domain Splitting)) X, Rn uzayının kompakt bir alt kü-
mesi O, Y uzayının bir açık örtüsü olmak üzere f : X → Y fonksiyonuu verilsin. Bu
durumda, öyle bir δ > 0 sayısı vardır ki, X uzayının çapı δ’dan küçük olan herhangi bir V
alt kümesinin görüntüsü O ailesindeki kümelerden birinin içinde yer alır.

İspat. f sürekli olduğundan, O ailesindeki açık kümelerin f altındaki ön görüntüleri X
uzayında açık kümeler olur. Bu açık kümelerin oluşturduğu aile, X uzayının bir açık örtüsü
W olur:

W = {f−1(U) : U ∈ O}.

X kompakt olduğundan, W ailesinin sonlu bir

W ′ = {W1,W2, . . . ,Wm} ⊂ W

alt örtüsü vardır. Her Wi açık olduğundan, her x ∈ X için öyle bir rx > 0 vardır ki,
B(x, rx) ⊂ Wi olur, burada B(x, rx), merkezi x ve yarıçapı rx olan açık küredir ve x ∈ Wi.
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X kompakt olduğundan, {B(x, rx/2) : x ∈ X} açık örtüsünden sonlu bir{
B
(
x1,

rx1

2

)
, B
(
x2,

rx2

2

)
, . . . , B

(
xk,

rx2

2

)}
alt örtü seçelim.

δ = min{rx1

2
,
rx2

2
, . . . ,

rxk

2
}

olarak alalım. Her rxi
> 0 olduğundan δ > 0 olur.

V , X uzayının çapı δ’dan küçük olan herhangi bir alt kümesi olsun. V boş kümeden
farklı olduğundan V ’de en az bir nokta vardır, diyelim ki bu nokta v ∈ V olsun. v ∈ X

olduğundan en az bir j indeksi için v ∈ B
(
xj,

rxj

2

)
olur. V kümesinin çapı δ ⩽

rxj

2
olduğundan

V ⊂ B(v, δ) ⊂ B(xj, rxj
)

olur. B(xj, rxj
) ⊂ Wi olacak şekilde bir i indeksi bulunabileceğinden V ⊂ Wi olur.

Wi = f−1(Ui) olduğundan, f(V ) ⊂ f(Wi) ⊂ Ui olur. Yani, f(V ), O ailesindeki küme-
lerden biri olan Ui kümesinin içinde yer alır. 2

Lemma 3.3.9 (Lebesgue Lemması) X, Rn uzayının kompakt bir alt uzayı ve O, X
uzayının bir açık örtüsü olsun. Bu durumda, öyle bir δ > 0 vardır ki, X uzayının çapı
δ’dan küçük olan herhangi bir U alt kümesi, O ailesindeki kümelerden birinin içinde yer
alır.

İspat. X kompakt olduğundan, O ailesi sonlu sayıda açık küme U1, . . . , Un içeren bir alt
örtüye indirgeyebiliriz.

Her 1 ⩽ i ⩽ n için, fi : X → R fonksiyonunu merkezi x olan ve Ui içinde kalan en
büyük yarıçaplı açık kürenin yarıçapını fi(x) olarak tanımlayalım. Eğer x /∈ Ui ise fi(x) = 0
olarak tanımlanır.

fi(x) noktasını x noktası ile X−Ui kümesindeki x noktasına en yakın nokta arasındaki
uzaklık olarak düşünebiliriz. Uzaklık fonksiyonu sürekli olduğundan fi de sürekli olur.

f : X → R fonksiyonunu

f(x) = max{fi(x) : 1 ⩽ i ⩽ n}.

ile tanımlayalım. Sonlu sayıda sürekli fonksiyonun maksimumu da sürekli olduğundan, f
süreklidir. Bu fonksiyon, merkezi x olan ve Ui kümelerinden en az birinin içinde kalan en
büyük yarıçaplı açık kürenin yarıçapını verir.

Her x ∈ X için f(x) ⩾ δ olacak şekilde δ > 0 olduğunu gösterelim. Yarıçapı δ’dan
küçük olan her açık küre, Ui kümelerinden birinin içinde yer alır. Çapı δ’dan küçük olan
her küme, yarıçapı δ olan bir açık kürenin içinde yer aldığından, lemma ispatlanmış olur.

Böyle bir δ’nın varlığını göstermek için, her x ∈ X için f(x) > 0 olduğunu not edelim.
Bu, 0 noktasının f fonksiyonunun görüntüsünde olmadığı anlamına gelir. X kompakt ve
f sürekli olduğundan, f fonksiyonun görüntüsü R uzayının kompakt bir alt kümesidir.
Heine-Borel Teoremi’ne göre, bu görüntü R uzayının kapalı bir alt kümesidir, dolayısıyla
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tümleyeni açıktır. Bu tümleyen 0 noktasını içerdiğinden, 0 etrafında bir (−δ, δ) aralığını
da içerir. Bu nedenle, her x ∈ X için f(x) ⩾ δ olur.

Sonuç olarak, X uzayının çapı δ’dan küçük olan herhangi bir alt kümesi, O ailesindeki
kümelerden birinin içinde yer alır. 2

Önerme 3.3.10 (Homotopy Lifting) F : [0, 1] × [0, 1] → S1 sürekli bir fonksiyon ve
x ∈ R için e(x) = F (0, 0) olacak şekilde bir nokta olmak üzere her s, t ∈ [0, 1] için

e ◦ F̃ (s, t) = F (s, t)

ve
F̃ (0, 0) = x

eşitliklerini sağlayan F̃ : [0, 1]× [0, 1] → R sürekli fonksiyonu tektir.

S1

R

F

F̃
e

değişmeli
e(x) = (cos(2πx), sin(2πx))

0 1

1

İspat. Bu önerme, Path Lifting Teoremi’nin iki boyutlu bir genellemesi olarak düşünüle-
bilir. İspatı benzer bir yaklaşımla vereceğiz.

Adım 1: [0,1]× [0,1] karesini küçük karelere bölme.
S1 çemberini

U = S1 \ {(1, 0)}, V = S1 \ {(−1, 0)}

açık kümelerine bölelim. Domain Splitting Önermesi’ni kullanarak, öyle bir δ > 0 sayısı
vardır ki, [0, 1]×[0, 1] karesinin çapı δ’dan küçük olan herhangi bir alt kümesinin görüntüsü,
F altında ya U kümesine ya da V kümesine düşer.

[0, 1] × [0, 1] karesini n × n karelerine bölelim, burada n sayısı 1
n
< δ√

2
olacak şekilde

seçilir. Bu durumda, her küçük karenin çapı δ’dan küçük olur ve dolayısıyla her küçük
kare, F altında ya U kümesine ya da V kümesine düşer.

Adım 2: F̃ fonksiyonunu parça parça tanımlama.
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F̃ (0, 0) = x alalım. İlk küçük kare [0, 1
n
]× [0, 1

n
] üzerinde F̃ fonksiyonunu tanımlayalım.

F bu kareyi ya U kümesine ya da V kümesine götürür. e−1(U) veya e−1(V ) kümelerinden
uygun bir bileşenini seçerek ve bu bileşen ile U veya V arasındaki bir homeomorfizmi
kullanarak, F̃ fonksiyonunu bu kare üzerinde tanımlayabiliriz.

Böylece, F̃ (0, 1
n
) değerini tanımlamış oluruz. Bu değeri kullanarak, F̃ fonksiyonunu

[0, 1
n
]×[ 1

n
, 2
n
] karesi üzerinde tanımlayabiliriz. Ancak, bu durumda [0, 1

n
]× 1

n
kenarı üzerinde

F̃ fonksiyonunu yeniden tanımlamış oluruz. Path Lifting Teoremi’nin teklik kısmı, bu iki
tanımın aynı olmasını garanti eder.

Benzer şekilde, F̃ fonksiyonunu [0, 1
n
]× [0, 3

n
] üzerinde, sonra da tüm [0, 1

n
]× [0, 1] şeridi

üzerinde tanımlayabiliriz.
F̃ ( 1

n
, 0) değerini kullanarak, F̃ fonksiyonunu [ 1

n
, 2
n
] × [0, 1

n
] karesi üzerinde tanımlaya-

biliriz. Bu, 1
n
× [0, 1

n
] kenarı üzerinde F̃ fonksiyonunu yeniden tanımlamayı gerektirir, yine

Path Lifting Teoremi’nin tekliği, bu tanımın önceki tanımla aynı olmasını sağlar.
Bu şekilde devam ederek, F̃ fonksiyonunu tüm [0, 1]× [0, 1] karesi üzerinde tanımlaya-

biliriz.
Adım 3:F̃ fonksiyonunun tekliğini gösterme.
F̄ , F fonksiyonu için başka bir lifting olsun ve F̄ (0, 0) = F̃ (0, 0) = x olsun. Her (s, t) ∈

[0, 1]× [0, 1] için:
e ◦ F̄ (s, t) = F (s, t) = e ◦ F̃ (s, t)

olur. Bu, F̄ (s, t) − F̃ (s, t) ∈ Z olduğunu gösterir. F̄ ve F̃ sürekli olduğundan ve [0, 1] ×
[0, 1] bağlantılı olduğundan, F̄ − F̃ sabit bir fonksiyon olmalıdır. F̄ (0, 0) = F̃ (0, 0) = x
olduğundan, bu sabit 0 olmalıdır. Yani, F̄ = F̃ elde edilir. Sonuç olarak F̃ tektir. 2

Önerme 3.3.11 f, g : S1 → S1 homotop iki fonksiyon ise deg(f) = deg(g) olur.

İspat. f ve g homotop olduğundan, her z ∈ S1 için

H(z, 0) = f(z) ve H(z, 1) = g(z)

sürekli H : S1 × [0, 1] → S1 fonksiyonu vardır. S1 çemberini [0, 1] aralığı ile paramet-
rize ederek, H fonksiyonunu [0, 1] × [0, 1] → S1 şeklinde düşünebiliriz. Homotopy Lifting
Teoremi’ne göre her s, t ∈ [0, 1] için

e ◦ H̃(s, t) = H(s, t)

olacak şekilde sürekli H̃ : [0, 1] × [0, 1] → R fonksiyonu vardır. Burada e : R → S1,
e(x) = (cos(2πx), sin(2πx)) örtme fonksiyonudur.

H̃ fonksiyonunu [0, 1] × {0} üzerine kısıtladığımızda, f fonksiyonu için bir lifting elde
ederiz. f fonksiyonunun derecesi

deg(f) = H̃(1, 0)− H̃(0, 0)

olur. Benzer şekilde, H̃ fonksiyonunu [0, 1]×{1} üzerine kısıtladığımızda, g fonksiyonu için
bir lifting elde ederiz. f fonksiyonunun derecesi

deg(g) = H̃(1, 1)− H̃(0, 1)
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olur. D : [0, 1] → Z fonksiyonunu

D(t) = H̃(1, t)− H̃(0, t)

ile tanımlayalım. Buradan deg(f) = D(0) ve deg(g) = D(1) olur.
H̃ sürekli olduğundan D sürekli bir fonksiyon olur. Ayrıca, D fonksiyonunun görüntüsü

Z içindedir. [0, 1] bağlantılı bir uzay ve Z ayrık bir uzay olduğundan, bağlantılı bir uzaydan
ayrık bir uzaya giden her sürekli fonksiyon sabit fonksiyon olacağından D sabit bir fonksiyon
olur. Sonuç olarak

deg(f) = D(0) = D(1) = deg(g)

elde edilir. 2

Lemma 3.3.12 g : S1 → S1 bir fonksiyon ve (x, y) ∈ S1 bir nokta ise, öyle bir h : S1 → S1

fonksiyonu vardır ki, h fonksiyonu g ile homotoptur ve h(π(0)) = (x, y) koşulunu sağlar.

İspat. g(π(0)) noktasından (x, y) noktasına olan açıyı θ olarak tanımlayalım. S1 çemberi
üzerinde, bir noktadan diğerine olan açı, iki nokta arasındaki en kısa yayın açısıdır.

H : S1× [0, 1] → S1 fonksiyonunu H(p, t), p noktasının tθ açısı kadar döndürülmüş hali
olarak tanımlayalım. Yani, H fonksiyonu, S1 üzerindeki her noktayı, t parametresine bağlı
olarak, 0 ile θ arasında değişen bir açı kadar döndürür. Buradan her p ∈ S1 için

H(p, 0) = p

ve
H(p, 1) = p noktasının θ açısı kadar döndürülmüş hali

olur. Özellikle:

H(g(π(0)), 1) = g(π(0)) noktasının θ açısı kadar döndürülmüş hali = (x, y),

ve her p ∈ S1 için
H(g(p), 0) = g(p

olur. H sürekli bir fonksiyon olduğundan, g ile h : S1 → S1 fonksiyonu arasında bir
homotopi tanımlar, burada h her p ∈ S1 için

h(p) = H(g(p), 1)

ile tanımlanır. Buradan
h(π(0)) = H(g(π(0)), 1) = (x, y)

elde edilir. Dolayısıyla, h fonksiyonu g ile homotop olur ve h(π(0)) = (x, y) koşulunu sağlar.
2

Önerme 3.3.13 f, g : S1 → S1 fonksiyonları için deg(f) = deg(g) ise, f ve g homotoptur.
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İspat. İspatı iki adımda yapacağız. İlk olarak, özel bir durum için homotopi kuracağız,
sonra genel duruma geçeceğiz.

Adım 1: (f ◦ π)(0) = (g ◦ π)(0) durumu.
Path Lifting Teoremi’ne göre, f ve g fonksiyonları için

e ◦ f̃ = f ◦ π, e ◦ g̃ = g ◦ π, ve f̃(0) = g̃(0).

olacak şekilde sürekli f̃ , g̃ : [0, 1] → R fonksiyonları ile lifting olur. Derece tanımından

deg(f) = f̃(1)− f̃(0), deg(g) = g̃(1)− g̃(0)

yazabiliriz. deg(f) = deg(g) olduğundan

f̃(1)− f̃(0) = g̃(1)− g̃(0)

ve f̃(0) = g̃(0) olduğundan
f̃(1) = g̃(1)

elde edilir. H̃ : [0, 1]× [0, 1] → R fonksiyonunu

H̃(s, t) = tf̃(s) + (1− t)g̃(s)

ile tanımlayalım. Bu, f̃ ve g̃ arasında doğrusal bir homotopi tanımlar. H̃ süreklidir ve

H̃(s, 0) = g̃(s), H̃(s, 1) = f̃(s)

olur. Ayrıca, H̃(0, t) = tf̃(0) + (1 − t)g̃(0) = f̃(0) = g̃(0) olduğundan, H̃(0, t) t’ye bağlı
değildir. Benzer şekilde, H̃(1, t) = tf̃(1) + (1 − t)g̃(1) = f̃(1) = g̃(1) olduğundan, H̃(1, t)
de t’ye bağlı değildir. Bu nedenle, H̃(1, t)− H̃(0, t) = f̃(1)− f̃(0) = deg(f) bir tamsayıdır.

H = e ◦ H̃ : [0, 1] × [0, 1] → S1 fonksiyonunu tanımlayalım. H(0, t) = H(1, t) oldu-
ğundan, H fonksiyonunu S1 × [0, 1] → S1 olarak düşünebiliriz. Bu, f ve g arasında bir
homotopi tanımlar:

H(z, 0) = (e ◦ H̃)(π−1(z), 0) = (e ◦ g̃)(π−1(z)) = g(z)

H(z, 1) = (e ◦ H̃)(π−1(z), 1) = (e ◦ f̃)(π−1(z)) = f(z)

Adım 2: Genel durum.
Genel durumda, (f ◦ π)(0) 6= (g ◦ π)(0) olabilir. Bu durumda, g ile homotop olan ve f

ile π(0) noktasında aynı değeri alan bir g′ fonksiyonu tanımlamamız gerekir.
S1 üzerinde herhangi iki nokta arasında bir yol vardır. Bu yolu kullanarak, g ile homo-

top olan ve f ile π(0) noktasında aynı değeri alan bir g′ fonksiyonu tanımlayabiliriz. Sonra,
Adım 1’i f ve g′ için uygulayarak, f ve g′ fonksiyonlarının homotop olduğunu gösterebi-
liriz. g ve g′ homotop olduğundan, homotopi ilişkisinin geçişli olması nedeniyle, f ve g de
homotop olur. 2

Önerme 3.3.14 S1 çemberi büzülebilir değildir .
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İspat. Çemberin büzülebilir olduğunu varsayalım. Bu durumda, S1 tek noktaya homotopi
denk olmalıdır. Yani f : S1 → {0} ve g : {0} → S1 fonksiyonları için

g ◦ f ' 1S1

olmalıdır. f fonksiyonu, S1 uzayından tek noktalı kümeye giden bir fonksiyon olduğundan,
f(x, y) = 0 her (x, y) ∈ S1 için sağlanır. Benzer şekilde, g fonksiyonu, tek noktalı kümeden
S1 uzayına giden bir fonksiyon olduğundan, g(0) = (a, b) olacak şekilde sabit bir (a, b) ∈ S1

noktası vardır. Bu durumda, bileşke fonksiyon g ◦ f : S1 → S1 her (x, y) ∈ S1 için

(g ◦ f)(x, y) = g(f(x, y)) = g(0) = (a, b)

olur. Yani, g ◦ f sabit bir fonksiyondur. Sabit fonksiyonların derecesi 0 olduğundan

deg(g ◦ f) = 0

elde ederiz. Öte yandan, 1S1 birim fonksiyonunun derecesi

deg(1S1) = 1

olur. Eğer iki fonksiyon homotop ise, dereceleri eşit olmalıdır. Ancak

deg(g ◦ f) = 0 6= 1 = deg(1S1)

olduğundan, g ◦ f ve 1S1 homotop olamaz. Bu, başlangıçtaki varsayımımızla çelişir. Dola-
yısıyla, S1 büzülebilir değildir. 2

Önerme 3.3.15 S1 → S1 şeklindeki sürekli fonksiyonların homotopi sınıflarının kümesi,
tamsayılar kümesi ile birebir eşleniktir, yani [S1, S1] ' Z.

İspat. Her sürekli f : S1 → S1 fonksiyonunun bir derecesi vardır ve bu derece bir tamsayı-
dır. Derece fonksiyonu deg : [S1, S1] → Z şeklinde tanımlanır, burada S1 → S1 şeklindeki
sürekli fonksiyonların homotopi sınıflarının kümesi [S1, S1] olur.

İspatı iki adımda yapacağız:
Adım 1: deg fonksiyonu birebirdir.
f, g : S1 → S1 iki sürekli fonksiyon ve deg(f) = deg(g) ise, o zaman f ve g homo-

toptur (Önerme3.3.13). Dolayısıyla, farklı homotopi sınıflarındaki fonksiyonların dereceleri
farklıdır. Bu, deg fonksiyonunun birebir olduğunu gösterir.

Adım 2: deg fonksiyonu örtendir.
Her n ∈ Z için deg(fn) = n olacak şekilde sürekli fn : S1 → S1 fonksiyonu vardır. Bu

fonksiyonu her z ∈ C, |z| = 1 için
fn(z) = zn

ile tanımlayabiliriz. Örneğin, n = 1 için, f1(z) = z birim fonksiyondur ve deg(f1) = 1 olur.
n = 0 için, f0(z) = 1 sabit fonksiyondur ve deg(f0) = 0 olur. n = −1 için, f−1(z) = z̄
(kompleks eşlenik) fonksiyonudur ve deg(f−1) = −1 olur.
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Genel olarak, fn fonksiyonunun derecesi n olur(Örnek3.3.6). Dolayısıyla, her tamsayı,
bir fonksiyonun derecesi olarak gerçekleşir. Bu, deg fonksiyonunun örten olduğunu gösterir.

Sonuç olarak deg : [S1, S1] → Z fonksiyonu hem birebir hem de örten olduğundan

[S1, S1] ∼= Z

elde edilir. 2

Daha önce [0, 1] aralığından kendisine giden herhangi bir sürekli fonksiyonun bir sabit
noktası olması gerektiğini göstermiştik. S1’den S1’e giden sürekli fonksiyonları kullanarak,
bu teoremin Brouwer’e ait iki boyutlu bir versiyonunu verelim.

Teorem 3.3.16 (Brouwer Sabit Nokta Teoremi) D2 = {(x, y) ∈ R2 : x2 + y2 ⩽ 1}
kapalı diski üzerinde tanımlı her sürekli f : D2 → D2 fonksiyonunun en az bir sabit noktası
vardır. Yani en az bir (x, y) ∈ D2 noktası için f(x, y) = (x, y) olur.

İspat. Kabul edelim ki f : D2 → D2 fonksiyonunun hiçbir sabit noktası olmasın. Yani, her
(x, y) ∈ D2 için f(x, y) 6= (x, y) olsun. Buradan her (x, y) ∈ D2 noktası için

1. (x, y) ve f(x, y) noktalarından geçen bir doğru çizeriz.

2. Bu doğruyu (x, y) noktasının ötesine, D2’nin sınırına (S1 çemberine) kadar uzatırız.

3. Bu doğrunun S1 ile kesiştiği noktayı g(x, y) olarak adlandırırız.

Böylece g : D2 → S1 şeklinde bir fonksiyon tanımlamış oluruz.

f(x, y)

(x, y) g(x, y)

(x, y) noktası (x′, y′) noktasına yakınsa, f sürekli olduğundan f(x, y) de f(x′, y′) nokta-
sına yakın olur. Bu durumda, g(x, y) de g(x′, y′) noktasına yakın olacağından g fonksiyonu
süreklidir.

Eğer (x, y) ∈ S1 ise (yani disk sınırında ise), g(x, y) = (x, y) olur, çünkü (x, y) zaten
sınırdadır. F : S1 × [0, 1] → S1 fonksiyonunu

F ((x, y), t) = g(tx, ty)

ile tanımlayalım. F sürekli bir fonksiyondur ve h(x, y) = F ((x, y), 0) ile j(x, y) = F ((x, y), 1)
fonksiyonları arasında bir homotopi tanımlar.

h(x, y) = g(0, 0) olduğundan, h sabit bir fonksiyondur ve deg(h) = 0 olur.
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j(x, y) = g(x, y) = (x, y) olduğundan (çünkü (x, y) ∈ S1), j birim fonksiyondur ve
deg(j) = 1’dir.

Eğer F , h ve j arasında bir homotopi ise, bu fonksiyonların dereceleri eşit olmalıdır.
Ancak deg(h) = 0 6= 1 = deg(j) olduğundan, F fonksiyonu var olamaz. Bu da g fonksiyo-
nunun var olamayacağı anlamına gelir.

Dolayısıyla, başlangıçtaki varsayımımız yanlıştır ve f : D2 → D2 fonksiyonunun en az
bir sabit noktası olmalıdır. 2
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Bölüm 4

Homotopi Grupları

S1 → S1 şeklindeki sürekli fonksiyonların homotopi sınıflarının [S1, S1] ∼= Z olduğunu
gösterdik. Z bir Abelyen grup olduğundan, [S1, S1] de bir grup yapısına sahiptir. Bu grup
işlemini topolojik olarak şu şekilde açıklayabiliriz:

S1 çemberini (1, 0) ile (−1, 0) noktalarından birbirine yapıştıralım.

(1, 0) (−1, 0)

Bu işlem sonucunda, bir noktada birleşen iki çemberden oluşan bir uzay elde ederiz.
X herhangi bir topolojik uzay ve f, g : S1 → X iki sürekli fonksiyon olsun. Bu fonksi-

yonları birleştirerek yeni bir
f#g : S1 → X

fonksiyonu tanımlayalım. Bunun için, önce S1 iki çembere bölünür, sonra üst çemberi f
ile, alt çemberi g ile resmedelir.

Ancak, iki çemberin ortak noktasında çelişkili tanımlar oluşabilir. Bu nedenle, f ve g
fonksiyonlarının en az bir noktada aynı değeri alması gerekir. Kolaylık için, bu noktayı S1

üzerindeki (1, 0) noktası olarak seçebiliriz. Yani, f(1, 0) = g(1, 0) olmalıdır.
Bu koşul altında, f#g : S1 → X fonksiyonu

(f#g)(t) =

{
f(2t), eğer t ⩽ 1

2
,

g(2t− 1), eğer t ⩾ 1
2
.

ile tanımlanır. Burada t, S1 çemberini parametrize eden [0, 1] aralığındaki bir değerdir.

97
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f(−1, 0)

g(−1, 0)

f(0, 1)

g(0,−1)

f(0,−1)

g(0, 1)

f(1, 0) g(1, 0) f(1, 0) g(1, 0)

f ve g fonksiyonları için sırasıyla f̃ ve g̃ birer lifting olsun. g(1, 0) = f(1, 0) olduğundan,
g̃(0) = f̃(1) olacak şekilde g̃ tanımlayabiliriz. Buradan f#g için birer lifting

f̃#g(t) =

{
f̃(2t), eğer t ⩽ 1

2
,

g̃(2t− 1), eğer t ⩾ 1
2
.

olur. f#g fonksiyonunun derecesi

f̃#g(1)− f̃#g(0) = g̃(1)− f̃(0)

= g̃(1)− g̃(0) + f̃(1)− f̃(0)

= deg(g) + deg(f).

olarak elde edilir. Dolayısıyla

deg(f#g) = deg(f) + deg(g)

olur. Bu, # işleminin Z içindeki toplama işlemine karşılık geldiğini gösterir. Bu nedenle,
# işlemini S1 → S1 fonksiyonları kümesinde bir toplama işlemi olarak düşünebiliriz.

4.1 Homotopi Grupları
S1 → S1 sürekli fonksiyonlarının homotopi sınıflarının kümesinin, [S1, S1] ∼= Z, bir Abelyen
grup olduğunu biliyoruz. Bu grup yapısını, daha genel bir şekilde, herhangi bir X uzayı
için homotopi sınıflarına uygulayabiliriz. Ancak, bunu düzgün bir şekilde ifade edebilmek
için ”işaretli uzaylar” (pointed spaces) kavramını kullanmamız gerekiyor.

Tanım 4.1.1 (İşaretli Uzay) Bir işaretli uzay, bir topolojik X uzayı ve bu uzayın belirli
bir x0 ∈ X noktasından oluşur. Bu noktaya temel nokta (base point) denir. İşaretli bir uzay
(X, x0) ile gösterilir.
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Tanım 4.1.2 (İşaretli Dönüşüm) İşaretli dönüşümler, işaretli uzaylar arasında tanım-
lanan sürekli fonksiyonlardır. Yani, f : (X, x0) → (Y, y0) bir işaretli dönüşüm ise,

f(x0) = y0

eşitliği sağlanır.

Tanım 4.1.3 (İşaretli Homotopi) İşaretli homotopiler, işaretli dönüşümler arasında ta-
nımlanan homotopilerdir ve her t ∈ [0, 1] için

F (x0, t) = y0

eşitliği sağlanır.

Tanım 4.1.4 (Çember için İşaretli Dönüşümler) S1 çemberi için temel nokta olarak
(1, 0) seçilir. Bu durumda, f, g : S1 → (X, x0) işaretli dönüşümler olmak üzere

f(1, 0) = g(1, 0) = x0

eşitliği sağlanır.

Teorem 4.1.5 (Birleştirme İşlemi) İşaretli dönüşümlerin # işlemi ile birleştirilmesi

(f#g)(1, 0) = x0

işaretli bir dönüşümünü oluştrur.

Tanım 4.1.6 (Topolojik Çift) Bir topolojik çift, bir topolojik X uzayı ve onun bir A alt
uzayından oluşur. Bu çift, (X,A) ile gösterilir.

Tanım 4.1.7 (Topolojik Çiftin Dönüşümü) Bir topolojik çiftin dönüşümü, (X,A) →
(Y,B) şeklinde sürekli bir fonksiyondur ve

f(A) ⊆ B

eşitliğini sağlanır.

Tanım 4.1.8 İki işaretli dönüşüm f, g : (Sn, ∂Sn) → (X, x0) için # birleştirme işlemi

(f#g)(s1, . . . , sn) =

{
f(s1, . . . , sn−1, 2sn), eğer sn ⩽ 1

2
,

g(s1, . . . , sn−1, 2sn − 1), eğer sn ⩾ 1
2
.

ile tanımlanır.

Teorem 4.1.9 (Homotopi Uyumluluğu) Eğer f ∼ f ′ ve g ∼ g′ işaretli homotopilerle
homotop ise, f#g ∼ f ′#g′ olur.
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Tanım 4.1.10 (Homotopi Sınıfları Üzerinde Toplama) Sn → X işaretli dönüşüm-
lerin homotopi sınıfları kümesi πn(X) üzerinde toplama işlemi

[f ] + [g] = [f#g]

ile tanımlanır. Burada [f ], f fonksiyonunun homotopi sınıfını ifade eder.

Sonuç 4.1.11 Tanımlanan toplama işlemi πn(X) kümesini bir grup yapar.

Uyarı 4.1.12 πn(X) her zaman Abelyen olmayabilir. n = 1 ve X = S1 olduğunda,
π1(S

1) = Z ve bu grup Abelyen’dir. Daha yüksek boyutlarda, grup yapısı daha karmaşık
olabilir.

Not. Tüm koordinatlar dışında s1 ve sn koordinatlarını bastırarak (görmezden gelerek),
(Sn, ∂Sn) üzerindeki dönüşümlerin toplama işlemi iki boyutta şu şekilde tasvir edilebilir:

f

g

Burada çember, Sn’i temsil eder ve yatay çizgi, sn = 1
2

düzlemini gösterir. Üst yarı küre
f ile, alt yarı küre g ile dönüşümü gösteririr. 2

Önerme 4.1.13 f ∼ f ′ ve g ∼ g′ işaretli homotopiler ile homotop ise f#g ∼ f ′#g′

işaretli bir homotopi ile homotop olur.

İspat. F : Sn × [0, 1] → X ve G : Sn × [0, 1] → X, sırasıyla f fonksiyonunu f ′ fonksiyo-
nuna ve g fonksiyonunu g′ fonksiyonuna işaretli homotopilerle bağlayan sürekli fonksiyonlar
olsun. Buradan her t ∈ [0, 1] için

F (x, 0) = f(x), F (x, 1) = f ′(x), F (x0, t) = x0

ve
G(x, 0) = g(x), G(x, 1) = g′(x), G(x0, t) = x0

olur. f#g fonksiyonunu f ′#g′ fonksiyonuna bağlayan bir işaretli homotopi H : Sn×[0, 1] →
X

H(x, t) = Ft#Gt,

ile tanımlayalım. Burada Ft : S
n → X ve Gt : S

n → X dönüşümleri her t ∈ [0, 1] için

Ft(x) = F (x, t), Gt(x) = G(x, t)

sırasıyla F ve G homotopilerinin t anındaki kesitlerini temsil eder. Yani, Ft ve Gt dönü-
şümleri Sn → X işaretli dönüşümlerdir.
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F ve G sürekli olduğundan ve # işleminin sürekli dönüşümler arasında tanımlandığın-
dan # işlemi, Sn uzayını iki parçaya böler. İlk parça (sn ⩽ 1

2
) Ft ile dönüşür. İkinci parça

(sn ⩾ 1
2
) Gt ile dönüşür. Bu nedenle, H sürekli bir fonksiyondur.

F ve G işaretli homotopiler olduğundan her t ∈ [0, 1] için

F (x0, t) = x0, G(x0, t) = x0

olduğundan Ft(x0) = x0 ve Gt(x0) = x0 olur. Buradan

H(x0, t) = (Ft#Gt)(x0) = x0

elde edilir. Bu, H dönüşümünün işaretli bir homotopi olduğunu gösterir. Ayrıca

H(x, 0) = F0#G0 = f#g

ve
H(x, 1) = F1#G1 = f ′#g′

olduğundan H dönüşümün f#g fonksiyonunundan f ′#g′ fonksiyonununa bir homotopi
olur. 2

Önerme 4.1.14 (Sıfır Elemanın Varlığı) c : Sn → X temel noktaya giden sabit fonk-
siyon olsun. Herhangi bir f : Sn → X fonksiyonu için, f#c ve c#f fonksiyonları f ile
homotop olur. (Yani, πn(X) toplama işlemi (+) için bir sıfır elemana sahiptir.)

İspat. Herhangi bir f : Sn → X fonksiyonu için, f#c fonksiyonunun f fonksiyonu ile
homotop olduğunu gösterelim.

H : Sn × [0, 1] → X homotopisini

H((s1, . . . , sn), t) =

{
x0, eğer sn ⩽ t

2
,

f(s1, . . . , sn−1,
2sn−t
2−t

), eğer sn ⩾ t
2
.

ile tanımlayalım. Buradan

H((s1, . . . , sn), 1) =

{
c(s1, . . . , sn−1, 2sn), eğer sn ⩽ 1

2
,

f(s1, . . . , sn−1, 2sn − 1), eğer sn ⩾ 1
2

= (c#f)(s1, . . . , sn)

ve
H((s1, . . . , sn), 0) = f(s1, . . . , sn)

olur. Geometrik olarak s1 ve sn koordinatları dışındaki tüm koordinatları bastırarak, H
dönüşümünü iki boyutta

f
f

f

c
c

t = 0 t = 1
2

t = 1
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şeklinde gösterebiliriz.
Benzer şekilde, f#c fonksiyonunun f fonksiyonu ile homotop olduğu

H((s1, . . . , sn), t) =

{
f(s1, . . . , sn−1,

2sn
2−t

), eğer sn ⩽ 1−t
2
,

x0, eğer sn ⩾ 1−t
2
.

dönüşümü ile gösterilebilir.
Sonuç olarak bu homotopiler, f#c ∼ f ve c#f ∼ f olduğunu gösterir. Dolayısıyla, [c]

sınıfı πn(X)’in toplama işlemi için sıfır elemanıdır:

[f ] + [c] = [c] + [f ] = [f ]

2

Sonuç 4.1.15 πn(X) toplama işlemi (+) için bir sıfır elemana sahiptir.

Önerme 4.1.16 (Ters Elemanın Varlığı) Her f : Sn → X fonksiyonu için öyle bir
f̄ : Sn → X fonksiyonu vardır ki, f#f̄ ve f̄#f sabit fonksiyon c ile homotop olur.

İspat.
f : (Sn, ∂Sn) → (X, x0) için, f̄ : (Sn, ∂Sn) → (X, x0)

f̄(s1, . . . , sn) = f(s1, . . . , sn−1, 1− sn)

ile tanımlayalım. Bu tanım, son koordinatı ters çevirir, yani sn yerine 1− sn kullanır.
f#f̄ fonksiyonundan c fonksiyonuna bir H homotopisini

H((s1, . . . , sn), t) =

{
(f#f̄)(s1, . . . , sn−1,

1−t
2
), eğer 1−t

2
⩽ sn ⩽ 1+t

2
,

(f#f̄)(s1, . . . , sn−1, sn), diğer durumlarda.

ile tanımlayalım.
sn = 1−t

2
için tanım açıkça tutarlıdır. sn = 1+t

2
için çelişkili görünebilir, ancak

(f#f̄)(s1, . . . , sn−1,
1 + t

2
) = f̄(s1, . . . , sn−1, t)

= f(s1, . . . , sn−1, 1− t)

= (f#f̄)(s1, . . . , sn−1,
1− t

2
)

eşitlikleri sağlanır. Yapıştırma lemması gereği, H sürekli bir fonksiyondur ve ∂Sn’in sını-
rında sabittir, dolayısıyla işaretli bir homotopidir. Ayrıca t = 0 için H fonksiyonu f#f̄ ,
t = 1 için H fonksiyonu tüm noktaları (f#f̄)(s1, . . . , sn−1, 0) noktasına, yani temel noktaya
götürür. Bu, H dönüşümünün f#f̄ fonksiyonundan c fonksiyonuna bir homotopi olduğunu
gösterir.
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f̄#f ∼ c olduğunu benzer şekilde ispatlayabiliriz. Alternatif olarak, f̄ = f olduğunu
gözlemleyerek ve yukarıdaki ispatı f̄ için uygulayarsak

f̄#f̄ ∼ c =⇒ f̄#f ∼ c

sonucuna ulaşalır. Sonuç olarak her f için bir f̄ fonksiyonu

[f ] + [f̄ ] = [f̄ ] + [f ] = [c]

olacak şekilde bulunur. Bu da [f̄ ] fonksiyonunun [f ] fonksiyonunun ters elemanı olduğunu
gösterir. 2

Sonuç 4.1.17 πn(X) de toplama işlemi ters elemana sahiptir.

Önerme 4.1.18 (Toplama İşleminin Birleşme Özelliği) Eğer f, g, h : Sn → X işa-
retli dönüşümler olmak üzere (f#g)#h dönüşümü f#(g#h) dönüşümü ile homotoptur.

İspat. H : Sn × [0, 1] → X homotopisini

H((s1, . . . , sn), t) =


f(s1, . . . , sn−1,

4sn
2−t

), eğer sn ⩽ 2−t
4
,

g(s1, . . . , sn−1, 4sn + t− 2), eğer 2−t
4

⩽ sn ⩽ 3−t
4
,

h(s1, . . . , sn−1,
4sn+t−3

t+1
), eğer sn ⩾ 3−t

4
.

ile tanımlayalım. t = 0 için (f#g)#h ve t = 1 ise için f#(g#h) olur.
H dönüşümünün sn = 2−t

4
ve sn = 3−t

4
noktalarında tutarlı olduğunu gösterelim.

sn = 2−t
4

için
H((s1, . . . , sn), t) = f(s1, . . . , sn−1,

4sn
2− t

)

ve
H((s1, . . . , sn), t) = g(s1, . . . , sn−1, 4sn + t− 2)

olur. sn = 2−t
4

için

f(s1, . . . , sn−1,
4 · 2−t

4

2− t
) = f(s1, . . . , sn−1, 1)

ve
g(s1, . . . , sn−1, 4 ·

2− t

4
+ t− 2) = g(s1, . . . , sn−1, 1)

olur. Bu, f ve g fonksiyonlarının işaretli dönüşümler olduğu göz önüne alındığında tutar-
lıdır. sn = 3−t

4
için

H((s1, . . . , sn), t) = g(s1, . . . , sn−1, 4sn + t− 2)

ve
H((s1, . . . , sn), t) = h(s1, . . . , sn−1,

4sn + t− 3

t+ 1
).
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olur. sn = 3−t
4

için

g(s1, . . . , sn−1, 4 ·
3− t

4
+ t− 2) = g(s1, . . . , sn−1, 1),

ve
h(s1, . . . , sn−1,

4 · 3−t
4

+ t− 3

t+ 1
) = h(s1, . . . , sn−1, 1).

olacağından tutarlıdır. Ayrıca

H((s1, . . . , sn), 0) =


f(s1, . . . , sn−1, 2sn), eğer sn ⩽ 1

2
,

g(s1, . . . , sn−1, 4sn − 2), eğer 1
2
⩽ sn ⩽ 3

4
,

h(s1, . . . , sn−1, 4sn − 3), eğer sn ⩾ 3
4
.

olması (f#g)#h dönüşümüne karşılık gelir.

H((s1, . . . , sn), 1) =


f(s1, . . . , sn−1, 4sn), eğer sn ⩽ 1

4
,

g(s1, . . . , sn−1, 4sn − 1), eğer 1
4
⩽ sn ⩽ 1

2
,

h(s1, . . . , sn−1, 4sn − 3), eğer sn ⩾ 1
2
.

olması ise f#(g#h) dönüşümüne karşılık gelir.
Sonuç olarak H dönüşümü (f#g)#h fonksiyonundan f#(g#h) fonksiyonuna bir ho-

motopi tanımlar. 2

Sonuç 4.1.19 πn(X) de toplama işlemi asosyatif(birleşeli) olur.

Sonuç 4.1.20 πn(X) de toplama işlemi ile bir grup olur.

Tanım 4.1.21 (n’inci Homotopi Grubu) Bir X topolojik uzayı ve bir x0 ∈ X temel
noktası verildiğinde, n’inci homotopi grubu πn(X, x0), Sn n-boyutlu küresinden X uzayına
olan ve Sn uzayının bir temel noktasını x0 noktasına götüren işaretli dönüşümlerin homotopi
sınıflarının kümesidir. Bu küme, # işlemi ile tanımlanan toplama işlemi altında bir grup
yapısına sahiptir. Yani

πn(X, x0) = [Sn, X]x0 ,

burada [Sn, X]x0, Sn → X olan ve temel noktaları koruyan dönüşümlerin homotopi sınıf-
larını temsil eder.

Toplama işlemi
[f ] + [g] = [f#g],

ile tanımlanır. Burada f, g : (Sn, s0) → (X, x0) işaretli dönüşümlerdir. Grup yapısı

• ([f ] + [g]) + [h] = [f ] + ([g] + [h]).

• [c], c : Sn → X sabit dönüşüm ve her s ∈ Sn için c(s) = x0
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• Her [f ] için bir [f̄ ] vardır öyle ki [f ] + [f̄ ] = [f̄ ] + [f ] = [c].

ile sağlanır. Eğer n ⩾ 2 ise, πn(X, x0) grubu Abelyan grup olur.

Tanım 4.1.22 (Null-homotop Dönüşüm) Bir f : X → Y dönüşümü, eğer bir sabit dö-
nüşüme homotop ise null-homotop olarak adlandırılır. Yani, f dönüşümü için bir homotopi
H : X × [0, 1] → Y var ve c : X → Y sabit dönüşümü için

H(x, 0) = f(x)

oluyorsa f null-homotoptur.

Örnek 4.1.23 (Konveks Alt Küme Üzerine Null-homotopluk) Herhangi bir f : Sn →
X dönüşümü, eğer X ⊆ Rn konveks bir alt küme ise null-homotoptur. Yani, f , sabit bir
dönüşüme homotoptur.

X ⊆ Rn konveks bir alt küme ve f : Sn → (X, x0) işaretli bir dönüşüm olsun. f
fonksiyonunun sabit dönüşüm c : Sn → X ile homotop olduğunu gösterelim. H dönüşümü

H(x, t) = tf(x) + (1− t)x0, her x ∈ Sn ve t ∈ [0, 1]

ile tanımlansın. Buradan

H(x, 0) = 0 · f(x) + 1 · x0 = x0

ve
H(x, 1) = 1 · f(x) + 0 · x0 = f(x)

olur. Sn’in temel noktası (1, 0, . . . , 0) olsun. Buradan

H((1, 0, . . . , 0), t) = tf(1, 0, . . . , 0) + (1− t)x0

için f işaretli bir dönüşüm olduğundan f(1, 0, . . . , 0) = x0 olacağından

H((1, 0, . . . , 0), t) = tx0 + (1− t)x0 = x0

elde edilir. Bu H dönüşümünün temel noktayı koruduğunu gösterir.
Sonuç olarak f , sabit dönüşüm c ile homotoptur. Dolayısıyla, f homotopi sınıfında sabit

dönüşümle aynı sınıfa ait olacağından

πn(X) = {0}

olur. X konveks bir alt küme olmak üzere Sn → X olan tüm işaretli dönüşümler null-
homotop olur.

Tanım 4.1.24 (Eilenberg-MacLane Uzayı) Bir G grubu ve bir n ⩾ 1 tam sayısı ve-
rildiğinde, bir K(G, n) Eilenberg-MacLane uzayı,

1. πn(K(G, n)) ∼= G (yani, n’inci homotopi grubu G grubuna izomorf).
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2. πi(K(G, n)) = 0 her i 6= n için (yani, diğer tüm homotopi gruplar aşikardır(trivial).)

özelliklerini sağlayan bir topolojik uzaydır.
Başka bir deyişle, bir Eilenberg-MacLane uzayı, sadece n’inci homotopi grubunda G

grubuna izomorf olan diğer homotopi gruları aşikar olan bir uzaydır.

Not.

• Bir G grubu ve n sayısı için bir K(G, n) uzayı her zaman vardır.

• K(G, n) uzayı homotopi denkliği anlamında tektir. Yani, aynı G ve n için iki farklı
K(G, n) uzayı birbirine homotopi denktir.

• Eilenberg-MacLane uzayları, homotopi teorisinde önemli bir rol oynar. Özellikle, sı-
nıflandırma uzayları ve kohomoloji teorisi ile yakından ilişkilidirler.

2

Tanım 4.1.25 (Sınıflandırma Uzayı ve K(G, 1)) n = 1 için K(G, 1) Eilenberg-MacLane
uzayına G grubu için bir sınıflandırma uzayı (classifying space) denir ve genellikle BG
ile gösterilir.

• π1(BG) ∼= G

• her n 6= 1 için πn(BG) = 0

Başka bir deyişle, BG uzayı, sadece birinci homotopi grubu G grubuna izomorf olan ve
diğer tüm homotopi grupları sıfır olan uzaydır.

Örnek 4.1.26 (S1 bir Eilenberg-MacLane Uzayıdır) S1 çemberi, K(Z, 1) bir Eilenberg-
MacLane uzayıdır.

S1 çemberin birinci temel grubu, çember üzerindeki kapalı yolların homotopi sınıflarını
temsil eder. Bu yolların her biri, çemberi belirli bir sayıda dolanır (pozitif veya negatif
yönde). Bu nedenle, π1(S

1) tam sayılar grubuna izomorftur.
S2 → S1 bir dönüşümünü ele alalım. Bu dönüşümü S1’in evrensel örtüsü olan R uzayına

lifting yapılabilir. Ancak, R konveks bir uzaydır ve bu nedenle tüm dönüşümler bir sabit
fonksiyona homotoptur. Bu, S2 → S1 dönüşümünün sabit bir fonksiyona homotop olduğunu
gösterir. Dolayısıyla, π2(S

1) = 0 olur.
Yukarıdaki argüman, n > 1 için de geçerlidir. Sn → S1 bir dönüşümü, S1 çemberinin

evrensel örtüsü olan R uzayına lifting yapılabilir. R konveks olduğu için, bu dönüşüm bir
sabit fonksiyona homotoptur. Dolayısıyla her n > 1 için πn(S

1) = 0 olur.
Sonuç olarak S1, π1(S

1) ∼= Z ve πn(S
1) = 0 (n > 1) özelliklerini sağladığı için K(Z, 1)

bir Eilenberg-MacLane uzayıdır.

Sonuç 4.1.27 S1, Z grubu için bir sınıflandırma uzayıdır (classifying space).

BZ ' S1
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Tanım 4.1.28 ((n− 1)-Bağlantılı Uzay) Bir X topolojik uzayı eğer her i < n için
πi(X) = 0 oluyorsa X uzayına (n− 1)-bağlantılı (n-1-connected) uzay denir.

Örnek 4.1.29 ( Hopf Dönüşümü) π3(S
2) ∼= Z olduğunu Hopf 1930’larda göstermiştir.

Bu, homotopi teorisinin başlangıcı olarak kabul edilir. Hopf, R4 ile C2 özdeşleştirerek H :
S3 → S2 bir dönüşüm tanımlamıştır.

R4 uzayında (x1, y1, x2, y2) noktası C2 uzayında (z1, z2) çifti ile ifade edilir, burada
z1 = x1+ iy1 ve z2 = x2+ iy2. S3, C2 uzayında |z1|2+ |z2|2 = 1 koşulunu sağlayan noktalar
kümesi olmak üzere Hopf dönüşümü

H(z1, z2) =
z1
z2

ile tanımlanır. Burada z2 = 0 olduğunda z1
z2

= ∞ olarak tanımlanır. Ayrıca H(z1, z2),
C ∪ {∞} ile özdeşleştirilen S2’ye bir dönüşüm verir.

Hopf Dönüşümünün Özellikleri:

• H sürekli bir dönüşümdür.

• H’nin S2 üzerindeki herhangi bir noktasının ters görüntüsü, bir çember S1’e home-
omorftur.

• Bu dönüşüm, π3(S
2) ∼= Z olduğunu gösterir. Yani, S3’ten S2’ye olan dönüşümler,

tam sayılarla ölçülen bir homotopi sınıfına sahiptir.

Lemma 4.1.30 X ve Y işaretli uzaylar ise

πn(X × Y ) ∼= πn(X)× πn(Y )

sağlanır.

İspat. fX : Sn → X ve fY : Sn → Y iki sürekli dönüşümleri yardımıyla f : Sn → X × Y
sürekli bir dönüşümü

f ↔ (fX , fY ).

tanımlanabilir. Benzer şekilde, g : Sn → X×Y başka bir dönüşüm olsun. F : Sn× [0, 1] →
X×Y , f ile g arasında bir homotopi olsun. Bu durumda, F , fX ile gX arasında bir homotopi
FX : Sn × [0, 1] → X ve fY ile gY arasında bir homotopi FY : Sn × [0, 1] → Y homotopi
çifti ile tanımlanır.

F ↔ (FX , FY )

f : Sn → X × Y bir işaretli dönüşüm ise, bu dönüşüm fX : Sn → X ve fY : Sn → Y
işaretli dönüşümlerinden oluşan bir çift ile ilişkilidir. Benzer şekilde, işaretli homotopiler
de bu çiftler arasında bir ilişki kurar.

Buradan πn(X×Y ) ile πn(X)×πn(Y ) arasında birebir bir eşleme vardır. Yani [f ], f ’nin
homotopi sınıfını, [fX ] ve [fY ] ise sırasıyla fX ve fY ’nin homotopi sınıfları olmak üzere

[f ] ↔ ([fX ], [fY ])
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yazabiliriz.Bu eşleme, homotopi sınıfları üzerindeki toplama işlemini de korur. πn(X × Y )
üzerindeki toplama işlemi, πn(X) ve πn(Y ) üzerindeki toplama işlemlerine

[f ] + [g] ↔ ([fX ] + [gX ], [fY ] + [gY ])

karşılık gelir. Sonuç olarak bu birebir eşleme ve toplama işleminin korunması, πn(X × Y )
grubunun πn(X)× πn(Y ) grubuna izomorf olduğunu gösterir:

πn(X × Y ) ∼= πn(X)× πn(Y )

2

Örnek 4.1.31 (Silindirin Homotopi Grupları) Silindir C = I × S1, S1 çemberi ile
I = [0, 1] aralığının çarpımıdır. I aralığı büzülebilir bir uzaydır, yani tüm homotopi grupları
aşikardır. Bu nedenle, silindirin homotopi grupları

πn(C) = πn(I × S1) = πn(I)× πn(S
1) = πn(S

1)

olarak elde edilir. Silindirin homotopi grupları, yalnızca S1 çemberinin homotopi gruplarına
eşittir.

Geometrik olarak silindir, S1 çemberinin bir ”uzantısı” olarak düşünülebilir. I aralığı
büzülebilir olduğu için, silindirin homotopi özellikleri yalnızca S1’in homotopi özelliklerine
bağlıdır.

0 1

{0} × S1

{1} × S1

I = [0, 1]

Örnek 4.1.32 (Torusun Homotopi Grupları) Torus T 2 = S1 × S1, iki çemberin çar-
pımıyla elde edilen bir yüzeydir.

• Birinci Homotopi Grubu:

π1(T
2) = π1(S

1 × S1) ∼= π1(S
1)× π1(S

1) ∼= Z× Z.

Bu, torusun birinci temel grubunun iki çemberin dolanma sayılarıyla ölçüldüğünü
gösterir. Yani, torus üzerindeki kapalı yollar, iki bağımsız çember boyunca dolanma
sayılarıyla ifade edilir.
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• Yüksek Boyutlu Homotopi Grupları:

πn(T
2) = πn(S

1 × S1) ∼= πn(S
1)× πn(S

1)

S1 için πn(S
1) = 0 (n > 1) olduğundan, torus için de πn(T

2) = 0 (n > 1) olur.

x

y

z

Örnek 4.1.33 R2 − S1 uzayının homotopi gruplarını hesaplayalım.
R2 − S1, R2 düzleminden bir çemberin çıkarılmasıyla elde edilen uzaydır. Bu uzayın

homotopi gruplarını anlamak için, uzayın homotopi açısından neye benzediğini inceleyelim.
R2−S1, homotopi açısından bir çember ile homotopi denktir. Bunun nedeni, R2−S1’in

bir çemberin etrafında ”delik” oluşturmasıdır. Bu delik, uzayın homotopi yapısını belirler.
Dolayısıyla:

R2 − S1 ' S1

olur.
S1’in homotopi gruplarını kullanarak R2 − S1’in homotopi gruplarını hesaplayabiliriz:

• π0(R2 − S1) = π0(S
1) = 1: Uzay yol bağlantılıdır.

• π1(R2 − S1) = π1(S
1) = Z: Çemberin birinci temel grubu tam sayılar grubuna izo-

morftur.

• πi(R2−S1) = πi(S
1) = 0 her i > 1 için: S1’in daha yüksek homotopi grupları sıfırdır.
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4.2 Açığa Çıkan Homomorfizmler
Tanım 4.2.1 (Açığa Çıkan Homomorfizm) f : X → Y şşaretli bir sürekli dönüşüm
olsun, f fonksiyonuna bağlı olarak açığa çıkan fonksiyon

f∗ : πn(X) → πn(Y )

vardır. Bu fonksiyon, herhangi bir j : Sn → X işaretli dönüşümünü

f∗([j]) = [f ◦ j]

ile tanımlar. Burada [j], j dönüşümünün homotopi sınıfını ifade eder ve [f ◦ j], f ◦ j
bileşiminin homotopi sınıfıdır.

Özellikler:
• f∗, homotopi sınıfları arasında bir fonksiyon tanımlar.

• f∗, grup yapısını korur, yani bir homomorfizmdir:

f∗([j1] + [j2]) = f∗([j1]) + f∗([j2]).

Not. j ∼ k ise
f∗([j]) = [f ◦ j]

= [f ◦ k] ... ([f ◦ j] = [f ◦ k])

= f∗([k])

olacağından f∗ iyi tanımlıdır. 2

Teorem 4.2.2 (Açığa Çıkan Homomorfizmin Özellikleri) f : X → Y işaretli sü-
rekli bir dönüşüm ise açığa çıkan fonksiyon f∗ : πn(X) → πn(Y ) bir grup homomorfizmidir
ve

1. g : Y → Z başka bir işaretli dönüşüm ise

(g ◦ f)∗ = g∗ ◦ f∗

2. i : X → X birim dönüşüm ise, i∗ her n için

πn(X) → πn(X)

birim homomorfizmidir.
3. h : X → Y dönüşümü f ile işaretli homotop ise

h∗ = f∗

4. c : X → Y dönüşümü X uzayının her noktasını Y uzayının temel noktasına götürü-
yorsa

c∗ = 0

sıfır homomorfizmidir
özellikleri sağlanır.
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İspat. j1, j2 : Sn → X işaretli dönüşümler olsun. Buradan

f∗([j1] + [j2]) = f∗([j1#j2]) = [f ◦ (j1#j2)]

olur. j1 ve j2 fonksiyonlarını (s1, . . . , sn) ∈ Sn için

f ◦ (j1#j2)(s1, . . . , sn) =

{
f(j1(s1, . . . , sn−1, 2sn)) eğer sn ⩽ 1

2
,

f(j2(s1, . . . , sn−1, 2sn − 1)) eğer sn ⩾ 1
2

olarak yazabiliriz. Burada sağ taraftaki ifade (f ◦ j1)#(f ◦ j2) olacağından

[f ◦ (j1#j2)] = [(f ◦ j1)#(f ◦ j2)] = [f ◦ j1] + [f ◦ j2] = f∗[j1] + f∗[j2]

olur.
1. f∗ fonksiyonu f ile bileşke olarak tanımlandığından g ile bileşke almak, g◦f ile bileşke

almakla aynı fonksiyonu olacaktır.
2. i : X → X birim dönüşüm ve j : Sn → X herhangi bir dönüşüm olmak üzere i◦j = j

oldğundan i∗[j] = [i ◦ j] = [j] olur. Buradan açığa çıkan homomorfizm i∗, πn(X) üzerinde
birim fonksiyon olur.

3. f ∼ g : X → Y ve h ∼ j : Y → Z ise, (h ◦ f) ∼ (j ◦ g) : X → Z olduğundan açıktır.
4. Herhangi bir j : Sn → X dönüşümünü c ile bileşke almak, temel noktaya giden

sabit dönüşümü verir ki bu πn(Y ) grubunun sıfır elemanını temsil eder. Bu nedenle tüm
[j] ∈ πn(X) için c∗([j]) = 0 ∈ πn(Y ) olur. 2

Önerme 4.2.3 Her (x, y) ∈ S1 için

f(x, y) = (x, y)

olacak şekilde f : D2 → S1 sürekli dönüşüm yoktur.

İspat. Kabul edelim ki her (x, y) ∈ S1 için f(x, y) = (x, y) olacak şekilde f : D2 → S1

sürekli dönüşüm olsun. f dönüşümünü S1’in D2’nin sınırına dahil edilmesi olan i : S1 → D2

ile birleştirerek
S1 i−→ D2 f−→ S1

dizisi elde edilir. Bu diziyi homotopi gruplarına uygularsak

π1(S
1)

i∗−→ π1(D
2)

f∗−→ π1(S
1)

grup homomorfizm dizisini elde ederiz. Burada

• π1(S
1) ∼= Z

• π1(D
2) = 0 (D2 konveks bir uzay)
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olur. Buradan grup dizisi
Z i∗−→ 0

f∗−→ Z

olarak yazılabilir. Bu diziden, Z’deki herhangi bir tam sayıyı alıp önce i∗, ardından f∗
uygulanırsa her n ∈ Z için i∗(n) = 0 olacağından f∗(0) olur.

f(x, y) = (x, y) koşulundan f ◦ i fonksiyon S1 üzerinde birim dönüşüm olacağından

f∗ ◦ i∗ = (f ◦ i)∗

olur. Dolayısıyla (f ◦i)∗ fonksiyonu π1(S
1) üzerinde birim grup homomorfizmi olmalıdır. Bu

sıfır homomorfizm olması ile çelişir. Bu çelişki, böyle bir f dönüşümünün var olamayacağını
gösterir. 2

Sonuç 4.2.4 Sürekli birebir olan bir fonksiyon homotopi grupları üzerinde birebir olmayan
homomorfizm açığa çıkarılabilir. Örneğin, i : S1 → D2 içine dönüşümü π1 üzerinde sıfır
homomorfizm açığa çıkarır.

Örnek 4.2.5 p : R → S1 evrensel örtü dönüşümünü

p(t) = (cos(2πt), sin(2πt))

ile tanımlanır. Bu dönüşüm sürekli ve her s ∈ S1 için p(t) = s olacak şekilde bir t ∈ R var
olduğundan örtendir. Ancak, p dönüşümünün açığa çıkardığı homomorfizm

p∗ : π1(R) → π1(S
1)

π1(R) = 0 (R konveks olduğundan) ve π1(S
1) ∼= Z olduğundan örten değildir.

Sonuç 4.2.6 Sürekli örten olan bir fonksiyon homotopi grupları üzerinde örten olmayan
homomorfizm açığa çıkarılabilir.

Önerme 4.2.7 f : S1 → S1 dönüşümü için f ◦f sabit dönüşüm ise, o zaman f∗ : π1(S
1) →

π1(S
1) sıfır homomorfizmdir.

İspat. f ◦ f bileşiminden (f ◦ f)∗ = f∗ ◦ f∗ homomorfizmi açığa çıkar. Herhangi bir
j : Sn → X dönüşümünü sabit dönüşüm c ile bileşke almak, temel noktaya giden sabit
dönüşümü vereceğinden f ◦f sabit bir dönüşüm olduğundan açığa çıkan homomorfizm sıfır
homomorfizmdir. 2

Örnek 4.2.8 f : S1 → S1 dönüşümü için f ◦ f sabit dönüşüm olsun. π1(S
1) ∼= Z oldu-

ğundan, Z → Z şeklindeki grup homomorfizmleri yalnızca tam sayılarla çarpma işlemiyle
tanımlanır. Yani k ∈ Z için f∗(n) = kn şeklindedir. Ancak, f∗ ◦ f∗ = 0 olduğundan her
n ∈ Z için

f∗(f∗(n)) = f∗(kn) = k2n = 0

olur. Bu, k2 = 0 anlamına gelir, ancak k ∈ Z olduğundan bu durum yalnızca k = 0 için
mümkündür. Bu nedenle f∗ = 0 sıfır homomorfizmdir.
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Önerme 4.2.9 X ve Y işaretli homotopi açısından denk ise, o zaman πn(X) ve πn(Y )
her n için izomorf olur.

İspat. X ve Y işaretli homotopi açısından denk olduğundan f ◦ g ∼ IdY ve g ◦ f ∼ IdX

olacak şekilde f : X → Y ve g : Y → X sürekli dönüşümleri vardır Buradan açığa çıkan
homomorfizmler f∗ ve g∗ birbirinin tersidir.

Örneğin, f ◦gI dönüşümü Y üzerinde birim dönüşüme homotop olduğundan, (f ◦g)∗ =
Id olur. Ancak, (f ◦ g)∗ = f∗ ◦ g∗ olduğundan

f∗ ◦ g∗ = Id

elde edilir. Benzer şekilde, g ◦ f dönüşümü X üzerinde birim dönüşüme homotop olduğun-
dan, (g ◦ f)∗ = Id olur. Ancak, (g ◦ f)∗ = g∗ ◦ f∗ olduğundan

g∗ ◦ f∗ = Id

elde edilir. Bu, f∗ ve g∗’nin birbirinin tersi olduğunu ve dolayısıyla izomorfizm olduklarını
gösterir. Sonuç olarak her n için

πn(S) ∼= πn(T )

olur. 2

Sonuç 4.2.10 Homeomorf uzaylar aynı homotopi gruplarına sahiptir.

Örnek 4.2.11 R2 − {0} uzayı S1 çemberine homotopi açısından denktir.
R2−{0}, orijini çıkardığımız R2 düzlemidir. Bu uzay, orijinden uzaklaşan tüm noktala-

rın birim çembere (S1) radyal olarak büzülmesiyle S1 uzayına homotopi açısından denktir.
Buradan R2 − {0} uzayının homotopi grupları S1 uzayının homotopi gruplarıyla aynıdır.
Bu büzülme, R2−{0}’daki her noktayı, aynı doğrultuda bulunan S1 üzerindeki bir noktaya
eşler.

• π1(R2 − {0}) ∼= π1(S
1) ∼= Z.

• πi(R2 − {0}) = πi(S
1) = 0 her i > 1 için.

4.3 Temel Grup
Tanım 4.3.1 (Temel Grup π1(X)) Bir X topolojik uzayı ve bir x0 ∈ X temel noktası
verildiğinde, X uzayının birinci homotopi grubuna X uzayının temel grubu denir.

Teorem 4.3.2 n > 1 için πn(X) bir Abelyan gruptur.
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Örnek 4.3.3 X ⊂ R2 uzayı, (|x| − 1)2 + y2 = 1 koşulunu sağlayan noktalar kümesi (sekiz
şekli) olmak üzere π1(X) Abelyan değildir.

x

y

(0, 0) (1, 0)(−1, 0)
f

g

X = {(x, y) ∈ R2 : (|x| − 1)2 + y2 = 1}

X, iki çemberin bir noktada birleşmesiyle oluşan bir ”sekiz şekli”dir. Bu durumda, X uza-
yının birinci temel grubu π1(X), iki çemberin birleştirilmesiyle oluşan serbest bir gruptur.
Bu grupta, çemberlerin dolanma sayıları bağımsızdır ve toplama işlemi genellikle komütatif
değildir.

f : S1 → X

f(x, y) = (1− x, y)

dönüşümü S1 çemberini X’in sağ çemberi boyunca dolaştırır.
ve g : S1 → X

g(x, y) = (x− 1, y).

dönüşümü S1 çemberini X’in sol çemberi boyunca dolaştırır.
f#g: f dönüşümünü, ardından g dönüşümünü takip eden bir yol ve g#f : g dönüşümünü,

ardından f dönüşümünü takip eden bir yol olmak üzere

[f#g] 6= [g#f ]

olduğundan Bu iki yol, homotopi açısından denk değildir.
Bu, π1(X) grubunun toplama işlemi altında komütatif olmadığını, yani π1(X) grubnun

Abelyan bir grup olmadığını gösterir.

Sonuç 4.3.4 Sekiz şekli gibi bir uzayın birinci temel grubu π1(X), genellikle serbest bir
grup olur ve Abelyan değildir. Bu, X üzerindeki yolların birleştirilme sırasının homotopi
açısından önemli olduğunu gösterir.
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Lemma 4.3.5 X uzayı yol bağlantılıdır ancak ve ancak π0(X) yalnızca bir elemana sahip-
tir.

İspat. ⇒ X yol bağlantılıysa, X uzayının herhangi iki noktası arasında bir yol vardır.
Bu durumda, X uzayının tüm noktaları aynı bağlantı bileşenine aittir. Dolayısıyla, π0(X)
yalnızca bir elemana sahiptir.

⇐ π0(X) yalnızca bir elemana sahipse, bu X uzayının yalnızca bir bağlantı bileşeni
olduğu anlamına gelir. Bu durumda, X uzayının herhangi iki noktası arasında bir yol vardır
ve X yol bağlantılı olur.

2

Uyarı 4.3.6 X uzayı yol bağlantılı değilse, X uzayının noktaları üzerinde

x ∼ y ⇐⇒ x ile y arasında bir yol vardır.

denklik bağıntısı tanımlayabiliriz. Bu bağıntı X uzayının noktalarını yol bağlantılı bileşen-
lere ayırır. Elde edilen denklik sınıfları kümesi, tam olarak [S0, X] homotopi sınıflarının
kümesidir. Burada [S0, X] denklik sınıfı S0 uzayından X uzayına olan işaretli sürekli dö-
nüşümlerin homotopi sınıflarını ifade eder.

Bu küme, homotopi gruplarıyla birlikte ele alınır ve bazen 0. homotopi grubu olarak
adlandırılır. Ancak, bu bir grup yapısına sahip değildir.

Önerme 4.3.7 X bir işaretli topolojik uzay olmak üzere n > 0 ise

πn(X) = πn(X0)

olur. Burada X0, X’in temel noktayı içeren yol bağlantılı bileşenidir.

İspat. n > 0 olduğunda, πn(X), Sn → X olan işaretli sürekli dönüşümlerin homotopi
sınıflarından oluşur. Bu dönüşümlerin homotopi sınıfları, yalnızca temel noktayı içeren yol
bağlantılı bileşen X0 ile ilgilidir.

Sn (n > 0) yol bağlantılı bir uzaydır. Bu nedenle, Sn → X herhangi bir sürekli dönüşüm,
X uzayının yalnızca bir yol bağlantılı bileşenine görüntü alabilir. Özellikle, temel noktayı
sabit tutan işaretli dönüşümler, yalnızca X0 kümesine götürür.

f : Sn → X bir işaretli dönüşümse, f fonksiyonunun görüntüsü X uzayının temel
noktayı içeren yol bağlantılı bileşeni X0 kümesinde yer alır. Bu nedenle, f ve g gibi iki
dönüşümün homotopi sınıfları, yalnızca X0 kümesindeki yollarla ilgilidir. Buradan

πn(X) = πn(X0).

olur.
X uzayının diğer yol bağlantılı bileşenleri, temel noktayı içermediğinden, Sn uzayın-

dan bu bileşenlere herhangi bir işaretli dönüşüm olamaz. Bu nedenle, X uzayının diğer
bileşenleri πn(X) de bulunmaz.

Sonuç olarak, πn(X) yalnızca X0 kümesine bağlıdır. Buradan

πn(X) = πn(X0)

elde edilir. 2
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Sonuç 4.3.8 Eğer n > 0 ise, bir topolojik uzayın homotopi grupları, yalnızca temel nok-
tayı içeren yol bağlantılı bileşen tarafından belirlenir. Diğer bileşenler homotopi gruplarına
katkıda bulunmaz.

Örnek 4.3.9 Q rasyonel sayılar ve Z tam sayılar için homotopi grupları

• π0(Q) = Q ve πi(Q) = 0 her i > 0 için.

• π0(Z) = Z ve πi(Z) = 0 her i > 0 için.

olur.
π0(Q), Q uzayında yol bağlantılı bileşenlerini ifade eder. Ancak Q uzayında her bir

nokta kendi başına bir yol bağlantılı bileşendir, çünkü Q yol bağlantılı değildir. Buradan

π0(Q) = Q

olur
Benzer şekilde Z uzayıda her bir tam sayı kendi yol bağlantılı bileşeni olduğundan

π0(Z) = Z

olur.
Daha yüksek homotopi grupları (πi için i > 0), yalnızca yol bağlantılı bileşenler üze-

rinde tanımlanır. Ancak Q ve Z uzaylarında her bir yol bağlantılı bileşen tek bir noktadan
oluştuğundan her i > 0 için

πi(Q) = 0

ve
πi(Z) = 0

elde edilir.

Not. Homotopi grupları, Q gibi ayrık olmayan bir topolojik uzayı, Z gibi ayrık bir uzaydan
ayırt edemez. Bu, homotopi gruplarının topolojik uzayların tüm karmaşıklığını yakalaya-
madığını gösterir. 2

4.4 Van Kampen Teoremi
Teorem 4.4.1 (Van Kampen Teoremi) X = U ∪ V ve U, V açık alt kümeler olmak
üzere U∩V yol bağlantılı ve X uzayının temel noktasını içeriyorsa, o zaman her α ∈ π1(X)
için

α = β1 + β2 + · · ·+ βn,

olur. Burada her βi, ya j∗(π1(U))’de ya da k∗(π1(V ))’de bir elemandır ve j∗ : π1(U) →
π1(X) ve k∗ : π1(V ) → π1(X), sırasıyla j : U ⊂ X ve k : V ⊂ X içine dönüşümleri
tarafından açığa çıkarılan homomorfizmlerdir.
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İspat. α ∈ π1(X) elemanını, f : S1 → X dönüşümü tarafından temsil edilen bir kapalı yol
olarak düşünelim. f , [0, 1] aralığında tanımlı bir yol ve f(0) = f(1) temel nokta olsun.

f , [0, 1/2] aralığında U kümesine ve [1/2, 1] aralığında V kümesine götürsün, f(1/2) ∈
U ∩ V olur. U ∩ V yol bağlantılı olduğundan, f(1/2) noktasından temel noktaya bir yol
g : [0, 1] → U ∩ V tanımlanabilir. Şimdi f fonksiyonunu

f1(s) =

{
f(s), eğer s ⩽ 1/2,

g(2s− 1), eğer s ⩾ 1/2,

ve

f2(s) =

{
g(1− 2s), eğer s ⩽ 1/2,

f(s), eğer s ⩾ 1/2.

şeklinde iki yol olarak parçalayalım. Burada f1 tamamen U içinde, f2, tamamen V içinde
bir yol oluşturur. Buradan [f1] ∈ j∗(π1(U)) ve [f2] ∈ k∗(π1(V )) olur. Ayrıca, f1#f2’nin f ’ye
homotop olduğu bir F homotopisi

F (s, t) =

{
f1#f2

(
s

1+t

)
, eğer s ⩽ 1/2,

f1#f2
(
s+t
1+t

)
, eğer s ⩾ 1/2.

ile tanımlanabilir. Bu homotopi, f1#f2’nin f ’ye homotop olduğunu gösterir. Dolayısıyla
[f1] ∈ j∗(π1(U)) ve [f2] ∈ k∗(π1(V )) olmak üzere

α = [f ] = [f1] + [f2],

olur.
f , birden fazla kez U ve V arasında geçiş yapıyorsa, [0, 1] aralığını uygun alt aralıklara

bölebiliriz. Her alt aralık, ya tamamen U kümesine ya da tamamen V kümesine götürür.
Bu alt aralıklar birleştirilerek, f , U ve V kümelerinde tanımlı yolların bir # toplamı olarak
ifade edilebilir.

Sonuç olarak, her α ∈ π1(X), j∗(π1(U)) ve k∗(π1(V ))’deki elemanların bir toplamı
olarak yazılabilir. 2

Sonuç 4.4.2 Van Kampen Teoremi, bir uzayın birinci temel grubunun, uygun şekilde ta-
nımlanmış altkümelerin temel gruplarından türetilebileceğini gösterir.

Örnek 4.4.3 (Sn’in π1(S
n) = 0 olduğunun Van Kampen Teoremi ile Gösterimi) Sn

küresinin π1(S
n) = 0 olduğunu Van Kampen Teoremi kullanarak gösterelim.

Sn küresini sırasıyla kuzey kutbunun çıkarılması U = Sn − {(0, . . . , 0, 1)} ve güney
kutbunun çıkarılması V = Sn − {(0, . . . , 0,−1)} olmak üzere

Sn = U ∪ V

şeklinde iki açık kümenin birleşimi olarak yazalım.
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U ve V , stereografik projeksiyon ile Rn uzayına homeomorftur. Rn büzülebilir bir uzay
olduğundan, U ve V de büzülebilir olacağından

π1(U) = π1(V ) = 0

olur.
U ∩V , Sn’den hem kuzey hem de güney kutbunun çıkarılmasıyla elde edilir. Bu, Sn−1×

(−1, 1) kümesine homeomorftur ve Sn−1 kümesine homotopi denktir. Sn−1 yol bağlantılı
olduğundan, U ∩ V de yol bağlantılıdır.

Van Kampen Teoremi’ne göre, Sn’in birinci temel grubu π1(S
n), U , V ve U ∩ V ’nin

temel gruplarından türetilir. Buradan

π1(U) = π1(V ) = 0,

ve U ∩ V yol bağlantılı olduğundan, Van Kampen Teoremi’ne göre:

π1(S
n) = 0

elde edilir. Sonuç olarak Sn’in birinci temel grubu aşikardır, yani:

π1(S
n) = 0

olur.

Sonuç 4.4.4 Eğer U ve V kümelerinin temel grupları aşikkar ise (π1(U) = π1(V ) = 0),
Van Kampen Teoremi, X uzayının temel grubunun da trivial olduğunu (π1(X) = 0) gösterir.

Örnek 4.4.5 X = S1 ve U = V = S1 olsun. Buradan U = V = S1 olduğundan π1(U) =
π1(V ) = Z ve U ∩ V = S1 olduğundan π1(U ∩ V ) = Z olur.

X = D2, U = D2 − {(−1, 0)} ve V = D2 − {(1, 0)} olsun Buradan U ve V , D2’den
birer noktanın çıkarılmasıyla elde edilir ve S1’e homotopi denktir. Buradan

π1(U) = π1(V ) = Z

olur. U ∩ V , D2’den iki noktanın çıkarılmasıyla elde edilir ve yol bağlantılıdır. Ancak,
U∩V ’nin homotopi grubu π1(U∩V ), π1(U) ve π1(V )’den farklı olabilir. X = D2 büzülebilir
bir uzaydır olduğundan

π1(X) = 0

olur. Bu iki durum, π1(U) ve π1(V )’nin tek başına π1(X)’i belirlemek için yeterli olmadığını
gösterir. U ve V ’nin kesişimi olan U ∩ V ’nin homotopi özellikleri de dikkate alınmalıdır.

Sonuç 4.4.6 U ve V kümelerinin temel grupları aşikar değilse, Van Kampen Teoremi
π1(X) değerini tam olarak belirleyemez. Bu durumda, U ∩ V için homotopi özellikleri ve
π1(U), π1(V ) ile olan ilişkisi de dikkate alınmalıdır.
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Teorem 4.4.7 (Whitehead Teoremi) X ve Y bağlantılı simplisel kompleksler ve f :
X → Y sürekli dönüşümü için her i için

f∗ : πi(X) → πi(Y )

bir izomorfizm ise, o zaman f , X ve Y arasında bir homotopi denkliğidir. Yani,

f ◦ g ∼ IdY ve g ◦ f ∼ IdX

olacak şekilde bir g : Y → X dönüşümü vardır.

İspat.[İspatın Ana Fikri] Whitehead Teoremi, homotopi gruplarının izomorfizminin, simp-
lisel kompleksler arasında bir homotopi denkliği oluşturmak için yeterli olduğunu ifade
eder.

f∗ : πi(X) → πi(Y ) her i için bir izomorfizm olduğundan, f , X’in homotopi gruplarını
Y ’nin homotopi gruplarına birebir ve örten bir şekilde eşler.

f ’nin homotopi gruplarındaki etkisi bir izomorfizm olduğundan, f , X ve Y arasında
bir homotopi denkliği oluşturur. Bu, f ’nin bir ters dönüşümü g : Y → X olduğu anlamına
gelir. Bu ters dönüşüm, homotopi açısından f ’nin tersidir:

f ◦ g ∼ IdY ve g ◦ f ∼ IdX .

X ve Y simplisel kompleksler olduğundan, bu yapıların homotopi gruplarındaki izo-
morfizm, simplisel komplekslerin homotopi denkliği için yeterlidir.

Sonuç olarak, f , X ve Y arasında bir homotopi denkliğidir. 2

Sonuç 4.4.8 Whitehead Teoremi, simplisel kompleksler arasında homotopi gruplarının izo-
morfizminin, bu kompleksler arasında bir homotopi denkliği oluşturmak için yeterli oldu-
ğunu gösterir.
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