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ONSOZ

Bu kitap, cebirsel topolojinin temel kavramlarini grafiksel ve erisilebilir bir bi¢imde
sunmak amaciyla hazirlanmistir. Ozellikle homotopi teorisi, topolojik uzaylarm yapisal
ozelliklerini anlamada merkezi bir rol oynamakta olup, giiniimiiz matematiginin pek ¢ok
alaninda giderek artan bir 6énem tagimaktadir. Bu baglamda, kitapta yer alan boliim-
lerin her biri, konunun kavramsal temellerini ortaya koymay1 ve ilgili kavramlar: somut
orneklerle desteklemeyi hedeflemektedir.

Eserin hazirlanmig siirecinde, hem lisansiistii diizeyde cebirsel topoloji calisan aras
tirmacilar hem de konuya yeni baglayan ogrenciler i¢in dengeli bir anlatim sunmaya 6zen
gosterilmigtir. Okuyucunun teoriyi yalnizca tanimlar ve teoremler diizeyinde degil, ayni
zamanda geometrik bir bakis agisiyla da kavrayabilmesi temel amaclardan biridir. Bo-
liimlerde yer alan ispatlar, miimkiin oldugunca acik ve takip edilebilir bigimde verilmis ;

gerekli goriilen yerlerde anlamay1 kolaylastiran agiklamalara ve notlara yer verilmistir.
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Bolum 1

Temel Topolojik Ozellikler

1.1 Baglantilihk

Tanim 1.1.1 Hern € N dogal sayisi icin, r yaricapl bir n-kiire, r noktasinin n+1 boyutlu
Oklidyen uzayda sabit bir ¢ noktasina uzakhgi v olan noktalardan olusan bir kiime olarak
tanamlanwr. Burada r herhangi bir pozitif reel say ve ¢, (n+ 1) boyutlu uzayin herhangi bir
noktasi olabilir.

Tanim 1.1.2 Verilen bir kartezyen koordinat sistemi igin, yaricapr 1 olan n-boyutlu bir
birim kiire orjine olan uzaklhgir 1 olan noktalarin kiimest

S" = {z e R ||z = 1}.

olarak tanimlanar.

+1 +1

— _K \1 —1—:1
. + \\_‘j %1 _1

S“ Sl

Ornek 1.1.3 Reel sayilar kimesi R dizerinde standart(alisilmas) topoloji ile ele alinan
SO ={-1,1}
kiimesi tizerine indirgenen topoloji ile ayrik uzay olur.
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8 BOLUM 1. TEMEL TOPOLOJIK OZELLIKLER,

Coziim:
R tizerindw standart topoloji U ile gosterilmek tizere, herhangi bir U € U acik kiimesi
icin S° iizerinde indirgenen topoloji
U ={UNS" | U €7}

seklinde tanmmlanir. Ozellikle, R'nin standart topolojisinde acik olan bir U kiimesi, her
x € U igin bir 0 < € < 1 olmak tizere (x — €,z + €) agik araligim icermektedir.
Buradan,

V=(-1-€-1+4+¢ ve T=(1-¢l+¢)
acik kiimelerini secersek, S° {izerindeki kesisimler

(—1—e,—14+e)NS°={-1}clUg, (1—€14+e)NS"={1}clUs

olacaktir. Bu, her # € S° noktasi igin {x} tek nokta kiimesinin acik bir kiime oldugunu
gosterir.
Sonug olarak S {izerine indirgenen aligilmis uzay ayrik uzay olur. O

Teorem 1.1.4 R — S olacak sekilde orten siirekli bir doniisiim yoktur.

Ispat. Kabul edilim ki f : R — S siirekli ve 6rten bir fonksiyon olsun. S° ayrik topolojiye
sahip oldugundan, {—1} ve {1} kiimeleri S° uzayinda acik kiimelerdir. f siirekli oldugundan

U=f"'{-1HeUd ve V=Ff"{1})eu
olmalidir. f 6rten oldugundan, U ve V bog olmayan ayrik kiimelerdir. Ayrica

A=+ = {1 nf i ({+1h) =0
~— ——

0
- u{+) = {-1huf({+1}) =R
T
oldugundan

UUV =R, UNnV=>0

olur. Simdi, z € U ve y € V olmak iizere < y oldugunu varsayalim. [z, y] kapal araligim
ele alalim. Bu araligin orta noktasi

r+y
21 =
2
- — - -
x 21
|\ J\_ J

=] <



1.1. BAGLANTILILIK 9

ya U kiimesine ya da V kiimesine ait olur. Eger z; € V ise, [z, 2] araligi bir ucu U
kiimesinde, bir ucu V' kiimesinde olur. z; € U olsun, [z, y| aralig ile igleme devam edelim.
Bu islemi tekrarlayarak, uzunlugu giderek kiiciilen araliklar elde edebiliriz.
T+ 2 veva 2 — 21ty
2 aomETo

Bu sekilde elde edilen araliklarin sonsuz kesigimi tek bir z noktas1 olur. Bu nokta U
kiimesinde olursa, U agik kiime oldugundan

9 =

(z—0,z+9)CU

olur. Ancak, yeterince kiigiik n igin [z, z,41] araliginin bir ucu U kiimesinde, bir ucu V/
kiimesinde olur. Bu,

Unv #0
geligkisine yol agar. Ayni argiman z € V igin de gegerlidir. Sonug olarak, U ve V kiimele-
rinden biri bog kiime olmalidir. Dolayisiyla, f orten ve stirekli olamaz. O

Tanim 1.1.5 (X, 7) topolojik uzayinda U UV = X olacak sekilde bos kiimeden farkl olan
ayrik ve agik kiimeler varsa (X, 1) topolojik uzayinda baglantisiz uzay denir. Eger bu tir
U ve V kimeleri meveut degilse, (X, T) topolojik uzayina baglantily uzay denir.

Ornek 1.1.6 (R, P(R)) ayrik uzay: i¢in x € R olmak tizere
U={z} N V=R\{z}

alinirsa

UV #0, UNnV =0 UUV =R

olacagindan (R, P(R)) uzayr baglantisiz uzay olur. teoreminin ispatinin ikinci kisman-
dan (R,U) alisilmas uzayimin baglantily uzay oldugu gorilir.

Sonug 1.1.7 Bir uzayn baglantily uzay olmasy ozelligi tizerinde tanimly olan topolojiye
baglidur.

Sonug 1.1.8 Birden fazla nokta iceren ayrik uzay baglantisiz uzay olur.

Ispat. (X, 7) bir ayrik uzay olsun ve X kiimesi birden fazla nokta icersin. Ayrik bir uzayda
her alt kiime agiktir. Bu nedenle, X uzaymin herhangi iki A, B C X alt kiimesi i¢in

AUB=X ve ANB=1)

olacak sekilde A ve B kiimeleri segilebilir. (Ornegin A = {a} ve B = X — {a}.)
A ve B kiimeleri ayrik ve agik oldugundan, X kiimesi A U B geklinde iki ayrik acik
kiimenin birlegimi olarak ifade edilebilir. Dolayisiyla, X baglantisiz uzay olur. . O

Lemma 1.1.9 Baglantily bir uzaydan baglantisiz bir uzaya strekli orten dontsim yoktur.



10 BOLUM 1. TEMEL TOPOLOJIK OZELLIKLER
Ispat. X baglantili bir topolojik uzay ve Y baglantisiz bir topolojik uzay olsun.
f:X—=>Y

stirekli ve orten bir fonksiyon oldugunu varsayalim. Y baglantisiz uzay oldugundan U, V' # ()
olmak tizere

Y=UUV, UVacgkveUNV =10

yazilabilir. f siirekli oldugundan, f~1(U) ve f~}(V) kiimeleri X icinde acik kiimelerdir ve

X = O uF ).

olur. Ayrica U NV = () oldugundan,

fO)N V)= UnV)=f70) =0
olur. Bu, X uzaymin bos kiimeden farkli olan ayrik iki agik kiimenin birlegimi oldugunu

gosterir. Ancak X baglantili uzay oldugu igin celigki elde edilir. Dolayisiyla f siirekli ve
orten olamaz. O

Ornek 1.1.10 (0,1) agik aralgr baglantibdur. R icin yapilan ispatla ayna sekilde gosteri-
lebilir. Dolayisiyla,

(0,1) — S°

seklinde stirekli ve orten bir donisim yoktur. Benzer sekilde [0, 1] kapali araligrda baglan-
taladar.

Sonug 1.1.11 a,b € Rigina < b olmak dzere (a,b) ve [a, b] araliklar: izerlerine indirgenen
alisilmas topoloji ile baglantily uzay olurlar.

Teorem 1.1.12 (0,1) aralige i¢in Sabit Nokta Teoremi: )

f:10,1] — [0, 1]

strekli fonksiyonunun sabit bir noktast vardir, yani [0, 1] araliginda f(x) = = olacak sekilde
en az bir x noktasy bulunur.
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Ispat. f : [0,1] — [0, 1] siirekli ancak sabit noktasi olmadigini varsayalim. Bu durumda,
her z € [0,1] i¢in f(x) # z olur.

e )
90 = )

seklinde bir fonksiyon tanmimlayalimm. Burada x # f(x) oldugu i¢in, g toplama ve sifirdan
farkli sayilarla bolme iglemlerinin bilesimi oldugundan siirekli olur. = # f(z) igin

z # f(z)

=
=
oldugundan g(x) yalmizca +1 veya —1 degerlerini alir, bu nedenle g fonksiyonun
g:[0,1] — S°

siirekli ve drten bir fonksiyon olarak diigtinebiliriz. [0, 1] baglantili S° baglantisiz oldugun-
dan celigki elde ederiz. O halde f fonksiyonunun sabit bir noktasi olmalidir. O

Teorem 1.1.13 (Ortalama Deger Teoremsi)
Eger
f:la,b] = R

strekli bir fonksiyon ve f(a) <0, f(b) > 0 ise, o zaman f(x) = 0 olacak en az bir x € |a, b
vardar.
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Ispat. Kabul edelim ki her = € [a, D] icin f(x) # 0 olsun. Buradan

oy @)
o) = 1)

fonksiyonunu tanmimlayahm. f(x) siirekli oldugu igin f fonksiyonu da siirekli olur. Ayrica,
f(a) < 0 oldugundan f(a) = —1 ve f(b) > 0 oldugundan f(b) = +1 olur. Dolayisiyla

f:[a,b] — S°

fonksiyonu érten olur. [a, b] aralign baglantili oldugundan f siirekli bir fonksiyon olamaz.
Bu bir ¢geligkidir. O halde varsayimimiz yanhs olmahdir, yani f(z) = 0 saglayan en az
bir z bulunmalidir. O

Teorem 1.1.14 Baglantililik stireklilik altinda korunur. Yani, eger X baglantily bir uzay
ve f: X =Y strekli bir fonksiyon ise f(X) uzayida baglantily baglantily uzay olur.

Ispat. Kabul edelim ki f(X) baglantisiz uzay olsun. Yani f(X) bog kiimeden farkl iki
ayrik acik kiimenin birlegimi olarak yazilabilsin.

f(X)=AuUuB, AnB={0veA B agk
f siirekli oldugundan, f~'(A) ve f~'(B), X iginde acik kiimeler olurlar. Ayrica,
X=f1A)uf(B)

fHAN B = fHANB) = fH(0) =0

esitlikleri saglanir.

Bu, X kiimesininin bog kiimeden farkh f~'(A) ve f~(B) ayrik agik kiimelerinin bir-
lesimi olarak ifade edilebiliecegini gosterir. Bu ise X uzayimin baglantili olmast iler celigir.
Bu geligkiden dolay1, f(X) baglantili olmalidir. O

Teorem 1.1.15 R" baglantilidar.
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Ispat. R” uzaymin baglantil olmadigmi varsayalim. Yani, R" bog kiimeden farkli ayrik
olmayan iki agik kiimenin birlegimi olarak yazilabiliyor olsun.

R'=UUV, UNV =0velU,V ack

Simdi, bir noktay1 sabitleyerek bir yol olusturacagiz. Bir zy € U noktas1 ve bir z; € V'
noktasi segelim. Birim aralik tizerinde stirekli bir fonksiyon tanimlayalim:

v: [0,1] — R"
t = )= (1—t)ze+txy

Bu fonksiyon, xy noktasindan x; noktasia dogru uzanan bir dogru parcasidir ve sii-
reklidir. Birim aralik baglantilidir, bu yiizden ([0, 1]) kiimesi de baglantilidir. Ancak, bu
kiime hem U hem de V iginde olmahdir ¢iinkii U ve V ayrik kabul edilmigti. Bu, ([0, 1])
kiimesinin bog kiimeden farkl ayrik olmayan iki kiime seklinde ifade edilebilecegi anlamina
gelir ki bu ([0, 1]) kiimesinin baglantili olmas ile geligir.

Dolayisiyla, R™ ayrik iki acik kiime geklinde ifade edilemez, yani baglantilidir. O

Ornek 1.1.16 R™\ {0} kiimesi n > 1 i¢in baglantildr.

Coziim: n > 1 i¢in R™ \ {0} kiimesinin baglantih olmadigim varsayalim. Yani, bu kiime
bos kiimeden farkli ayrik olmayan iki acik kiimenin birlegsimi olarak yazilabiliyor olsun.

R\ {0} =UUV, UNV=0veUV ack

Bir x € U ve bir y € V noktasi segelim. Eger = ve y arasindaki dogru parcasi 0 noktasini
icermiyorsa, onceki ispat1 oldugu gibi uygulayabiliriz.

Ancak, x ile y arasindaki dogru 0 noktasindan gegiyorsa, yeni bir nokta segmemiz
gerekir. Bunun i¢in, x ile y dogrusunun ftizerinde olmayan herhangi bir z € R" noktasi
secelim. Bu nokta ya U kiimesinde ya da V' kiimesinde bulunur. Eger z € U ise, x noktasini
z noktasi ile degistiririz; eger z € V' ise, y noktasini z noktasi ile degistiririz.

Bu degisiklik sonucunda, U kiimesinde bir nokta ve V' kiimesinde bir nokta se¢mis
oluruz ve bunlar birlestiren dogru parcasi artik 0 noktasmdan gecmeyecektir. Onceki ispat
bu durumda gegerli oldugu i¢in R™ \ {0} baglantilidur.

Ote yandan, n = 1 i¢in R\ {0} baglantih degildir. Gercekten de,

U=(0,00), V=(—00,0)

secgimleriyle U ve V' acik, bog kiimeden farkli, ayrik ve birlegimleri R\ {0} olur. Bu nedenle
R\ {0} baglantisizdir. O

Lemma 1.1.17 Eger X baglantisiz ise,
X — 50

seklinde surekl bir orten dontsim vardar.
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Ispat. Eger X baglantisiz ise, X kiimesi bos kitmeden farkli ayrik olmayan U ve V gibi
iki agik alt kiimesi i¢in

UvcX, UnV=0) UUV=X
olarak yazilabilir. Simdi, f : X — S° fonksiyonunu

(@) = {_11 e

, xeV

seklinde tanimlayalim.

X
SO={-1,1}
-1 1

Bu tamim U ve V kiimeleri ayrik olmasindan dolay1 iyi tanimhdir ve f tiim S° kiimesini
kapsadig1 i¢in 6rten bir fonksiyondur. Ayrica, f~'({1}) = U ve f~'({-1}) = V agk
kiimeler oldugundan, f siirekli olur. O

Onerme 1.1.18 Eger X baglantils bir uzay ve Y bajlantisiz bir uzay ise
X =Y
seklinde strekli bir orten dontisim yoktur.

Ispat. Eger Y baglantisiz ise
Yy — S°

seklinde stirekli bir 6rten doniigiim vardir. Kabul edelim ki
X =Y
siirekli ve orten bir doniisiim mevcut olsun. Buradan iki doniigtimii birlegtirerek

\
4

orten orten
suirekli

orten

X stirekli )% stirekli R SO

seklinde siirekli ve 6rten bir doniisiim elde ederiz. Ancak X baglantili oldugu icin X — S°
dontigtimii stirekli ve orten olamaz. Bu celigki varsayimimizin yanlig oldugunu gosterir.
Sonug olarak X baglantili bir uzay ve Y baglantisiz bir uzay olmak iizere

X =Y

seklinde siirekli ve 6rten bir doniigtim yoktur. O
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Ornek 1.1.19 R baglantils ve R\ {0} baglantisiz oldugundan
R — R\ {0}
seklinde stirekli bir orten dontistim yoktur.
Teorem 1.1.20 Eger X baglantily bir uzay ve Y ayrik bir uzay ise
f: X—=Y
fonksiyonu strekli ise sabit fonksiyondur.

Ispat. f fonksiyonunun gorintiisiinde bir u noktasi secelim, yani u = f(z) olacak sekilde
bir z € X olsun.

f YA {u}

- /

Y tizerinde ayrik uzay oldugundan {u} ve Y — {u} kiimeleri bu uzayda acik kiime olurlar.
f fonksiyonu siirekli oldugundan f~!({u}) ve f~(T — {u}) kiimeleri de X uzaymda acgik
kiime olurlar. Ayrica, bu iki kiime ayrik olup birlesimleri Y kiimesini kapsar:

{uf UY = {u}) =Y

Buradan
F{urn {3: —{u}}) = {u) N Y —{u}}) =0
0
f({up {{ —{u}}) = ) U Y —{u}}) =X

olduéundanﬁl
A ANV Y —{uh) =X, T {uh)n Y —{u}) =0

olur. X baglantili uzay oldugundan, f~'({u}) veya f~'(Y — {u}) kiimelerinden biri bos
kiime olmahdir. z € f~'({u}) oldugu icin f~'({u}) kiime bos olamaz. O halde, f~'(Y —

!Burada f éngoriintii fonksiyonu oldugundan f~!(Y) = X her zaman saglanir.
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{u}) bos kiime olmalidir. Bu ise f(X) = {u} oldugu, yani f fonksiyonunun sabit oldugu
anlamina gelir.

A AH U —{u)) =X = f({u}) =X
0

= f(X)=u

O

Ornek 1.1.21 (R,U) uzayindan Z tam sayplar kiimesi dizerine indirgenen alt uzay ayrik
uzay olur.

1

— 3,a+ 3[€ U kiimesi (R,U) uzaymda agik kiime

Coziim: a € Z noktasmi alahm. U =|a
ve

1 1
U—}a—é,a—l—é{ N Z={a}

oldugundan {a} € Uz elde ederiz.

UelU
A
r N
o q
24 BV ¢
o o o UNZ={a}
a—1 a a+1

Her a € Z noktas: i¢in {a} € Uy oldugundan (Z,Uz) uzayinda her kiime agik kiime olur.
Sonug olarak (R,¢) aligilmig uzaymdan Z tam sayilar kiimesi tizerine indirgenen alt uzay
(Z,Uy) ayrik uzay olur. O

Sonug 1.1.22 R uzayr baglantils ve Z uzayr ayrik uzay oldugundan
R—Z
olacak sekilde sadece sabit fonksiyon streklidir.

Ornek 1.1.23 Eger S baglantisiz bir uzay ise f(0) = x € U ve f(1) = y € V olacak
sekilde
f:10,1] — S

strekli bir fonksiyon tanimlanamaz.

Coziim: Kabul edelim ki, f : [0, 1] — S siirekli bir fonksiyon f(0) =z € Uve f(1) =y € V
olsun.

[0, 1] aralig1 baglantihi bir uzaydir. f siirekli oldugu igin, f([0, 1]) kiimesi de baglantilidir.
f([0,1]) kiimesi U ve V ayrik agik kiimelerinin birlegiminde yer almak zorundadir. Bu,
f(]0,1]) kiimesinin ya tamamen U ya da tamamen V iginde olmasi gerektigini ifade eder.
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Fakat f(0) € U ve f(1) € V oldugu i¢in, f([0,1]) hem U hem de V iginde noktalar
icermek zorundadir. Bu bir celigkidir. Sonug olarak S baglantisiz bir uzay olmak iizere
fO)=zelU . f(l)=yeV
esitliklerini saglayan stirekli bir f : [0, 1] — S fonksiyonu var olamaz. O

Ornek 1.1.24 X kiimesini X = {a, b, c} olarak tanamlayalim. Asagidaki topolojiler altinda
X kiimesininin baglantily olup olmadigini inceleyelim.

o 71 ={0,{a},{a,b},{a,b,c}}
¢ T2 = {07 {CL}, {ba C}v {a? b, C}}
* T3 = {®7 {CL}, {a’7 b}7 {a7 C}v {C}, {CL, b7 C}}

Coziim:
Bir topolojik uzayimn baglantisiz olmasi i¢in, uzayin bog kiimeden farkl iki ayrik agik
kiimenin birlegimi olarak yazilabilmesi gerekir.

o 7 ailesinde X kiimesini bosg kiimeden farkl iki ayrik agik kiimenin birlegimi olarak
yazmak miimkiin degildir. Bu nedenle X uzay1 7, topolojisi ile baglantili uzay olur.

e 7y ailesinde X, {a} ve {b,c} seklinde bog kiimeden farkh iki ayrik agik kiimenin
birlesimi olarak yazilabilir. Bu nedenle X uzay1 7, topolojisi ile baglantisiz uzay olur.

o 73 ailesinde X, {a,b} ve {c} seklinde bog kiimeden farkh iki ayrik agk kiimenin
birlegimi olarak yazilabilir. Bu nedenle X uzay1 73 topolojisi ile baglantisiz uzay olur.

O

Lemma 1.1.25 X wuzayinda bos kiimeden ve X kiimesinden farkly bir kiime hem acik hem
kapaly ise, X baglantisiz uzay olur.

ispat.
A C X hem agik hem kapal bir kiime ve () # A # X olsun. Bu durumda X kiimesi,
A ve X \ A kiimelerinin ayrik birlesimi olarak yazilabilir.

X=AU(X\A)
Burada A ayni zamnda kapali kiime oldugundan X \ A agik kiime olur. Ayrica
ANX\A) =10

oldugu agiktir. A # () ve A # X oldugundan X\ A # () oldugundan A ve X\ A kiimeleri bos
kiimeden farklidir. Bu nedenle X, bog kiimeden farklh iki ayrik acik kiimenin birlegimi
olarak yazilabildigi i¢in baglantisiz uzay olur.

O
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Ornek 1.1.26 Q dizerinde alisilmas uzaydan indirgenen topoloji olsun. a,b ¢ Q igin A =
la,b] N Q kimesi

—— ——
Y Sy

Q alt uzayinda hem agik hem kapaly kiime oldugundan Q baglantisiz uzay olur.

Ornek 1.1.27 f:R — Q fonksiyonu siirekli ise sabittirB

Coziim:

f R — Q stirekli bir fonksiyon olsun. x;,z9 € R igin f(z1) = ¢ ve f(z2) = o
oldugunu varsayalim.

f siirekli oldugu i¢in, ortalama deger teoremine gore f, q; ile ¢, arasindaki tiim degerleri
almahdir. Eger q; # ¢ ise, o zaman ¢ ile ¢y arasinda bir deger r vardir ki bu deger irrasyonel
olmalidir; bu, f degerinin tamamen Q i¢inde oldugu gercegiyle celisir.

Bu nedenle, ¢; = ¢ olmalidir. Herhangi bir x1, 25 € R i¢in f(z1) = f(z2) oldugundan
f fonksiyonu sabittir. O

Ornek 1.1.28 Tam sayilar kiimesi iizerinde ayrik olmayan (kaba) topoloji olsun. Z tam
sayplar kimesinin baglantily olma durumunu inceleyelim.

Coziim:

Tam sayilar kiimesi Z tizerinde kaba topoloji 7 = {0,Z} oldugundan, agk kiimeler
yalnizca bog kiime ve Z kiimesidir.

Bir uzay baglantili ise bog kiimeden farkl ayrik iki acgik kiimenin birlesimi olarak ya-
zamaylz. Burada Z yalnizca bog kiime ve kendisi olan agik kiimelere sahiptir. Bu nedenle,
bog kiimeden farkli ayrik iki agik kiime bulmak miimkiin degildir.

Sonug olarak, kaba topoloji ile Z kiimesi baglantili uzay olur. O

Sonug 1.1.29 X kimesi tuzerinde kaba topoloji varsa X baglantily uzay olur.

Sonug 1.1.30 X kiimesi tzerinde topoloji kabalastikca(inceldikge) baglantililik ozelligi ar-
tar(azalir).

Tanim 1.1.31 Bir X uzayinda her x,y € X i¢in, x ile y arasinda bir yol varsa bu uzaya
yol baglantily uzay denir.
v:[0,1] = X

2Burada R uzay1 baglant1 uzaydir ancak Q iizerine indirgenen aligilmis uzay ayrik uzay olmadigindan
Teorem kullanilamaz.
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strekli bir fonksiyon olmak tizere

esitlikleri: saglanwyorsa X uzay yol baglantily uzay olur.

@ @
0

Lemma 1.1.32 Bir yol baglantilv uzay baglantils uzay olur.

Ispat. X yol baglantili bir uzay ve U,V C X kiimeleri U UV = X olacak sekilde ayrik ve
agik kiimeler olsun. Eger U ve V her ikisi de bog kiimeden farkli ise bir x € U ve biry € V
secgebiliriz. Yol baglantili uzay tanimindan, x noktasindan y noktasina uzanan siirekli bir
~ yolu vardir.

L) V)
K_M_A_\
o— *—
0 1

U 14
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v~ HU) ve v~ (V) kiimeleri [0, 1] arahginda birbirinden ayrik acik kiimelerdir ve birlegimleri
0,1] kiimesini verir. Ayrica, 0 € v }(U) ve 1 € 77 1(V) oldugundan her ikisi de bosg
kiimeden farklidir. Bu durum [0, 1] araliginin baglantili olmas: ile ¢eligir. O halde ya U = ()
va da V = () olmahdir. Bu ise X uzaymm baglantilh uzay oldugunu gosterir. O

Not. Baglantili uzay olma 6zelligi ve yol ile baglantili uzay olma 6zelligi arasindaki iligkiyi
asagidaki gibi 6zetleyebiliriz.

Yol ile baglantili = Baglantil
<~ (Tersi olmayabilir)
Baglantili degil = Yol ile baglantili degil

O

Ornek 1.1.33 X =R2\ {(0,0)} uzay: yol baglantihdir. x,y € X igin, ejer x ve y arasin-
daki dogru parcasi (0,0) noktasini icermiyorsa, bu dogru par¢ast X iginde bir yol olusturur.
Eger dogru parcast (0,0) noktasindan gegiyorsa, dnce (0,0) merkezli ve x noktasindan ge-
cen bir yarim ¢ember boyunca ilerleyerek (0,0) noktasindan kaginabiliriz. Daha sonra diz
bir yol ile y noktasina ulasabiliriz.

Dolaysiyla, X icinde her iki nokta bir yol ile baglanabilir ve X yol baglantil uzay olur.

R2\ 0
.\

R\ 0

)

Buna kargilik, R\{0} = (—o00,0)U(0, 00) uzayr, bos kiimeden farkly ayrik ve bos olmayan
tki acik kumenin birlesimi oldugundan baglantily uzay degildir. Dolayisiyla yol ile baglantil
uzay degildir.

Ornek 1.1.34 S* uzay yol baglantilh uzaydir. x,y € S* icin, bu noktalar arasindaki biiyiik
cember boyunca bir yol belirleyebiliriz. Dolayiswyla S* yol baglantilidar.
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(2

Benzer sekilde, S*\ {(1,0)} uzayr da yol baglantily uzay olur. z,y € S*\ {(1,0)} i¢in, yine
biiyiik cember boyunca bir yol bulabiliriz. Dolaysiyla, S* \ {(1,0)} uzayr da yol baglantil
uzay olur.

Not. R baglantilh uzay olmasma ragmen bir a € R noktasi i¢in R\ {a} baglantisiz uzay
olur. Ancak S! baglantili uzaydir ve bir b € S* igin S*\ {b} baglantih uzay olur. R ve S!
arasindaki bu iligkiyi ilerleyen boliimlerde bu iki uzayin homeomorf olmadigini 6rneklen-
dirmek i¢in kullanacagiz. O

Ornek 1.1.35 Birden fazla nokta iceren kaba uzay yol baglantiladar.

Coziim:
X uzay1 birden fazla noktay: icersin ve tizerinde kaba topoloji taniml olsun. Bu du-
rumda, X uzayinda herhangi iki nokta x,y icin, 7 : [0, 1] — X fonksiyonunu

r egert=20

y({t)=qy egert=1
x diger durumlar icin

seklinde tanimlayalim. Gortintii kiimesi iizerinde kaba topoloji oldugundan uzaydaki agik
kiimeler bog kiime ve X i¢in éngorintiileri bog kiime ve [0, 1] agk kiime olacagindan ~y
fonksiyonu [0, 1] arahig: tizerinde stirekli bir yol olugturur. Dolayisiyla, = ve y noktalari
arasinda stirekli bir yol oldugu icin, X kiimesi kaba uzay ile yol baglantil uzay olur. O

Ornek 1.1.36 [0,1] C R ve [2,3] C R baglanti olmasina ragmen [0,1] U [2,3] C R
baglantily degildir.

Sonug 1.1.37 Baglantily iki uzayn birlesimi baglantily uzay olmayabilir.



22 BOLUM 1. TEMEL TOPOLOJIK OZELLIKLER,

Ornek 1.1.38 S' ve R baglantil olmasina ragmen S* MR = S° baglantily degildir.

St

SO

Sonug 1.1.39 Baglantily iki uzaywn arakesiti baglantily uzay olmayabilir.

1.2 Kompakthk

Tanmim 1.2.1 Bir X kimesi i¢in {Uy }aca herhangi bir kiime ailesi olmak dizere

Xcl|Jua

a€cA

oluyorsa {Uy }aea ailesine X uzayimin bir ortisi denir.

; X

|V
N /

/[

Tamim 1.2.2 {U,}aca ailesi bir X kimesi i¢in orti olsun.

o Eger orti sonlu sayda kimeden olusuyorsa, yani

X C LTLJUi
i—1

seklinde yazilabiliyorsa, bu ortiye sonlu orti denir.
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o Eger X bir topolojik uzay ise ve {Uy} ailesindeki her kime X wzayindaki topolojide
a¢ik bir kiime ise, bu ortiye agik orti denir.

o Eger X bir topolojik uzay ise ve {U,} ailesindeki her kime X wuzayindaki topolojide
kapaly bir kime ise, bu ortiye kapaly ortii denir.

Ornek 1.2.3

Ortii: X = (0,1) ve U, = (0,1+ 1) olmak dizere {U, }nen kiime ailesi, X kiimesinin
bir ortiusidir clinki

xcJu,

neN

olur.

o Sonlu Ortii: X = {a,b,c} kiimesi i¢cin U, = {a,b} ve Uy = {b,c} kiimeleri verildi-
ginde, {Uy,Us} bir sonlu értidir ¢inki sonlu sayida kime ile

X CcCU, UU,
olur.

o Agik Ortii: X = (0,1) ve U, = (0— 2,1+ 2) olmak iizere {U,}nen acik kiimeler
ailesi X kimesinin bir agik ortisidiir.

o Kapals Ortii: X = [0,1] ve V| = [0,%], Vo = [%,1] kapaly kimeleri verildiginde,
{WV1,Va} ailesi X kimesinin bir kapaly ortisi olur.

Tanim 1.2.4 Bir X topolojik uzay i¢in, X wuzayinwn her agik ortisiunin sonlu bir alt
ortisi varsa, yani her {Uy}aca agik ortisi igin,

xclJu.
acA
kosulunu saglayan sonlu sayda Uy, Uy, ..., Uy, a¢ik kiimesi bulunabiliyorsa, X uzayina

kompakt uzay denir.
Ornek 1.2.5 Reel sayilarin kiimesi R, standart topolojisiyle (agik araliklar topolojisi) kom-
pakt degildir. Bunu gostermek icin R uzayinin bir acik ortisiunidn sonlu bir alt orti icer-

medigini gosterelim.

o R i¢cin asaqidaki acik kimeler ailesing distinelim:

U,=(—n,n), neN
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e Bu kiimeler R uzayim orter, ¢tinki

R:U%

neN

e Bu oértiden herhangi bir sonlu alt orti segersek, ornegin U,,,Uy,, ..., Uy, , 0 zaman
bu kiimelerin birlesimi

k
U Up, = (=N,N) (burada N = max{ny,na,...,ng})
i=1

olur. Bu, (=N, N) araliime kapsar, ancak R uzayimn tamamine kapsamaz. Dolayr-
swla, sonsuzda kalan noktalar ortilememis olur.

o Sonug olarak, bu agik orti i¢in hicbir sonlu alt orti R uzayine tamamen értemez.
Bu, R kiimesinin alisilmas topoloji ile kompakt uzay olmadiginy gosterir.

Ornek 1.2.6 R reel sayilar izerinde sonlu tiimleyenler topolojisi verilsin. Bir A kiimesinin
bu uzayda agik kime olmasi igin gerek ve yeter sart A = () veya R\ A kiimesinin sonlu
olmasidar.

Simdi, R uzayimin sonlu timleyenler topolojisi altinda kompakt uzay oldugunu géstermek
i¢in her agik ortisindn sonlu bir sonlu alt értiye sahip oldugunu gdsterelim.

Bir agik orti {A;}ier olsun.
RQU&

iel
{A;}ier ailesi R igin orti oldugundan bu kiimelerden en az biri bog kimeden farklidor.

Bu agik kime diyelim ki A; olsun. A; agik kime oldugundan R\ A, sonlu bir kime olur.
Buradan

R\AJO :{al,az,...,an}

oldugundan
R = {al,aQ,...,an}UAjO

yazlabilir. Bu noktalarin her biri baska bir agik kimenin i¢inde yer alacak sekilde agik
kimeler segelim. Ornegin Aj, = {as} almrsa R\ A;, = {as} sonlu oldugundan Aj, kiimesi
acik bir kumedir ve ay noktasini icerir. Bu sekilde devam ederek her a; noktasi i¢in en az
bir A;, agik kimest bulabiliriz. Buradan

R - {Aj()?Ajlv e 7A]n}UAj

(. J/

Vo
n tane

yazabiliriz. Sonug olarak, R uzayini en fazla n + 1 tane agik kiime ile ortmais oluruz. Her
agik orti sonlu bir alt orti icerdiginden, R uzayr sonlu timleyenler topolojisi ile kompakt
uzay olur.
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Sonug 1.2.7 Yukaridaki iki ornekten gorildigi gibi, bir kiimenin kompakt olup olmamast
yalmizea kiimenin kendisine degil, tizerinde tanimly olan topolojiye de baglidur.

Teorem 1.2.8 [a,b] C R kapalv araligr standart topoloji ile kompakt uzay olur.

Ispat. Kompakthig gostermek icin, [a,b] araligimin her acik drtiisiinden sonlu bir alt 6rtii
secilebildigini gosterelim.

Verilen bir agik ortii
{U}ier oyleki [a,b] €| U

iel
olsun. Simdi, asagidaki kiime ailesini tanimlayalim
S =A{zx € la,b] | x > a ve [a, z] sonlu sayida U; kiimeleri ile oértiilebilir}

Bu kiimenin bazi1 6nemli 6zelliklerini inceleyelim:

« Bos olmadigim1 gosterelim: a noktasi ortiildigii icin, a € U; olacak sekilde bir
J € I vardir. Agik kiime tanimina gore, U; kiimesi a etrafinda bir e-komsulugu icerir.
Yani, [a,a + J) C U; olacak sekilde bir § > 0 vardir. Bu, a + g € S oldugu anlamina
gelir. Bu ytizden S # ().

« Ust sinirli oldugunu gésterelim: S C [a, b] oldugundan, S kiimesi iistten sirldir.

« Ust smirmi bulalim: ¢ = sup S (iist smir) tanmmhdir ve a < ¢ < b kogulunu saglar.
¢ = b oldugunu gosterelim.

e ¢ < bolamaz: Eger ¢ < b olsaydi, ¢ € Uy olacak sekilde bir k € I olurdu. Agik kiime
tanimindan, Uy kiimesi ¢ etrafinda bir J-komgulugu igerir:

[c,c+0) C Uy.

Fakat ¢ = sup S oldugundan, c + g degeri S kiimesine dahil olmalidir. Bu ise ¢
noktasinin supremum oldugu varsayimiyla celigir. Dolayisiyla ¢ = b olmalidir.

Son olarak, b noktasi da kapsandigindan, [a,b] kiimesi gercekten de her agik ortiiden

bir sonlu alt értii segmeye izin veren bir yapiya sahiptir. Bu ise [a, b] arahginin kompakt
oldugunu kanitlar. O

Teorem 1.2.9 Eger K kompakt bir topolojik uzay ve
f:K—R

surekli bir fonksiyon ise, o zaman f sinarhdar.
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Ispat. R iizerinde su acik araliklari ele alalim:
=10+ 1), (6,0 +2), i+ 1,0+ 3), ...

Bu araliklar R icin bir acik o6rtii olugturur, ¢iinkii her x € R en az bir araligin icinde
bulunur. ffonksiyonu stirekli oldugundan, her araligin éngoriintiisi de agiktir. Buradan

{7014 2)}iez

kiimesi K i¢in bir acik ortii olusturur.

K kompakt oldugu icin, bu agik értiiden sonlu bir alt ortii segebiliriz:
F i+ 2), o T iy i + 2).
Bunlar hala K kiimesini 6rtmelidir, yani
KC f i, i1 +2) U U f  (in,in +2)
olmalidir. Bu, f(K) kiimesinin sonlu sayida agk aralik iginde kaldigim gésterir:
F(K) C (i,91 +2) U+~ U (in, iy + 2).
Bu nedenle, f(K) alt ve tst sinirlara sahip oldugundan f sinirhdir. a

Ornek 1.2.10 f(x) = z fonksiyonu R iizerinde simarsiz oldugundan R uzayr ahsimas
topoloji ile kompakt olamaz, ¢ilinki kompakt olsayd

fR—=>R
surekli olan tim fonksiyonlar sinirly olurdu.
Lemma 1.2.11 Birim cember St kompakttr.
Ispat. Kompakt oldugunu bildigimiz [0, 1] aralig ile iliskilendirerek gosterelim.

e: [0,1] — 5!
t  +— e(t) = (cos(2nt),sin(27t))
fonksiyonu siireklidir ve S* iizerine ortendir. U ailesi S! icin herhangi bir acik ortii olsun.
Her Q € U igin, f siirekli oldugundan f~1(Q) kiimesi [0,1] ig¢inde agik bir kiime olur.
Boylece, {f~1(Q) | Q € U} ailesi [0, 1] igin agik bir 6rtii olur.
[0, 1] kompakt oldugundan, bu acik értit sonlu bir alt 6rtisi [0, 1] araligim érter. Yani,
V sonlu sayida agik kiimeden olusan bir alt aile olmak iizere

U @

QeV
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olur. Boylece, V ailesi S! icin U 6rtiisiiniin sonlu bir alt ortiisii olur. Gergekten de, z €
St igin f orten oldugundan x = f(y) olacak sekilde bir y € [0,1] vardir. [0,1] arahg:
Ugev f71(Q) tarafindan ortildiigiinden, y en az bir f~'(Q) kiimesinin elemamidir. Bu
durumda, f(y) € Q olur ve dolayisiyla x € @) saglanir.

Boylece, S de bulunan her nokta V ailesine ait en az bir kiimenin i¢inde yer almaktadir.
Bu ise V ailesinin S* icin U ailesinin sonlu bir alt 6rtiisii oldugunu gosterir. Sonuc olarak,

St kompakt bir uzaydir.
O

Sonug 1.2.12 Herhangi bir
f:S'=R

stirekli fonksiyonu sinarldar.

Ornek 1.2.13 (0,1) agk arahginan kompakt olmadigina gésterelim.
Hern > 1 tamsaylar: icin acik kimeler:

1 1 1
— (=1 —(=1), ... — (21
U2 <2a )) U3 (37 )7 ) Un (717 )7

seklinde tanimlayalim.
Bu ktiimeler (0,1) kiimesini orter, ¢inki herhangi bir x reel sayst 0 ile 1 arasinda ise,
yeterince biiyik bir n tamsayist i¢in x ayne zamanda (1/n,1) araliginda da yer alor.
Ancak, bu agik ortindn herhangi bir sonlu alt ortisini alirsak, érnegin U;,, ..., U;, , bu
sonlu alt orti (0,1) kimesini kapsamaz. Ciinki bu sonlu birlegim yalnizca

1
1

kiimesini verir, burada i = max(iy, ..., ix). Ancak, (0,1) kimesindeki bazi noktalar, érnegin
1/i, bu birlesime dahil degildir. Dolayiswyla bu értiniin herhangi bir sonlu alt értisi de (0, 1)
araliginy ortemez. Sonug olarak (0,1) araligr kompakt degildir.

Onerme 1.2.14 f: X — Y siirekli bir fonksiyon ve X kompakt bir kiime ise, f(X) kiimesi
de kompakt olur.

Ispat. f(X) icin acik bir 6rtii {V,,}aea olsun. f siirekli oldugu icin, her V,, acik kiimesinin
on gortintisi f1(V,), X iginde agik bir kiimedir. Bu durumda, {f~'(V,)}aca kiimesi X
icin bir acik ortii olur.

X kompakt oldugundan, bu agik értiiden sonlu bir alt 6rti secilebilir, yani

Ve f 7 Va) oo 7 (Va)

kiimeleri X kiimesini orter. Buradan

f(fil(vm)) U f(fil(vaz)) U---u f(fil(van)) C Va1 U Vaz U---u Van

olacagindan f(f~'(V,)) C V,, oldugu igin, bu kiimeler f(X) kiimesini de 6rter. Bu, f(X)
icin sonlu bir agik alt értii elde ettigimiz anlamina gelir ki bu, f(X) kiimesinin kompakt
oldugunu gosterir. O



28 BOLUM 1. TEMEL TOPOLOJIK OZELLIKLER,

Sonug 1.2.15 Kompakt bir uzaydan kompakt olmayan bir uzaya strekli érten dondisim
yoktur. Ornegin
[0,1] = (0,1)

seklinde orten strekli dontisim yoktur.

Teorem 1.2.16 (Heine—Borel Teoremi) R" uzayimn bir alt uzayimin kompakt olmass
icin gerek ve yeter sart kapal ve sinirly olmasidar.

1.3 Hausdorff Ozelligi

Tanim 1.3.1 Bir X topolojik uzay: , eger her farkl x,y € X noktalari icgin x e U, y € V
ve UNV =0 olacak sekilde agik U,V C X kiimeleri varsa, Hausdorff olarak adlandirilr.

X

4 )
Ve,y e X
\_ /

Ornek 1.3.2 Tek noktadan olusan X = {z} uzayimn Hausdorff oldugunu gésterelim.

Hausdorff uzay olabilmek i¢in, farkl iki noktayn ayiran ayrik acik kimeler bulunmalidar.
Ancak, X yalmizca tek bir noktadan olustugundan, X icinde farkly iki nokta yoktur. Bos
onermenin dogru oldugu kabul edildiginden, X Hausdorff uzay olur.

Not. Bu boltimde aksi belirtilmedigi siirece, bir X uzayimin birden fazla nokta icerdigini
varsayacagiz. O

Ornek 1.3.3 (R,U), ahsilmus uzaymin Hausdorff uzay oldugunu gosterelim.

Hausdorff uzay tanimina gore, eger x,y € R ve x # y ise, oyle U,V C R agik kimeleri
vardirkixz e U, y € V ve UNV = saglanar.

Gergekten de, x # y ise € = |x — y| segelim. Buradan

O IO

agik kiimeleri x ve y noktalarina icerir ve U NV = 0 oldugu agiktor.
Sonug olarak, R Hausdorff uzaydar.
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T3 z+3 y—5 v+ § U=le—g.2+4l
oO——O0 oO——™O0
% Y R
|\ ~ J
€ Unv=»10

Ornek 1.3.4 R dzerinde saq wsin topolojisini ele alalim. Sa§ s uzayinda bir noktanin
komsuluklari, o noktay: iceren ve a € R olmak tzere |a,co| seklinde olan kiimelerdir.

Hausdorff uzay olabilmesi i¢in, her x £ y ¢ifti icin ayrik acik kimeler bulunabilmelidir.
Ancak, x < y oldugunda, x noktasini iceren her a¢ik kiime her e > 0 igin |z — e, 0o[ seklinde
olup y noktasini da icerir. Bu durumda x ve y noktalariny aywran iki ayrik acik kime
bulunamaz.

Ornegin, v = 1 ve y = 2 secildiginde, 1 noktasini iceren herhangi bir agik kiime
|1 — €, 00[ seklinde olmak zorundadur ve bu kiime 2 noktasina da igerir. Bu yizden sag isin
uzayr Hausdorff degildir.

V =]y —€,00]

T —€ l RTTTIIR .
@ Q : R
Yy : :

U =]z —¢€,00]

Sonug 1.3.5 Hausdorff 6zelligi topolojiye baglidir. Ayni kime, farkly topolojiler altinda
Hausdorff olabilir veya olmayabilir.

Onerme 1.3.6 X Hausdorff uzay ve f : X — X siirekli bir fonksiyon olmak iizere sabit
nokta kiumesi

Fir(f) ={z € X | f(z) = =}
X i¢inde kapaly bir alt kimedir.

Ispat. Bir kiimenin kapali oldugunu géstermek icin tiimleyeninin acik oldugunu gostermek
yeterlidir. Sabit nokta kiimesinin tiimleyenininde bir y noktasi alahm. Yani y ¢ Fix(f),
dolayisiyla f(y) # y olur. Bu durumda, X Hausdorff oldugu igin, y ve f(y) noktalarim
iceren ayrik agik kiimeler vardir; yani y € U ve f(y) € V olacak sekilde U, V agik kiimeleri
bulunur ve U NV = () olur.

f siirekli oldugu igin f~}(V) kiimesi agiktir. O halde U N f~1(V), y elemamm iceren
agik bir kiimedir. Ayrica, bu kiime Fix(f) ile kesismez. Gergekten, eger x € U N f~1(V)
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ve f(z) = z olsaydi, z € f~1(V) oldugundan f(z) € V olurdu. Aymi zamanda z € U
oldugundan ve f(z) = x oldugundan f(x) € U da olurdu. Béylece f(z) € UNV elde edilir,
ancak U NV = ) oldugundan bu bir ¢eligkidir. Yani her y € X — Fiz(f) i¢in

S
Y € Uﬂfﬁl(V) C X — Fix(f)

\___\r@_J

P

olacagindan her y noktast X — Fiz( f) kiimesinin i¢ noktas: olur. X — Fiiz(f) kiimesinin her
noktasi i¢ nokta oldugundan X — Fiz(f) kiimesi acik kiime dolayisiyla ttimleyeni Fixz(f)
kapali kiime olur.

O

Sonug 1.3.7 f: R — R sirekli bir fonksiyon ve f(x) # x ise, sabit nokta icermeyen bir
agik aralik (x—0, x+0) (pozitif yarigapl bir 6 ile) bulunur. Baska bir deyisle, y € (x—0, x+0)
icin f(y) # y olur.

f(z) # x olan noktalarn kimesi Fiz(f) timleyenidir. R Hausdorff bir uzay oldugu
igin, onceki onermeye gore Fix(f) kapaldir. Dolayiswyla, sabit nokta icermeyen noktalarin
kiimeleri acik kime olur.

Onerme 1.3.8 f: X — Y siirekli ve birebir bir fonksiyon ve Y Hausdorff ise X Hausdorff
uzay olur.

Ispat. 2 # y olmak iizere 2,y € X alalim. f birebir oldugu icin, f(z) ve f(y) de Y iginde
farkli noktalardir. Y Hausdorff oldugu igin, f(z) ve f(y) noktalarimi ayiran agik kiimeler
U,V C Y vardir; yani f(z) € U, f(y) € V ve UNV = () yazlabilir.

f stirekli oldugundan, f~(U) ve f~'(V) ack kiimelerdir. Ayrica, z € f~(U) ve y €
f~YV) saglanir. Son olarak,

FHONFIV) = UnV)=f10)=0

oldugundan, X Hausdorff uzaydir.
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(X,7) (Y,0)

TFY //fm Y Hausdorff
f()

# fy)

J stirekli W, Veor >fx)elfly)eV

flx)eU==axe f1(U) Uunv =71
fly) eV=yef (V)
unv=>0=fU)nf(v)=0

O

Ornek 1.3.9 Kaba uzayn (0, X) Hausdorff olmadigin gosterelim.

Hausdorff olmasu i¢in her x,y € X ve x # y i¢in, x ve y noktalarni ayiran ayrik agik
kimeler bulmamaz gerekir. Ancak kaba uzayda X ve () disinda baska acik kime bulunmadi-
gindan, herhangi iki farkly noktayr ayrik acik kimelerle ayirmak mimkiin degildir.

Bu nedenle, kaba uzay Hausdorff degildir.

Ornek 1.3.10 Ayrik topolojiye sahip bir uzayin Hausdorff oldugunu gésterelim.
Ayrik X uzayinda her alt kiime acik kimedir. Iki farklh x,y € X secelim. Ayrik topolojide
her {x} ve {y} kimeleri a¢ik kimelerdir ve

{z}n{y} =10

oldugundan, bu acik kiimeler x ve y noktalariny ayurir.
Dolayswyla, ayrik topoloji Hausdorff ozelligini saglar.

Sonug 1.3.11 Topoloji inceldikee/(kabalastikea) Hausdorff olma ozelligi artar/(azalir).

Ornek 1.3.12 X = {a,b,c} olsun. Asaqudaki topolojiler altinda X wuzaynin Hausdorff
olup olmadigini inceleyelim:

1.7 = {(Z)a {CL}, {a’ b}v {CL> b? C}}

b ve ¢ noktalariny ayiran ayrik acik kimeler bulunamaz. Bu nedenle, X wuzay: 17, topolojisi
ile Hausdorff degildir.

2. Ty = {Q)a {a}’ {bv C}7 {CL, b? C}}

b ve ¢ noktalarini ayiran ayrik acik kimeler bulunamaz. Bu nedenle, X wuzayr 1o topolojisi
ile Hausdorff degildir.
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3. 5 ={0,{a},{a,b},{a,c},{c} {a,b,c}}
b ve ¢ noktalarine ayiran ayrik acik kimeler bulunamaz. Bu nedenle, X wuzay: 13 topolojisi
ile Hausdorff degildir. .

Sonug olarak, verilen tg¢ topolojinin hicbiri X wuzaywnt Hausdorff yapmaz.

Ornek 1.3.13 Z kiimesi dizerine indirgenen alsimas topolojinin Hausdorff oldugunu ¢
farkl, yontemle gosterelim:

1. Z iizerine indirgenen topoloji ayrik uzay olur( Orne ). Birden fazla nokta iceren
ayrik topoloji Hausdorff uzaydir (Orne 1 ).

2. Iki farkl nokta secerek Hausdorff ozelligini gosterelim.

Herhangi iki farkl x,y € Z noktas: alalvm. Indirgenmis topolojide Z uzayinda her altkiimesi
agik oldugundan, U = {x} ve V = {y} agik kimeleri x ve y noktalarini ayirir ve UNV = ()
saglanir. Bu, 7, uzayiman Hausdorff oldugunu gésterir.

3. Hausdorff bir uzaya strekli ve birebir bir fonksiyon tanvmlayarak géosterelim. ( Onerm )
f:7Z — R fonksiyonu her x € Z i¢in f(x) = x olarak tansmlayalim. Bu fonksiyon sireklidir
(Tanwm kimesinde ayrik topoloji varsa fonksiyon her zaman siireklidir). R Hausdorff uzay
oldugundan, 7 uzayrda Hausdorff olmak zorundadar.

Bu ¢ farkly yontemle Z nin Hausdorff oldugunu kanitlamas olduk.



Bolum 2

Cozumleyici Topoloji

2.1 Homeomorfizm

X ve Y uzaylarinin topolojik olarak 6zdes olmasi i¢in, bu uzaylar arasinda birebir bir
esleme olmali ve bu egleme, X ve Y uzaylarimin acik kiimeleri arasinda da birebir bir
esleme saglamalidir.

o X uzaymi tanim kiimesi olarak alan her stirekli fonksiyon, Y uzayimi tanim kiimesi
olarak alan bir siirekli fonksiyonla eslenebilir ve tersi de gegerlidir.

o Benzer sekilde, X uzayimi deger kiimesi olarak alan her stirekli fonksiyon, Y uzayim
deger kiimesi olarak alan bir siirekli fonksiyonla eglenebilir ve tersi de gegerlidir.

Stureklilik, topolojiye bagl olarak tanimlandigindan, bu kosul X ve Y uzaylarinin tiim
topolojik baglamlarda birbirinin yerine kullanilabilecegini gosterir.

Tanim 2.1.1 (Homeomorf Uzaylar) X ve Y iki uzay olmak tzere eger
fog=lIldy we gof=Idx

olacak sekilde stirekli f : X — Y wve g : Y — X dénisimler: varsa, bu uzaylara home-
omorf denir ve X 2Y ile gosterilir. f ve g donisimlerine homeomorfizm denir.

Not. Homeomorfizm, iki topolojik uzayin "topolojik olarak 6zdes” oldugunu gosterir. Bu,
uzaylarin topolojik 6zelliklerinin ayni oldugu anlamina gelir. O

Ornek 2.1.2 (Agik Araliklarin Homeomorfizmi) Reel eksende herhangi iki acik ara-

hk homeomorftur. Ornegin, X = (—=2,3) ve Y = (1,7) arabklar: igin, f : X — Y wve
g:Y — X dondsiimlerini

f@) =St 2)+ 1, glr) =2 —1) -2

33
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ile tamimlanayalim. Bu dondsiumler toplama ve carpma islemlerinin bileskesi oldugundan
sureklidir. Ayrica

) =1 (5 -1-2) = (Fe-1-242) 4 1=0 = 1ar(o
g(f(x)):g<§(x+2)+1) :%(g(:c—l—Z)—l—l—l) _ 9= = Idy(x)
oldugundan

fog:[dy ve gof:]dX

elde edilir. f ve g homeomorfizmler oldugundan, (—2,3) ve (1,7) araliklar: homeomorf
olurlar.

Ornek 2.1.3 (R ve (—1,1) Arasindaki Homeomorfizm) R ve (—1,1) aralgs home-
omorftur. Bu homeomorfizmi f: (—1,1) = R

f(z) = tan (%)

veg:R—(—1,1)

g(x) = %arctan(:v)

ile tanvmlayabilirz. f ve g dondsimleri, trigonometrik fonksiyonlarin bileskesi oldugundan
streklidir. Ayrica

f(g(x)) = tan (g : %arctan(a:)) = tan(arctan(z)) = x = Idg(x)

ve

o)) = 2 aretan (tan () = 270 — o = 1a (o)

™

oldugundan R ve (—1,1) homeomorf olur.
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f
g
o1
© ©
-1 1
o—1

Diyagramdan gorilecegi gibi, f fonksiyonu (—1,1) araligint R uzayina g fonksiyonu R
uzayime (—1,1) araligina strekli ve birebir olarak esler.

Onerme 2.1.4 X herhangi bir topolojik uzay ise, (—1,1) — X seklindeki siirekli domnii-
stimler ile R — X seklindeki surekly dontisimler arasinda birebir bir esleme vardir. Benzer
sekilde X — (—1,1) seklindeki stirekli dontisimler ile X — R seklindeki sirekli donistimler
arasinda da birebir bir esleme vardar.

Ispat. h : (—1,1) — X siirekli bir doéniigiim ise, ho g : R — X de siireklidir. Burada
g:R — (—1,1) doniigiimii
2
g(x) = — arctan(x)
v
ile tanimlanabilir.
Tersine, eger j : R — X stirekli bir doniigiim ise, j o f : (—=1,1) — X de siureklidir.
Burada f: (—1,1) — R dontstimi
f(z) = tan (H>
2
ile tanimlanabilir.
h dontigtimiini h o g : R — X dontigiimiine dontigtiiriip, sonra

(hog)of:(—1,1) > X

selinde doniigturdugiimiizde, ho (go f) : (=1,1) — X elde ederiz. g o f, (—1,1) tizerinde

birim déntigiim oldugundan, bu h déntgiimiidiir. Benzer gekilde, (jo f)og: R — X, fog
doniigiimii R tizerinde birim dontigiim oldugundan, j dontigiimiidiir.

Benzer gekilde, k : X — (—1,1) doéniigtiminden f ok : X — R elde edilir. Tersine,

[: X — R déntigimiinden gol : X — (—1,1) elde edilir. Bu iki yap1 da birbirinin tersidir.

O
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Onerme 2.1.5 (Yansiyan Homeomorfizm) Her topolojik uzay kendine homeomorftur.

Ispat. X herhangi bir topolojik uzay olmak iizere birim déniigiim her z € X icin
ldx(z) =2z

ile tanimlanir. X uzaymin herhangi bir U agik kiimesi icin Idy' (U) = U acik oldugundan
birim doéniigtim Idy stireklidir. Ayrica

IdX o IdX = IdX

oldugundan Idx bir homeomorfizm olur. Sonug olarak her X uzay1 kendine homeomorftur
denir. O

Sonug 2.1.6 Homeomorf olma yansima ozelligine sahiptir.

Onerme 2.1.7 (Simetrik Homeomorfizm) X homeomorf Y ise, Y homeomorf X
olur.

Ispat. X homeomorf Y oldugunu varsayalim. Bu durumda, bir f : X — Y homeomorfizmi
vardir. Tanim geregi, f siireklidir ve siirekli bir ters déniisiimii f~!: Y — X icin

foft=Idy ve flof=Idyx

saglanir. f~! siirekli oldugundan ve siirekli bir tersi f oldugundan, f~! bir homeomorfizm
olur. Buradan Y homeomorf X elde edilir. O

Sonug 2.1.8 Homeomorf olma simetri ozelligine sahiptir.

Onerme 2.1.9 (Homeomorfizmlerin Bilegkesi) f: X — Y ve g : Y — Z birer ho-
meomorfizm olmak tzere bileske go f : X — Z bir homeomorfizm olur.

ispat.

g o f, iki stirekli doniigiimiin bilegkesi oldugundan stireklidir. f ve g homeomorfizm
oldugundan, siirekli ters déniisiimleri f~ : Y — X ve ¢g7' : Z — Y vardir. Ayrica iki
siirekli fonksiyonun bileskesi siirekli olacagindan bileske f~! o ¢! de siireklidir. Ayrica

(goflo(flog)=go(fof)og =gog ' =ldg

(ffog ) olgof) =1dx

oldugundan (f~'og™!, go f déniigiimiiniin tersidir. Sonug olarak g o f bir homeomorfizm
olur. O
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Sonug 2.1.10 Homeomorf olma gegcisme ozelligine sahiptir. Eger X =Y veY = Z ise, o
zaman X = Z olur.

XEYANYEZ=X2Z

Sonug 2.1.11 Homeomorf olma denklik bagintisidir. Topolojik uzaylar, homeomorf olma
iliskisine gore sinaflandirabiliriz.

Ornek 2.1.12 Reel cksen tizerindeki herhangi bir agik aralik, R uzaymin kendisiyle ho-
meomorf olur.

Coziim:

R = (—1,1) ve Reel eksen iizerindeki herhangi iki agik aralik homeomorf oldugundan
herhangi bir (a,b) agik araligr (—1, 1) ile homeomorf olur.

Homeomorf olma bagintisi gecismeli oldugundan

(a,b) = (—1,1) =R

olmasindan

(a,b) =R
elde edilir. 0O

Ornek 2.1.13 [1,2) ve (—1,0] araliklarinin homeomorf oldugunu gésterelim.
f:[1,2) — (—1,0]
fonksiyonu
flzx)=1—-2z
ile tanmamlansin. [ fonksiyonu

f(lL‘l):f(ZEQ) = 1l—-xr1=1—2y = 11 =29

oldugundan birebir ve y € (—1,0] i¢in
r=1-yell2)

oldugundan ortendir. f fonksiyonunun tanima geregi her V. C (—1,0] agik kimesi i¢in
=YV éngérintisi [1,2) vzaynda agik kimedir.
f fonksiyonunun tersi:
9(y) =1 -y,

surekli bir fonksiyondur. Benzer sekilde g fonksiyonunun stirekliligi gosterilebilir.
f siirekli, birebir ve orten fonksiyon olup, tersi de sireklidir. Bu nedenle [1,2) ve (—1,0]
homeomorf olur.
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Ornek 2.1.14 S' cemberinden bir nokta ¢ikarildiginda, kalan uzay R ile homeomorftur.
Benzer sekilde, S* kiiresinden bir nokta ¢ikarildiginda, kalan uzay R? ile homeomorftur.
Bu homeomorfizmleri gostermek icin stereografik projeksiyon teknigini kullanabiliriz.

Sl

R

St cemberinden kuzey kutbunu, (0,1), ¢ikardigimaz disinelim. Stereografik projeksiyon S*
cemberindeki bir (x,y) noktasi, R uzayindaki f_—xy noktasina eslenir. Bu dontsim y # 1
olan noktalara uygulandigindan stireklidir.

4 2 —4

Tersine, R uzayindaki bir t noktas:, S* cemberindeki <m, o

> noktasina eslenir.

Bu ters doniistim de streklidir.

Stereografik projeksiyon, S? kiresinin farkl bolgelerini R? uzayimin bélgeleriyle esles-
tirmek icin de kullamlabilir. S? kiresinin giiney yarikiiresi (ekvator dahil), R? uzayndaki
kapaly bir disk ile homeomorftur. S? kiiresinin kuzey kutup dairesi'nin giineyindeki bélgesi
(kuzey kutup dairesi harig), R? zayndaki agik bir disk ile homeomorftur.

R uzaymma oo noktasi eklersek, S* — {(0,1)} <> R homeomorfizmini S* +» R U {oo}
seklinde genigletebiliriz. RU{oo} dzerinde uygun bir topoloji tanimlayarak, bu genigletilmis
eslemeyi bir homeomorfizm yapabiliriz.

Benzer sekilde, uygun bir topoloji ile S* ve R? U {oo} (veya C U {oo}) arasinda bir
homeomorfizm tanimlabilir. S? i¢in bu model Riemann kiiresi olarak adlandirilar.

Ornek 2.1.15 (Bir Kare ile Bir Diskin Homeomorfizmi) Bir kare
Q={(ry)eR*: —-1<2<1,-1<y<1}

ve disk
D ={(z,y) e R? : 2> +¢y* < 1}

homeomorftur. Diskten kareye bir doniisim f: D — @Q

x? + y2 )
fany) = { maxtial,pp &Y @er (@) #(0,0),
(O’ 0)7 eg‘jer (x7 y) = (()7 0)

ve kareden diske doniisim g: Q — D

g($7y): Z’z—l—yQ ( ’y)’ ege ( 7?/)7&(0,0)7

(0,0), eger (z,y) = (0,0)
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olsun. f diski radyal olarak disar: dogru iterek bir kare olustururken g, kareyi radyal olarak
iceri dogru cekerek bir disk olusturur.

Q daki bir a¢ik kiimenin f altindaki on gorintisi D de agik ve D ’deki bir a¢ik kimenin
g altindaki on gorintisi @ da agik oldugundan f ile g strekli déndsimlerdir. Ayrica

flg(z,y) = (z,y) = Ldg(z,y) ve g(f(z,y)) = (z,y) = Idp(z,y)
oldugundan f wve g birbirinin tersidir. f ve g homeomorfizm oldugundan, () ve D home-

omorftur.

Ornek 2.1.16 Bir
0,1 = {(z,y,2) e R*: 0 < z,9,2 < 1}

ile verilen kip
Gi={(z,y,2) ER’ 2’ +y* + 22 < 1}

3-kiiresi homeomorftur.

Ispat. Bir homeomorfizm tanimlamak icin, kiipii énce [—1, 1]* araligina genisletip, ardin-
dan bu araligi dolu 3-kiireye projekte edecegiz.

Fo00,1P = {(z,y,2) e R® : 2 + 4> + 2* < 1}
fonksiyonunu
(2x — 1,2y — 1,22 — 1)

flz,y,2) =

ile tanimlayalim.
g:[0,113 = [-1,1]3, g(z,y, 2) = (2 — 1,2y — 1,2z — 1) fonksiyonu siirekli ve lineerdir.
Ayrica, h: [0,1]* - G

(%, y, 2)

h = ’
(x,y,Z) maX{|x|,|y|,|Z|71}

fonksiyonu da stireklidir. f(z,y, z) = h(g(x,y, z)) oldugundan, f streklidir.

Her (z,y,2) € [0,1]® noktasi, 3-kiirede bir ve yalmz bir noktaya eslendiginden birebir
ve 3-kiiredeki her nokta, [0,1]* den bir noktadan geldiginden 6rtendir.

f fonksiyonunun tersi:

1 o+l y+1 z2+1
f (x,y,z)—( 2 ) 2 ’ 2

siirekli oldugundan, f bir homeomorfizm olur. f stirekli, birebir ve 6rten bir fonksiyon olup,
tersi de siireklidir. Bu nedenle [0, 1] ve 3-kiire homeomorftur. O
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Ornek 2.1.17 n-boyutlu disk
D" ={(xy,...,x,) € R": fo <1}
i=1
ve n-boyutlu kip

0,1]" ={(z1,...,2,) ER": 0 < x; < 1}

homeomorftur.

Ornek 2.1.18 Bir
A={(r,y) eR*: 1 < 2” +9* <4}

halkast ve bir
C={(z,y,2) eER*: 2 + 9 =1,0< 2 < 1}

silindiri homeomorftur. f :C — A ve g: A — C fonksiyonlarin
fC=A flr,y,2) = ((1+2)z, (1+2)y),

ve

g:A=C, g(z,y)= S N
Va2 +y? 2+
ile tanimlayalim.
f ve g birebir ve

flg(z,y)) = (v,y) = Ida(z,y), 9(f(x,y,2)) = (x,y,2) = ldo(,y, 2)

oldugundan birbirinin tersidir. Ayrica (1+2)z, (14+2)y, ’ , Y ,ve /2?4 y?—
Va2 a4y
1 stirekli fonksiyonlar olduklarindan f ve g fonksiyonlar: sireklidir.
f wve g stirekli, birebir ve érten fonksiyonlardir. Ayrica, f ve g birbirinin tersidir. Bu

nedenle A halkast ve C' silindiri homeomorftur.

Ornek 2.1.19 Bir donut, bir cay fincany ile homeomorftur. Donut tzerindeki delik, cay
fincamnan kulbuna karsihk gelir. Cay fincaninn geri kalans, tipky bir kareden bir diskin
olusturulmast sirasinda késelerin "kaybolmasi” gibi, homeomorfizm yoluyla "kaybolur” Bu
nedenle, topologlarin bir donut ile bir ¢ay fincaniny ayrt edemedigi séylenir.

Ornek 2.1.20 Birden fazla nokta iceren X ve Y uzaylar icin X dzerinde kaba topoloji ve
Y dizerinde ayrik topoloji varsa X ve Y arasinda bir homeomorfizm tanimlanamaz.
f X =Y birebir bir fonksiyon olsun.

I <X7 {@,X}) - <Y>P(Y>>

fonksiyonu kaba topolojiden ayrik topolojiye siirekli olabilmesi icin, ayrik topolojideki her
acik kimenin én gorintisinin kaba topolojide ac¢ik olmast gerekir. a € Y alalim. Ayrik
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topolojideki {a} a¢ik kimedir. f birebir bir fonksiyon oldugundan, {a} nin on gérintisi
yine tek nokta kimesi olur. Kaba topolojide tek nokta kiimesi a¢ik kiime olmayacagindan f
surekli olamaz.

Bu nedenle, f homeomorfizm olamaz.

Sonug 2.1.21 Birden fazla nokta iceren X uzay i¢in (X, {0, X}) ve (X, P(X)) uzaylar
arasinda homeomorfizm tanimlanamaz.

Not. Birden fazla nokta igeren X ve Y uzaylari i¢in
f(X A0, X}) = (Y, P(Y))

fonksiyonunun stirekli olmasi sadece sabit fonksiyon i¢in miimkiin olur. Sabit bir fonksiyo-
nun tersi fonksiyon olmayacagindan (ginki tek noktay: birden fazla noktaya gotiirtr) bir
homeomorfizm tanimlanamaz. O

Sonug 2.1.22 7Z — R her fonksiyon sirekli olmasina ragmen (tanim kimesinde ayrik uzay
oldugundan) R — 7Z sadece sabit fonksiyon siireklidir. Sabit fonksiyonun tersi fonksiyon
olmayacagindan Z ve R arasinda homeomorfizm tanimlanamaz. Benzer sekilde N ve S°
uzaylary ile R ile arasinda homeomorfizm tanimlanamaz.

Ornek 2.1.23 [0,1] aralge kompakt bir uzaydir. f : [0,1] — (0,1) bir homeomorfizm
ise strekli ve orten olacagindan (0,1) araliginan kompakt olmasi ile celiski elde edilir.
Dolayswyla [0,1] ve (0,1) arasinda bir homeomorfizm tanimlanamaz.

Ornek 2.1.24 Birim cember S* kompakt oldugundan S* — R tansmls her siirekli fonksiyon
sinarhdir. Ancak, R siarsiz bir uzay oldugundan, S* — R siirekli bir fonksiyon orten
olamaz. Birim ¢ember St ile R homeomorf degildir.

Onerme 2.1.25 Ejer X ve Y wuzaylar, homeomorf ise
1. X baglantil ise, Y de baglantily olur.
2. X kompakt ise, Y de kompakt olur.
3. X Hausdorff ise, Y de Hausdorff olur.

ispat. 1. Baglantililik: X ve Y homeomorf oldugundan, f : X — Y bir homeomorfizmdir
ve dolayisiyla stirekli ve 6rtendir. Baglantili bir uzaydan baglantili olmayan bir uzaya stirekli
bir 6rten fonksiyon tanimlanamaz. Bu nedenle, Y baglantili uzay olur.

2. Kompakthk: f : X — Y bir homeomorfizm oldugundan, f siirekli ve birebir-
dir. Kompakt bir uzayin siirekli fonksiyon ile goriintiisii kompakttir. f bir homeomorfizm
oldugundan, f(X) =Y olur. Bu nedenle, Y kompakt uzay olur.

3. Hausdorff Olma: f : X — Y bir homeomorfizm oldugundan, f~! : ¥ — X
de bir homeomorfizmdir ve dolayisiyla stirekli ve birebirdir. X Hausdorff oldugundan,
Onerme gore, Y de Hausdorff olur. O
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Sonug 2.1.26 Homeomorfizm olma ozelligi topolojik ozellikleri korur. Baglantililik, kom-
pakthk ve Hausdorff olma gibi ézellikler topolojik ozelliklerdir.

Ornek 2.1.27 S° (0-kiiresi) baglantisiz ve S* (cember) baglantily oldugundan bu iki uzay
homeomorf degildir.

Ornek 2.1.28 Kapal aralik [0,1] kompakt ve R kompakt olmadigindan bu iki uzay home-
omorf degildir.

Ornek 2.1.29 R hausdorff Q hausdorff olmadigindan bu iki uzay homeomorf degildir.

Ornek 2.1.30 Cember S* ve kapal aralik [0,1] homeomorf degildir.

[0,1] arabgindan bir nokta (6rnegin 1/2) ¢ikarildiginda, uzay baglantisiz hale gelir. S*
cemberinden herhangi bir nokta ¢ikarildiginda, uzay hala baglantilidir.

Eger S* ve [0, 1] homeomorf olsayda, bir noktay ¢ikardiktan sonra da homeomorf kal-
malary gerekirdi. Ancak baglantiiik bu durumda korunmadig icin S* ve [0, 1] homeomorf
olamaz.

Sonug 2.1.31 Bir topolojik 6zelligin her iki uzayda da bulunmasi veya her iki uzayda da
bulunmamasi, homeomorf olup olmadiklariny ayirt etmek icin yeterli degildir. Homeomorf
olmayan ki uzayr aywrt etmek icin, bir uzayda bulunan ancak digerinde bulunmayan bir
topolojik 6zellik gereklidir.

Lemma 2.1.32 X kompakt bir uzay ve U C X kapali ise, U da kompakttor.

Ispat. U kiimesinin herhangi bir acik 6rtiisiinii ele alalm. U bir altuzay oldugundan, bu
ortiideki her kiime, U ile X ile uzayinda bulunan bir agik kiimenin kesigimidir. Bu agik
kiimeler X uzayinin bir acik ortiisiinii olugturmayabilir, ancak U kapali oldugundan, X —U
kiimesi agiktir. X — U kiimesini bu kiimelere eklersek, X uzayimin bir agik ortiisiini elde
ederiz.

X kompakt oldugundan, bu agik ortiiden sonlu bir alt ortii segebiliriz. Eger X — U
kiimesini bu sonlu alt 6rtiiden ¢ikarir ve her kiimeyi U ile kesistirirsek, U kiimesinin agik
ortiistinlin sonlu bir alt ortiisiini elde ederiz. Bu nedenle, U kompakt olur. O

Lemma 2.1.33 Y Hausdorff bir uzay ve V-CY kompakt bir altuzay ise, V' kapalidur.

Ispat. Y — V kiimesinin acik oldugunu gosterelim. y € Y —V ve v € V olmak {izere, y ve
v farkli noktalardir. Y Hausdorff oldugundan

yeUy,, vel, ve U,nNU,=0

olacak sekilde U, , ve U, acik kiimeleri vardir. Burada v € V' noktas1 degistik¢e U, ve U, ,
agik kiimeleri degigecektir. v € V igin bu iglemi tekrarlayarak, V' kiimesini érten {U, },ev
acik kiime ailesini elde ederiz. V' kompakt oldugundan bu agik értiiden sonlu bir

U, Upgy .., Uy,
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alt ortii segebiliriz. y icin Uy 4, Uy, - - - Uy, acik kiimelerinin her biri y noktasimi igerir
ve V' ile ayriktir. Buradan

Uy = Uy,m N Uy,vz M---nN Uy,vn

kiimesi y noktasin icerir ve V' ile ayriktir.

Bu islemi her y € Y — V icin yaparak, ¥ — V' kiimesini orten agik kiimeler ailesi elde
ederiz. Bu, Y — V kiimesinin agik oldugunu gosterir. Dolayisiyla, V' kapalidir. O

Sonug 2.1.34 Hausdorff bir uzayin kompakt bir altuzay: kapalidar.

Lemma 2.1.35 X veY iki topolojik uzay ve f : X — 'Y bir fonksiyon olsun. Bu durumda,
f strekli olmasy i¢cin gerek ve yeter sart’ Y uzayinan her kapal alt kiimesinin f altindaki on
gorintisinin X uzaynda kapalr olmasidir.

Ispat. (=) f siirekli olsun:

f siirekli oldugundan, Y uzayindaki her agik kiimenin 6n goriintiisit X uzayinda agik-
tir. U C Y kapali bir kiime olsun. Bu durumda Y — U aciktir ve f siirekli oldugundan,
fHY —=U) agiktir. Buradan f~(Y —U) = X — f~1(U) agk kiime olur. Dolaysiyla f~(U)
ttiimleyeni acik oldugundan f~!(U) kapalidir.

(<) Her kapali kiimenin 6n goriintiisit kapali olsun.

V C Y agik bir kiime olsun. Bu durumda Y — V kapalidir. Varsayim geregi f~1(Y —V)
kapahdir. Buradan f~(Y — V) = X — f~1(V) olur. f~(V) tiimleyeni kapal yani f~*(V)
agiktir. Bu da f fonksiyonunun stirekli oldugunu gosterir.

O

Teorem 2.1.36 X kompakt bir uzay, Y Hausdorff bir uzay ve f : X — Y siirekli birebir
ve drten bir fonksiyon ise, f fonksiyonunun tersi g :Y — X de streklidir. Bu durumda f
bir homeomorfizm olur.

Ispat. f : X — Y siirekli birebir ve 6rten bir fonksiyon olsun. f birebir ve 6rten oldugundan
fonksiyonunun tersi g : Y — X vardir.

U C X kapali bir kiime olsun. X kompakt oldugundan, U da kompakttir. g fonksiyon
tanmim geregi ¢ ' (U) = f(U) olur. f siirekli oldugundan, kompakt bir kiimenin gériin-
tiistt kompakttir. Bu nedenle f(U) kompakt olur. Y Hausdorff oldugundan, Y uzayindaki
her kompakt kiime kapal olur. Dolayisiyla f(U) kapahdir. Bu, ¢~ *(U)nun kapah oldu-
gunu gosterir. ¢ fonksiyonunun 6n goriintiisii her kapali kiime i¢in kapali oldugundan, ¢
sireklidir.

Sonug olarak, f bir homeomorfizm olur. O
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2.2 Ayrik Birlesim Uzayi

Tanim 2.2.1 X ve Y iki kiime olsun. X ve Y ‘nin ayrik birlesimi, X UY veya X [[Y ile

gosterilir ve
XUY =(X x{0})u((Y x{1})

ile tanemlanar. Burada X x {0} = {(z,0):x € X} ve Y x {1} = {(y,1) : y € Y} 'dir.
Not.

o Ayrik birlesim, X ve Y kiimelerinin elemanlarini bir araya getirirken, her elemanin
hangi kiimeden geldigini de belirtir.

e X ve Y kesigiyor olsa bile, ayrik birlegsimde her eleman farkh bir etiketle (0 veya 1)
isaretlenir, boylece elemanlar ayirt edilebilir.

o X ve Y topolojik uzaylar1 kullanilarak X 'Y tizerine bir topoloji tanimlanabilir. Bu
topolojiye ayrik birlegsim topolojisi denir.

Tanim 2.2.2 X ve Y topolojik uzaylar ise, X UY dizerindeki ayrik birlesim topolojisi
UCXUY aghtir <= UN(X x{0}) ve UN(Y x {1}) agikter
ile tanimlanar.
Ornek 2.2.3 S° = {—1,+1} uzayr {—1} ve {4+1} noktalarinin
SO = {1} u {+1}.
ayrik birlesimidir.

Onerme 2.2.4 X, Y, ve Z topolojik uzaylary i¢in X Y — Z siirekli fonksiyonu X — Z
ve Y — Z siirekli fonksiyonlarinin bir ciftine karsihk gelir. Eger Q) baglantily bir topolojik
uzay ise, Q — X LY siirekli fonksiyonu ya Q — X ya da Q — 'Y strekli bir fonksiyonuna
karsilik gelir.

ispat.
g: X UY — Z siirekli fonksiyonu X ve Y tizerindeki

gx : X = Z, gx(z)=g(x)

gy Y = Z, gv(y) =gy)

siirekli fonksiyonlara ayirabiliriz. g stirekli ve X ile Y ayrik birlesim topolojisine sahip
oldugundan bu fonksiyonlar siireklidir.
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Tersine, gx : X — Z ve gy : Y — Z stirekli fonksiyonlar: verildiginde, g : X UY — Z
fonksiyonu

(2) gx(z), egerxz € X,
€Tr) =
gy(z), egerx €Y.

ile tanimlanabilir. X ve Y ayrik birlesim topolojisine sahip oldugundan bu fonksiyon sii-
reklidir.
f:Q — X UY siirekli bir fonksiyon ise, f~1(X) ve f~1(Y) acik kiimeler ve

X UY)=Q, fAX)nf(y)=0
olur. @ baglantil oldugundan f~*(X) =0 ya da f~(Y) = 0 olmaldur.
o Eger f7Y(X) =0ise f, Q — Y siirekli bir fonksiyon olarak diisiiniilebilir.
o Eger f7Y(Y) =0ise f, Q — X siirekli bir fonksiyon olarak diisiiniilebilir.

O

Ornek 2.2.5 f:S° — R siirekli fonksiyonu, {—1} — R ve {+1} — R siirekli fonksiyon-
larinan bir ¢iftine karsilik gelir. Tek noktaly bir uzaydan R uzayina stirekli bir fonksiyon bir
noktayr R uzayinda bir noktaya esler. Buradan a,b € R icin

f(=1)=a wve f(+1)=0b
olur. S° — R siirekli fonksiyonu, R* uzaymdaki siraly ¢iftlere (a,b) € R? karsilik gelir.
Ornek 2.2.6 R — {0} wzayr R wzayinan kendisi ile ayrik birlesimi ile homeomorf
R—-—{0}=RUR

olur. f: RUR — R — {0} homeomorfizmini

o Ik R kopyasi icin f, : R — (0,00), drnegin fi(z) = e*.

o Ikinci R kopyasi icin fo : R — (—00,0), drnejin fo(x) = —e®.
ile tanmwmlayalim. f fonksiyonu

o=

olur.

f1 ve fy birebir ve érten oldugundan, f de birebir ve drten bir fonksiyon olur. Ayrica
f1 ve fo stirekli oldugundan, f fonksiyonuda strekli olur.

f fonksiyonunun tersi g : R — {0} - RUR

91(y) =In(y), ga2(y) = In(—y).
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olmak “izere
91(y), egery >0,
9(y) = y
92(y), egery <0,

ile tanvmlanir. g1 ve go strekli oldugundan, g de streklidir.
f wve g siirekli, birebir ve orten fonksiyonlardir. Ayrica, f ve g birbirinin tersidir. Bu
nedenle R — {0} ve RUR homeomorf olur.

Teorem 2.2.7 X ve Y wzaylarinin ayrik birlesimlert X UY kompakt olmasi icin gerek ve
yeter sart X ve Y wzaylarinin kompakt olmasidir.

Ispit.X LY kompakt olsun. X i¢in bir acik ortiit Ox alahm. Bu acik ortiiytt X UY igin
bir acik ortiiye genisletmek i¢in Y uzayinda
O =0xU{Y}
bir agik kiime olarak ekleyelim. X 'Y kompakt oldugundan, O ailesinin sonlu bir
O ={U,,U,,...,U,,Y}
alt ortiisii vardir. Bu sonlu alt ortiiden Y uzayimi ¢ikarirsak, Ox ailesinin sonlu bir

OfX - {Ul,UQ,...,Um}

alt ortiisiini elde ederiz. Bu, X uzaymin kompakt oldugunu gosterir. Benzer gekilde Y
uzayinin kompakt oldugu gosterilir.

< X UY uzaymin acik bir ortiisit O olsun. Ayrik birlegim topolojisinin tanimina gore,
O ailesindeki her agik kiime, X uzayimin bir acik alt kiimesi ve Y uzaymin bir agik alt
kiimesinin birlesimidir. Buradan O ailesi X ve Y i¢in birer

Ox={UNX:Ue€0}, Oy={UNnY:Uc€0}
agik ortii igerir. X ve Y kompakt oldugundan, Oy ve Oy ailelerinin sonlu
Oy ={U,Us,...,U,}t, Oy ={V,Vs,....V,}
alt ortiileri vardir. Bu sonlu alt ortiileri birlestirerek O ailesinin sonlu bir
O ={U,Us,...,Upn, V1, Va,..., V,}

alt ortisiinil elde ederiz. Dolayisiyla, X U'Y kompakt olur.
O

Teorem 2.2.8 X ve Y wzaylarnin ayrik birlesimlert X UY hausdorff olmasi icin gerek
ve yeter sart X ve Y wuzaylarinin hausdorff olmasidar.
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Ispat.

= X UY Hausdorff olsun. 1,29 € X ve x1 # x5 olsun. X UY Hausdorff oldugundan,
x1 ve x9 noktalarini ayiran ayrik agik kiimeler Uy, Uy C X UY vardir. Buradan U; N X ve
U N X kiimeleri X uzayinda ayrik acik kiimeler olur. Bu, X uzaymin Hausdorff oldugunu
gosterir. Benzer gekilde Yuzaymin Hausdorff oldugunu gosterilir.

< X ve Y Hausdorff iki uzay olsun. X UY uzayinin Hausdorff oldugunu gostermek igin,
X Y uzayindaki herhangi iki farkli noktay1 ayiran ayrik agik kiimeler bulmamiz gerekir.
Bu durumlar1 dort farkh sekilde inceleyebiliriz.

1. Durum: (z1,a) ve (r3,a) igin (1,29 € X):

1, T2 € X ve 11 # x9 ise, X Hausdorff oldugundan, x; ve x5 noktalarini ayiran ayrik
acik kiimeler Uy, U C X vardir. Bu kiimeler ayn1 zamanda X 'Y uzayinda da ayrik agik
kiimelerdir.

UlﬂUzz@, $1€U1, SIZQEUQ

2. Durum: (y;,b) ve (y2,b) igin (y1,y2 € Y):

Yy1,Y2 € Y ve y; # yo ise, Y Hausdorff oldugundan, y; ve y, noktalarini ayiran ayrik
acik kiimeler V4, V5, C Y vardir. Bu kiimeler ayni zamanda X U'Y uzaymda da ayrik acik
ktimelerdir.

VinVe=0, ypneVi, ypeVy

3. Durum: (z,a) ve (y,b) i¢in (z,y € X NY):

x,y € XNY ve x # yise, hem X hem de Y Hausdorff oldugundan, = ve y noktalarim
aywran ayrik acik kiimeler U, C X ve V,, C Y vardir. Bu kiimeler aym zamanda X LY
uzayinda ayrik acik kiimelerdir.

U.NV,=0, z€lU, yev,

4. Durum: (z,a) ve (y,b) i¢in (z,y ¢ X NY):

xr € X vey €Y ise, X ve Y ayrik birlesim topolojisine sahip oldugundan, X ve Y
birbirinden tamamen ayridir. Bu durumda, = noktasini igeren U, ve y noktasini iceren V,
kiimeleri X UY ayrik acik kiimelerdir:

U,NV,=0, ze€U,, yev,

Her durumda, X UY uzayindaki herhangi iki farkli noktay1 ayiran ayrik agik kiimeler
bulanabilir. Buradan X U'Y Hausdorff olur. O

Lemma 2.2.9 X veY bos olmayan topolojik uzaylar olmak tizere ayrik birlegimleri X LY
baglantily degildir.

Ispat. X ve Y bog olmayan uzaylar olsun. U = X x {0}, V =Y x {1} alalm. U kiimesi X LI
Y uzayimin topolojisinde X uzayinin acgik kiimesidir. V' kiimesi X UY uzayinin topolojisinde
Y uzaymin acgik kiimesidir.

X x {0} ve Y x {1} oldugundan

UNnv =10
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ve X UY = (X x{0})U (Y x {1}) oldugundan
UuV=XUuUY

elde edilir. X ve Y bos olmayan kiimeler oldugundan U # () ve V # ) olur.
U ve V kiimeleri X UY uzaymin bog olmayan ayrik acik alt kiimeleridir ve birlegimleri

X UY uzayina egittir. Bu ise X UY uzaymin baglantili olmadigini gosterir.
O

2.3 Carpim Uzaylari
Tanim 2.3.1 (Carpim Uzay1) X veY topolojik uzaylar olsun. X XY kartezyen carpvma
XxY={(z,y):xeX,yeY}

ile tamwmlanir. X XY dzerindeki ¢carpim topolojisi, X ve Y wuzaylar: tizerinde taniml
olan topolojilerinden tiuretilir. X XY uzayinda bir agik kime X uzayinin acik bir alt kimesi
ile Y wzaywmn agik bir alt kimesinin kartezyen carpimlaridar.

Not. X x Y uzayindaki bir kiimenin ¢arpim topolojisinde agik bir kiime olmasi i¢in, her
bir (z,y) € X x Y noktasi i¢in U kiimesi X uzaymda bir acik, V kiimesi Y uzayinda bir

agik olmak tizere (x,y) € U x V olmasidir.
X x Y uzayinda U x V kiimesinin agik kiime olmasi i¢in gerek ve yeter sart m (U x V)
kiimesinin X uzayinda bir agik mo(U x V') kiimesinin Y uzayimda bir agik kiime olmasidir.
O

Ornek 2.3.2 R? dzerindeki topolojinin bir tabam, R uzayindaki a¢ik kimelerin kartezyen
carprmlary olan kiimelerden olusur.
A C R ve B C R agik kiimeler olmak dizere A x B C R? bir agik dikdortgendir. Ornegin.:

A= (a,b), B=(c,d) = AxB=/(a,b)x(cAd)

R? uzayinda bir acik dikdértgeni ifade eder.
R? wuzayinda bir acik disk bir merkez noktasi ve bir yaricap

D:{(:E,y)GRQ:\/(I—Io)2+(y—yo)2<7‘}

ile tamimlanar. Burada (zo,yo) disk merkezidir ve r > 0 yarcaptir. Bu agik diski, R?
uzayndaki agik dikdortgenlerin bir birlesimi olarak ifade edebiliriz. Diskin cevresi tizerinde
késeleri bulunan tim agik dikdéortgenlerin birlesimini alarak disk

D= U (a,b) x (c,d)

(a,b)x(c,d)CD

olusur. Burada (a,b) X (c,d), diskin i¢inde kalan agik dikdortgenlerdir.
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Sonug olarak R? uzayindaki her acik disk, R uzaymndaki acik kiimelerin kartezyen car-
pimlariman bir birlesimi olarak ifade edilebilir. Daha genel olarak, R? wzayndaki her acik
kiime A;, B; C R ag¢ik kiimeler olmak tizere

U(A’i X B;),

iel
ile tanymlanabilir.
Ornek 2.3.3 R™ x R™ ve R™" wzaylar
f:R™ x R" — R™™"

dontistimai
f((‘rl)'"7xm)7(y1a"'7yn)) = (xla"'7$m7y1a"'7yn)

ile homeomorftur.
Ornek 2.3.4 Bir C = {(v,y,2) € R®: 22 + y?> = 1,0 < 2 < 1} silindiri S* x [0, 1]
h:R*xR— R®
B((2,9),2) = (2,9, 2).
donitistimai ile homeomorftur.

Teorem 2.3.5 f : Z — X xX Y sdrekli fonksiyonu f1 : Z — X ve fo : Z — Y strekli
fonksiyonlarin ¢iftine birebir karsilik gelir.

ispat.
f:Z — X xY fonksiyonu verilsin f; ve f, fonksiyonlarini

fi=mof, fa=mof,
ile tamimlayalim. Burada 7 : X XY - X vem: X XY =Y
m(z,y) =x, m(r.y) =y
projeksiyon fonksiyonlaridir. m; ve my stirekli fonksiyonlardir.
fi=mof, fa=mof

oldugundan, f; ve fy siirekli fonksiyonlardir.
fi: Z — X ve fy: Z — Y siirekli fonksiyonlar: i¢in f

f(2) = (f1(2), f2(2))-
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ile tanimlanir. U € X ve V C Y agik kiimeler olsun. f; ve f, siirekli oldugundan, f;*(U)
ve f5 1(V) acik kiimeleri icin

FHU V)= frU)nf;1(V).

oldugundan f~1(U x V) de acik bir kiimedir (f; *(U) N f5 (V) agik kiime). Ayrica

fi=mof, fo=mof = f(2)=(fil2), f2(2)).
oldugundan f <> (fi, f2) birebir bir eglegmedir. O

Ornek 2.3.6 (Torus ve S' x S Homeomorfizmi) Torus T? ve S' x S' carpim uzay:
homeomorftur.

fiStx St T?

fonksiyonu
f((@,y), (,y) = (@' + 2)z, (2" + 2)y, ¢/).
ve
g:T? = St x St
fonksiyonu

T,Y,2) = < , J SVt 4yr—22) .
oo (s ) 2]

ile tamamlayalim. f ve g siireklidir. T? kompakt ve S* x S Hausdorff oldugundan, birebir
ve orten strekli bir fonksiyonun tersi de stireklidir.

Sonug olarak T? ve S' x S* homeomorftur. Bu homeomorfizm, torusun bir cember
boyunca baska bir cemberin donmesiyle elde edildigini geometrik olarak gosterir.

Teorem 2.3.7 X XY carpim uzayinin Hausdorff olmasi i¢in gerek ve yeter sart X ve Y
uzaylarimin Hausdorff olmasidar.
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Ispat. = X x Y uzaymm Hausdorff oldugunu varsayalim. X uzayimimn Hausdorff oldugunu
gostermek istiyoruz. x1,x, € X olmak tlzere, xy # x5 iki farkhh nokta alalm ve y € Y
herhangi bir nokta olsun. Bu durumda (z1,y) # (z9,y) olur. X x Y Hausdorff oldugu
icin, (z1,y) ve (w9, y) noktalarim igeren ayrik agik kiimeler Ay, Ay C X X Y vardir; dyle ki
(x1,y) € Ay ve (x9,y) € As olur.

Aj carpim topolojisinde agik oldugundan, A; kiimesi U x V' bigimindeki alt kiimelerin
birlegsimi geklinde yazilabilir. Burada U, X uzaymin acik bir alt kiimesi ve V', Y uzayimin
acik bir alt kiimesidir. Ozellikle (z1,y) € A; oldugundan z; € U ve y € V olur. Benzer
sekilde, (x2,y) € A oldugundan x5, X uzaymin agik bir alt kiimesi olan U’ iginde yer alir.

Simdi, U N U’ # 0 oldugunu varsayalm. Bu durumda, U N U’ i¢inde bir z € X eleman1
vardir. Bu eleman igin (z,y) € U x V olur. Ayrica y € V' ve (z,y) € U’ x V' olur ¢iinkii
y € V. Budurumda U x V ve U’ x V' kiimeleri kesigir. Ancak bu, A; ve A, kiimelerinin
ayrik olmas1 varsayimina aykiridir. Dolaysiyla U N U’ = () olmahdur.

Benzer sekilde, Y uzaymin da Hausdorff oldugu gosterilebilir.

< X ve Y uzaylarinin Hausdorff oldugunu varsayalim. X x Y uzaymin Hausdorff
oldugunu gostermek icin, X x Y uzayinda herhangi iki farkh nokta alalim: (x1,y;) ve
(22, y2). Burada iki durum s6z konusudur.

Durum 1: Eger x; # x5 ise,

X Hausdorff oldugundan, ¢yle Uy, Uy C X acik kiimeleri vardir ki

l‘leUl,I‘QeUg P UlﬁUQZ(Z)

olur. Bu durumda Uy x Y ve Uy x Y kiimeleri X x Y uzaymda agiktir ve (zq,y;) € Uy XY,
(9,y2) € Uy X Y olur. Uy N Us = () oldugundan

(U xY)N (U xY) =0

elde edilir.

Durum 2: Eger x; = x5 ise, zorunlu olarak y; # y, olmahdir.
Y Hausdorft oldugundan, o6yle Vi, V, C Y agik kiimeleri vardir ki, y; € Vi, 4o € V5 ve
ViNVy, =0 olur.

X x Vi ve X x V, kiimeleri X x Y’de agiktir ve (x1,y1) € X x Vi, (29,y2) € X X Vj
olur. V; N V4 = () oldugundan

(X xV)N(X xVy)=0

elde edilir.
Her iki durumda da, X x Y uzayindaki herhangi iki farkli nokta i¢in ayrik agik kiimeler
bulunabilir. Dolayisiyla X x Y Hausdorft olur. O

Teorem 2.3.8 X XY carpim uzay: baglantilidir ancak ve ancak X ve Y wuzaylary baglan-
taladar.

Ispat. = X xY uzay1 baglantili olsun. Kabul edelim ki X baglantili olmasim. Bu durumda,
X = U, UU, olacak sekilde Uy ve U, ayrik, agik ve bog olmayan kiimeler, vardir.
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X XY uzaym
XXxY=UxY)U(U; xY).

olarak yazabiliriz. Buradan
(U xY)N Uy xY)=(UNU) xY =0 xY =0.
olur. U; # (), Uy # () oldgundan

U1XY7£®, UQXY#(Z)

ve X x Y baglantili oldugundan Y bos kiime olamayacagindan
Uy xY # 0
elde edilir. Bu durumda, X x Y ayrik iki acik kiimenin birlegimi olarak yazilmig olur.
XXY=(U xY)U(Uy xY)

Buise X x Y uzaymin baglantili oldugu varsayimina aykiridir. Dolayisiyla, X baglantilidir.

Benzer sekilde, Y uzayimin baglantili oldugunu gosterilir.

< X ve Y uzaylarimin baglantili oldugunu varsayalim. X x Y uzayimin baglantili oldu-
gunu gostermek icin, X x Y uzaymdan Sy = {—1, 1} ayrik uzaymna stirekli bir f fonksiyonu
alalim ve bunun sabit oldugunu gosterelim.

zo € X herhangi bir nokta olsun. Bu durumda alt uzay {zo} x Y € X x Y, Y ile
homeomorftur ve dolayisiyla baglantihdir. Buradan f fonksiyonunun {zy} x Y tizerindeki
kisitlamasi sabit olmalidir.

Varsayalim ki her y € Y igin f(zo,y) = 1 olsun. Her y € Y i¢in, f fonksiyonunu X x {y}
alt kiimesine kisitlayalim. Bu alt kiimelerin her biri, X X Y uzaymin alt uzayi olarak X ile
homeomorftur ve dolayisiyla baglantilidir. Buradan f bu gekildeki her alt kiime iizerinde
sabittir.

Fakat (zg,y) € X x{y} ve f(zo,y) = 1 oldugundan, her (x,y) € X x{y} i¢in f(x,y) =1
olmahdir.

Aym argiiman tiim y € Y igin gegerlidir; dolayisiyla her (z,y) € X x Y i¢in f(z,y) =1
olur.

Bagka bir deyisle, f fonksiyonu X x Y iizerinde sabittir. Bu da X x Y uzaymdan Sy
uzayina stuirekli ve orten olamayacagini gosterir.

Dolayisiyla X x Y baglantili olur. O

Teorem 2.3.9 (Tychonov Teoremi) X xY carpim uzay: kompaktter ancak ve ancak X
ve Y kompakt uzaylardar.

ispat.
= X x Y kompakt olsun. X uzayimin bir acik ortiisii

U= {Ua}aeA
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olsun. yy € Y sabit bir nokta secelim. Her U, i¢cin W, = U, X Y kiimesini tamimlayalim.
{Wa}taea kumesi, U, ve Y agik oldugundan carpim topolojisinde agiktir ve U bir orti
oldgundan her (z,y) € X x Y i¢in, z € U, olacak sekilde bir o vardir. Buradan

(x,y) € Uy x Y =W,

olur. X x Y kompakt oldugundan, {W, },eca Ortiistintin sonlu bir alt értisi vardir. Ag C A
icin bu alt orti

olsun. {U, }aea, kiimesinin X uzaymin bir 6rtiisti oldugunu gosterelim. Herhangi bir x € X
igin, (z,90) € X x Y mnoktasi ele alahm. Bu nokta, (J,c 4, (Ua x Y) i¢inde olmahdr.
Dolayisiyla oyle bir a@ € Ay vardir ki (z,y9) € U, X Y olur. Bu da =z € U, oldugunu

gosterir. Boylece
X=J U

aEAp

olmast {U, }aea, kilmesinin X uzayimin sonlu bir alt értiisii oldugunu gosterir. Dolayisiyla
X kompakt olur.

Y uzaymin kompakthgi benzer sekilde gosterilir.

Sonug olarak, X x Y kompakt ise hem X hem de Y kompakt olur.

< X ve Y uzaylarinin kompakt oldugunu varsayalim. X x Y uzayimnin bir agik ortiisii
O = {0 }ier olsun. O; carpim topolojisinde agik oldugundan, her (z,y) € X x Y i¢in dyle

Spy X Ty, vardir ki S, ,,, X uzaymin agik kiimesi 75 ,, Y agik kiimesi olmak iizere

(x,y) € Sx’y X T%y C O;

olur. X x Y uzaymdaki tiim (x,y) noktalarmi alarak, {Sgy X Ty 4} (z)cx xy kiimeleri X xY
icin bir acik ortii olusturur.

Her xz € X igin, {z} x Y alt ktimesi, {S; X T} };c; acik ortisii ile kesigimi alimarak bir agik
ortiiye sahiptir. {z} x Y, Y ile homeomorf oldugundan kompakttir, dolayisiyla sonlu bir
Siy X Ty ..., Si, X Ty, alt ortusti vardir ve {z} X Y ile kesigimi bu alt uzaym bir ortiistini
Verir.

Sy =85, NS, N---NS;, olsun. Bu, X uzaymin sonlu sayida agik kiimesinin kesigimidir,
dolayisiyla yine X uzayimin acik kiimesidir ve x noktasini igerir. Bu iglemi her z € X icin
yaparak, X uzaymin {S,},cx acik ortisini elde ederiz.

X kompakt oldugundan, bu 6rtii sonlu bir alt 6rtiiye sahiptir, yani sonlu sayida x4, ..., x,, €
X noktalar1 vardir ki S;,,...,95,, kimeleri X uzaymi orter. Bu noktalari her biri igin,
yukaridaki siire¢ X x Y uzaymmn ortisiiniin sonlu bir inceltmesini verir ki bu S,, x Y
kiimesini orter.

Eger bu sonlu inceltmelerin tiimini, (sonlu sayidaki) x1,. .., x,, noktalarimn her biri
icin alirsak, X x Y uzayim orten ve {S; x T;};c; ortiistiniin sonlu bir inceltmesi olan agik
kiimelerin bir koleksiyonunu elde ederiz.

Dolayisiyla X x Y kompakttir. O
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2.4 Boliim Uzaylari

Tanim 2.4.1 (Boliim Uzay1) X bir topolojik uzay ve ~ bu uzay tzerinde bir denklik
bagintisy olsun. X/~ kimesi, X uzayindaki denklik sinaflarinan kimesidir:

X/~ =A{[z] :x € X}

burada [z] = {y € X : y ~ z} denklik sinifider. m: X — X/~ dogal projeksiyonu

olmak tzere X/~ tizerindeki topolojinin a¢iklar
UC X/~ agiktir <= 7 Y(U) kiimesi X uzaymnda agiktir
ile belirlenir. Bu topolojiye boliim topolojisi denir.
Sonug 2.4.2 Bolim uzayimin tanimandan m bolim dontisimai streklidir.
Ornek 2.4.3 X =R wzayin ele alalom ve bir denklik bagintisy ~
x~y = x =y veya (x,y € Z)

ile tanwmlayalim. Bu, R tzerindeki tam sayilarin tek bir denklik sinife olusturdugu anlamina
gelir. Yani, Her v € R\ Z i¢in [x] = {x} ve Tim tam sayilar i¢in [n] = Z olur.

= p=g : .

R/Z -

R

Bolim uzayr X/ ~
X/ ~={[z] : x € R}.

tammandan R uzayimin bir “sikistirilmas” halidir, ¢inki tim tam sayilar tek bir noktaya
indirgenmistir.

Onerme 2.4.4 (Evrensel Ozellik) f: X — Y siirekli bir fonksiyon ve

1~ Ty = f(x1) = f(22)

ise
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esitliging saglayan f : X/~ =Y strekli fonksiyonu tektir.

X \Y
7
-
-
-
-
-
-
-
-
-
-
~ -
-
-
@) -
= -
-
-
™ Pl
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
h P
X/N

ispat. f X/~ —Y fonksiyonu .
flz]) = f(),

ile tammlayalim. x; ~ xo = f(21) = f(x2) varsayimi, aym denklik siifindaki tiim
elemanlar i¢in f fonksiyonunun ayni degeri verdigini garanti edeceginden f iyi tanimlidir.
V C Y acik bir kiime olsun.

FHV) ={la] € X/~ f([2]) € V).
tanima gore f([z]) = f(z) oldugundan
FHV) ={lz] € X/~ f(2) €V}

olur. Bu dogal projeksiyon 7 kullanilarak

seklinde yazabilir. f siirekli oldugundan f='(V), X uzayinda agk bir kiimedir. Ayrica
7 tamm geregi agik kiimeleri agik kimelere gotiriir. Buradan «(f~(V)) kiimesi X/~
uzayinda agik bir kiime olur. Boylece f siireklidir.

Her z € X i¢in . . .

(fom)(x) = f(n(z)) = f([z]) = f(x)

oldugundan f :f o7 esitligi elde edilir. .

Dolayisiyla, f siirekli bir fonksiyondur ve f = f o7 egitligini saglar. 3

Kabul edelim ki fi, fo : X/~ — Y siirekli fonksiyonlar ve f = fiom, f = foom
egitlikleri saglansin. Bu durumda, her [x] € X/~ igin:

fillz) = fx) ve foll2]) = f(2)

olacagindan

elde edilir. Yani f tektir. O
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Ornek 2.4.5 [0,1]x [0, 1] karesinin karsilikl iki kenar yapistiralom. Bunun icin bir denklik
bagintisy ~

(x,y) ~ (2)y) <= z=2"vey—y €Z.

ile tanymlayalim. Bu baginty x koordinatlar, ayni olan noktalar yapistirilir, y koordinatlar:
ya ayne olmaldir ya da biri 0, digeri 1 olmalidur (6rnegin (x,0) ~ (z,1)).

Bu yapistirma islemi sonucunda elde edilen uzay, bir stlindir ile homeomorftur.

Ornek 2.4.6 (Mobius Seridi) [0, 1] x [0, 1] karesi tizerinde kenarlar: ters yonde yapusts-
rarak bir Mobius seridi elde edebiliriz. Bunun i¢in bir denklik bagintisy ~

AN
ey) ~ (2 (z,y) = (¢ 9/) veya
(@y)~ (@.y) {le—x’vey—y’e{—l,l}

ile tanmamlayalim. Bu bagintida x koordinatlars 1 — 2’ ile terslenir, y koordinatlar: ya ayn
kalur ya da biri 0, digeri 1 olur (érnegin (x,0) ~ (1 —z,1) ve (x,1) ~ (1 —z,0)).

Ornek 2.4.7 [0,1] x [0, 1] karesi iizerinde her iki ¢ift karsilikl kenar yapistirarak bir torus
elde edebiliriz. Bunun i¢cin bir denklik bagintisy ~

(x,y) ~(2'y) <= z—2' €Zvey—y €Z.

ile tanamlanwr. Bu bagint icin (x,0) ~ (x,1) (dst ve alt kenarlarin yapistiridmasi), (0,y) ~
(1,y) (sol ve sag kenarlarin yapistirilmasy) olur.
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-0 D~

Ornek 2.4.8 [0,1] x [0, 1] karesi iizerinde her iki ¢ift karsibkl kenar yapistirarak, ancak
bir ¢ift kenarin yonini ters cevirerek bir Klein sisesi elde edebiliriz. Bunun icin bir denklik
bagintisy ~

x—a €7 ve Y= y’, (sol ve sag kenarlarin ayni yonde yapistirilmasy)

x=1—2'vey—y € {—1, 1}, (st ve alt kenarlarn ters yonde yapistirilmasi)

(z,y) ~ (2,y) <= {

ile tanamlanir. Bu baginti, sol ve sag kenarlar (x =0 ve x = 1) aym yonde (0,y) ~ (1,y)
yapisturar, st ve alt kenarlar (y =0 ve y = 1) ters yonde (x,0) ~ (1 — x, 1) yapusturar,

Onerme 2.4.9 Q = X/ ~ bir boliim uzay, ve X kompakt bir uzay ise, QQ uzay: da kompakt
olur.

Ispat. Boliim uzay1 Q = X/ ~ tammuma gore, dogal izdiigiim fonksiyonu 7 : X — Q
siirekli ve orten oldugundan ) kompakt olur. O

Onerme 2.4.10 Q = X / ~ bir bolim uzayr ve X baglantily bir uzay ise, Q da baglantilidor.

Ispat. Boliim uzay1 Q = X/ ~ tammuma gore, dogal izdiigiim fonksiyonu 7 : X — Q
siirekli ve orten oldugundan ¢ baglantili olur. O

Lemma 2.4.11 X bir topolojik uzay ve f :[0,1/2] — S, g : [1/2,1] — S siirekli fonksi-
yonlar ise ve f(1/2) = g(1/2) kosulunu saghyorlarsa, h : [0,1] — S fonksiyonu

ile birlestirilebilir.
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Bolum 3

Homotopi

3.1 Homotopi

Topoloji, siirekli fonksiyonlarin incelenmesiyle ilgilenir ve bu nedenle topolojinin amaci,
herhangi iki topolojik uzay arasimdaki tiim stirekli fonksiyonlar: tanimlamak olmalidir. An-
cak, hemen hemen her uzay cifti i¢in aralarinda ¢ok fazla siirekli fonksiyon bulunmaktadir.
Bu fonksiyonlar o kadar fazladir ki, bunlar1 listelemek veya tamamen anlamak neredeyse
imkansizdir. Ornegin, [0, 1] arahgindan kendisine siirekli olan fonksiyonlar: listelemek bile
miimkiin degildir.

Ancak bu problem bazi ihmaller ile asilabilir. Buradaki temel fikir, iki fonksiyonun
birbirine denk, yani “homotop” kabul edilmesidir; eger bir fonksiyon digerine stirekli bir
sekilde dontigtiirtlebiliyorsa, bu iki fonksiyon homotop olarak kabul edilir.

f:10,2] — R fonksiyonunu

fl@) =1+ 2%(z - 2)°
seklinde tanimlayalim. Bu fonksiyon 1 sabit fonksiyonuna hemen hemen egittir, ancak x = 1
civarinda kiigiik bir sapma gosterir.

L

Eger
fi(z) =14 =2%(x — 2)?

29
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seklinde bir fonksiyon alirsak, bu da benzer bir gekle sahiptir ancak sapma daha kii¢tiktiir.
Benzer sekilde,

fala) =1+ %ﬁ(x _ 9y

fonksiyonu ayni gekli korur ancak sapma daha da kiigiilir.

f(x)

Bu sekilde devam edilierek, her n > 1 igin

folz) =1+

seklinde bir fonksiyonlar tanimlayabiliriz ve boylece f fonksiyonunu sabit fonksiyona ka-
demeli olarak yaklagtiran bir fonksiyonlar ailesi elde ederiz.

Ancak, bu interpolasyon yapan fonksiyon ailesinin, bir fonksiyondan digerine stirekli
bir deformasyon saglamasini istiyoruz. Bunu saglamak i¢in, interpolasyon fonksiyonlarini
f1, fa, ... gibi tamsayilarla parametrize etmek yerine, onlar1 belirli bir araliktaki reel sayi-
larla indekslemeliyiz. Ornegin, aralik olarak [0, 1] alalim. Bu durumda,

1:1;2(3: —2)?

n -+

{ft}te[o,l]

seklinde bir fonksiyon ailesi istiyoruz ki fo = f ve f; = 1 sabit fonksiyon olsun.

t €0,1]

Yukaridaki ornekte,
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fi(x) =1+ (1 —t)a*(x —2)%, te]0,1]

olarak tanimlarsa,

folw) =1+a%(x —2)° = f(2)

ve

filz) =1
elde edilir.
Bu déniistimler tanim kiimesi [0, 1], gértntii kiimesi [0, 2] — R olan stirekli déniistimler
olarak diigtinebilir. Yani het t € [0, 1] igin f; strekli doniigiim olacak sekilde

x:[0,1] — ([0,2] — R)
t —  fi:[0,2] — R

olur. Bu tanimladigimiz doniigtimlerin siirekli olmasi i¢in bu tanimlanan * dontistimii stirekli
olmalidir. Siireklilikten bahsedebilmemiz i¢in tanim kiimesi ve goriintii kiimesi tizerindeki
topolojiler bilinmelidir. Bu durumda [0, 2] — R siirekli olan fonksiyonlarin kiimesi tizerine
bir topoloji tanimli olmahdir. Daha genel olarak herhangi X ve Y topolojik uzaylar: i¢in
X — Y dontistimleri tizerine topoloji tanimlanmalidir. Simdi bu doéntigiimlerin stirekli
olduklarii gosterelim.

{fi}t € ]0,1] ailesi her bir ¢ € [0, 1] noktasim

fi:10,2] — R

fonksiyonuna gottiriir. Buradan her x € [0, 2] noktas: fi(z) € R reel say1 degerini alir.

X Y eneterastesriasassarinnany,
—N XY
0,1] — ([0,2] — R) = te f(t)
t !" fi 10,2 — R K seklinde bir fonksiyon
: z = fi(2) : - olarak diigtinebiliriz.

.....................

Boylece bu fonksiyon ailesini (z,t) € [0,2] x [0, 1] ikilisini f;(x) € R noktasina gotiiren
bir doniisiim olarak diigiinebiliriz. Bagka bir deyigle

00,2 x[0,1] — R
(x,t) = fi(x)

seklinde bir fonksiyon elde etmis oluruz. [0,2] tizerinde ve [0,1] iizerinde topoloji ta-
nimh oldugundan (ahgilmig uzaym [0,2] ve [0, 1] araliklarina indirgenmesi yani alt uzay
[0, 2]yve [0, 1))
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[0,2] x [0, 1] tizerinde ¢arpim topolojisini tanimlayabiliriz. Bu topolojide R? tizerindeki
aligilmig topolojinin [0, 2] x [0, 1] € R? alt kiimesi indirgenen alt uzay topolojisidir. Boylece
degigen fonksiyonlar ailesi iki topolojik uzay (([0,2] x [0, 1])y, (R,U)) arasinda bir fonksi-
yona kargilik gelmis olur.

Sonug olarak f; fonksiyonlar ailesinin stirekli olabilmesine karsilik gelen ¢ fonksiyonun
siirekli olmasidir.
@ stirekli = (f;)sejo,1) stirekli

Tanim 3.1.1 f,g: X — Y ki fonksiyon olmak tizere eger sirekli bir
F:Xx[0,1] =Y

fonksiyonu
F(z,0) = f(s), VseX

F(z,1)=g(s), Vse X

esitliklerini saglhyorsa f ve g fonksiyonlarina homotop fonksiyonlar denir. F doniisimiine,
f ile g fonksiyonlary arasindaki bir homotopi denir ve f ~ g ile gdosterilir.

Ornek 3.1.2 f:[0,2] = R fonksiyonu
flz) =1+ 2%(x —2)?
seklinde tanimlansin. Eger F dontisimai

F:[0,2]x[0,] — R
(x,1) = F(z,t) =14 (1 —t)z*(x — 2)?

olarak tanimlanirsa bir polinom oldugu igin stureklidir. Ayrica,
F(2,0) = 1+a*(z - 2)* = f(z)

ve
F(z,1)=1

esitlikleri saglanir. Dolayiswyla, F' dontisimi [ fonksiyonundan 1 sabit fonksiyonuna bir
homotopi tanimlar.

Ornek 3.1.3 f:S' — R? icine fonksiyon

f(z,y) = (z,y)

ve g : ST — R? fonksiyonu
g(z,y) = (0,0)

sabit fonksiyon olsun. Bu iki fonksiyonun homotop oldugunu gdsterelim. F dontistimii
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F: S'x[0,1] — R?
olarak tanimlayalim. F' dondisimi siureklidir ve

F(([L’,y),O) = (1 - O)f(xvy) = f(x,y)

F((z,y),1) = (1= 1)f(z,y) = (0,0) = g(x,y)

saglanwr. Dolayiswyla, F fonksiyonu, f ile g arasinda bir homotopi tanimlar.

R2

Tanim 3.1.4 Bir homotopi dontustiminde sturekliligi saglamak amacwyla kullanilan ve ge-
nellikle birim aralik olarak alinan

1=10,1]

ifadesine homotopi parametresi denir. Burada t € I, homotopinin baslangi¢ ve bitis nokta-
lar arasinda strekli bir gecisi ifade eden parametredir.

Ornek 3.1.5 Her x € [0, 1] igin

S [0,1] — [0,
xr = flr)==z
birim fonksiyonu ve
g: 0,1] — [0,1]
r = g(x)=0

sabit fonksiyonu verilsin. F' dontistimiini

F:[0,1] x[0,1] — [0,1]
(x,t = F(z,t)=(1—t)x

olarak tanimlayalim. F' bir polinom oldugundan alisilmis uzayda sireklidir. Ayrica



64 BOLUM 3. HOMOTOPI

F(z,0)=(1-0)x =z = f(z)
F(z,1)=(1-1)z =0=g(z)

olur. Bu ise f(x) = x fonksiyonunun sirekli bir sekilde g(z) = 0 fonksiyonuna donisebile-
cegini gosterir. Dolayisiyla, F fonksiyonu, f ile g arasinda bir homotopi tanimlar.

R2

1
/ )
/—\ \\‘
---uu|||iiiiEEE':E':EE':E':':.:-:-:-:-:-:
.O ’1 : |

g
Ornek 3.1.6 f,g: R — R herhangi iki siirekli fonksiyon olsun. F déntistimiini

F: RxI — R
(x,t) — F(x,t)=(1-1t)f(x)+tg(x)

seklinde tanimlayalvm. F strekli fonksiyonlarin bileskesi oldugundan stireklidir. Ayrica,
F(z,0) = (1-0)f(z) +0-g(z) = f(z)
ve
Fz,1) =0 f(z) +1-g(z) = g(x)

oldugundan, F donisimi f ile g arasinda bir homotopi tanimlar.

Sonug 3.1.7 R dizerindeki herhangi iki strekli fonksiyon homotoptur.

Tanim 3.1.8 R” i¢inde bulunan bir X alt uzayr, eger her x,y € X ve hert € I degeri i¢in
tr+(1—-tlye X

esitligini saglhyorsa, konveks olarak adlandirilar.
Baska bir deyisle X i¢indeki herhangi iki nokta arasindaki dogru parcast yine X icinde
bulunuyorsa X alt uzayina konvekstir denir.
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Ornek 3.1.9 X konveks bir uzay olmak dizere, f,q : R — X fonksiyonlar: ele alalim. F
dontistimaini
F: RxI — X
(,t) = F(z,t)=tf(z)+ (1 - t)g(x)

seklinde tanimlayalim.
X konveks oldugu i¢in F(x,t) € T saglamir ve R dzerinde dogrusal fonksiyonlar her
zaman strekli oldugundan F' streklidir. Ayrica,

Fx,0) = g(z), F(x,1) = f(z)

esitlikleri saglanar.
Bu durumda, F doniisimi f ile g arasinda bir homotopi tanimlar. Dolayisiyla, konveks
bir uzay i¢inde taniml reel degerli her iki fonksiyon homotoptur.

Ornek 3.1.10 f,¢g: R — S' siirekli fonksiyonlar: verilsin. F dondisiimiinii

F(a,t) = tf(z) + (1 = 1)g(x)

seklinde tamimlayalim. Burada S uzayr konveks degildir. Gercekten de, eger f(z) ve g(x)
birim cember St iizerinde iki farkh nokta ise, genellikle

tf(z) + (1 =t)g(x)

ifadesi cember tizerinde olmayacaktir. Clinki bu ifade iki nokta arasindaki dogru parcasi
tizerinde yer alir, fakat bu dogru parcasi her zaman S* icinde kalmaz.
Ornegin,
flz)=(1,0), g(x)=(0,1)

noktalarin ele alalim. Eger t = % secersek,

Fla.t) = 5(1,0)+ 5(0,1) = <1 1)

2 2 272
elde edilir ki, bu nokta birim cember tizerinde degildir.

(0,1)

1,0)

Dolaypswyla, F doniisiimiind bu sekilde tansmlama S* gibi konveks olmayan uzaylarda ho-
motopi tanimlamak i¢in kullanilamaz.
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Lemma 3.1.11 f: X — Y fonksiyonu strekli ise f ~ f olur.

Ispat. F' déniigiimiini
F: XxI —- Y
(z,t) = F(z,t) = f(x)

olarak tamimlayalim. F' doniigsimi f fonksiyonunun tanimindan siirekli olur ve
F(z,0) = f(z), F(z,1)=f(z)

esitlikleri saglanir. Dolayisiyla F' doniigimii f ile kendisi arasinda bir homotopi tanimlar
ve f ~ f elde edilir. O

Lemma 3.1.12 f, g : X — Y sdrekli iki fonksiyon olsun. Eger F donisimi f ile g
arasinda bir homotopi ise, o zaman g ile f arasinda da bir homotopt vardr.

Ispat. F déniisiimii f ile g arasinda bir homotopi olsun. Buradan
F(z,0) = f(x), F(z,1) = g(x)
olacak gekilde siirekli F': X x I — Y doniigiimii vardir. G dontigimi

G: XxI — Y
(x,t) +— G(x,t)=F(x,1—1)
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seklinde tanimlayalim. G doéniigiimii F' doniigiimiiniin tanimindan stirekli olur ve
G(z,0) = F(z,1) = g(x), G(z,1)=F(x,0) = f(x)

esitlikleri saglanir. Sonug olarak GG doniigiimii g ile f arasinda bir homotopi tanimlar ve
g =~ f elde edilir. O

Lemma 3.1.13 f,g,h: X — Y sturekli fonksiyonlar: i¢in, eger f ile g homotop ve g ile h
homotop ise f ile h fonksiyonlarida homotoptur.

Ispat. F déniigiimii f ile g arasinda bir homotopi olsun. Buradan F : X x I — Y siirekli
fonksiyonu

F(z,0) = f(z), F(z,1)=g(x)
esitliklerini saglar. Benzer sekilde, G doniigiimii ¢ ile h arasinda bir homotopi olsun. G :
X x I — Y siirekli fonksiyonu

G(x,0) = g(x), G(x,1) = h(z).
esitliklerini saglar. H doniisimiini
H(r.t) = {géz?_ b
olarak tanmimlayalim. F' ve G doniistimleri siirekli oldugundan H siireklidir. Ayrica,
H(z,0) = F(z,0) = f(x)

ve

H(z,1) = G(z,1) = h(x)

esitlikleri saglanir. Buradan H doniigiimii f ile h arasinda bir homotopi tanimlar. Boylece,
f ~ h oldugu gosterilmis olur. O
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Sonug 3.1.14 Homotop olma bir denklik bagintisidar.

Tanim 3.1.15 X — Y sirekli fonksiyonlarinin homotopi simaflarimn kimesi [X,Y] ile
gosterilir.

Ornek 3.1.16 R — R arasindaki tiim sirekli fonksiyonlar homotop oldugundan (Or-
nek3.1.4) [R,R] yalnizca bir elemandan olusur.

Ornek 3.1.17 [S', S| homotopi sinifinan her tam say igin bir eleman igerirdigini géste-
relim.

f 8t — St fonksiyonunu ele alalvm. Her siirekli fonksiyon, temel olarak bir noktay:
cember tzerinde nasil dolastirdiginy belirler. Bu donis hareketi, sarma sayisi (winding
number) olarak adlandirilan bir tam say ile ifade edilir ve

dea() = 5- [ 1

seklinde tanwymlanmir. Bu say, fonksiyonun cember etrafinda kag¢ kez dolastiginy ve hangi
yonde hareket ettiging belirtir. Ornegin: ejer f bir noktayr cember etrafinda

saat yoniunde bir kez dolastiriyorsa, deg(f) = —1 olur.

saat yoninin tersine bir kez dolastiriyorsa, deg(f) =1 olur.

o saat yoninde n kez dolanwyorsa, deg(f) = n olur.

saat yoninin tersine n kez dolanwyorsa, deg(f) = n olur.

Bu nedenle, [S*, S] kiimesi, her tam sayu i¢in bir homotopi simifa igerir. Bu da, homotopi
simiflarvman 7 ile indekslendigini gosterir:

1§18~ 2

Yani, her sirekli fonksiyon, yalnizca sarma sayisina baglh olarak bir homotopi sinifina
aittir ve bu simiflar tam saylarla gosterilebilir.

Onerme 3.1.18 f~g: X Y veh~j:Y —= Zise (hof)~(jog): X — Z.
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Jjog

Ispat. f ile g arasinda bir homotopi F : X x [0,1] — Y ve h ile j arasinda bir homotopi
H:Y x[0,1] = Z olsun. G : X x [ — Z doniigimini

G(s,t) = H(F(s,t),t)

seklinde tanimlayalim. F' ve H siirekli oldugundan, G doniigiimii siirekli olur. Ayrica

G(s,0) = H(F(s,0),0) = H(f(s),0) = h(f(s))
ve
G(S? 1) = H(F<S> 1)7 1) = H(g(s), 1) = ](9(3))
esitlikleri saglanir. Buradan G doéniigiimii f o h ve g o j arasinda homotopi tanimlar.

Sonug 3.1.19 Homotopi siniflare fonksiyonlarin kompozisyon islemini korur.

Ornek 3.1.20 X herhangi bir topolojik uzay ve f : X — S™ siirekli bir fonksiyon olsun.
Eger f orten degilse, f fonksiyonunun bir sabit fonksiyona homotop oldugunu gosterelim.
f orten olmadigindan, oyle bir p € S™ noktasy vardur dyle ki p ¢ Im(f) olur. Buradan

T=5"\{p}

kiimesini tanimlayalim.

T wuzayr konveks bir uzaydar. Orne den yararlanarak X wzayindan T uzayina
giden herhangi iki siirekli fonksiyon homotop olur. Ozel olarak, f (ki X uzaym T uzayna
resmeder) sabit bir ¢ : X — T fonksiyonuna homotop olacagini gosterelim. Burada c(x) = q
olup, q € T sabittir.

Homotopi doniisimiini

H(z,t) = (1—=1t)f(z) +tc(zx), xe€X,te]0,1]

seklinde tanimlayabiliriz. Ornek olarak, n = 1 durumunda, yani birim cember S* igin:
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o f:]0,1] = St fonksiyonu ¢emberin yarisine dolassin
o p € St noktasy f fonksiyonunun gérintisinde olmayan bir nokta olsun
o Bu durumda f sabit bir noktaya homotop olacaktir

Boylece, drten olmayan herhangi bir [ fonksiyonu sabit fonksiyona homotoptur.

Ornek 3.1.21 f : S' — S' fonksiyonu f(x,y) = (—x, —y) seklinde tanvmlayalim. Bu
fonksiyonun birim fonksiyona homotop oldugunu gésterelim.

Birim cember tizerindeki bu déontsim, geometrik olarak 180° dénmeye karsilik gelir.
Bunu birim fonksiyona baglayan bir homotopi H : ST x [0,1] — S?

Hz,y.t) = ( cos(rt) () — sin(mt) (y) sin(rt) () + cos(mt)(y) )
e V/(cos(mt)x — sin(wt)y)2 + (sin(rt)z + cos(xt)y)2 +/(cos(nt)z — sin(nt)y)2 + (sin(wt)z + cos(nt)y)2
seklinde tanimlanabilir. Burada her t € (0, 1] i¢in H(x,y,t)

cos(mt)x — sin(wt)y sin(wt)x + cos(wt)y

2 2
=1
<\/(cos(7rt)z — sin(wt)y)?2 + (sin(wt)x + cos(mﬁ)y)2> * < /(cos(mt)z — sin(mt)y)2 + (sin(mt)z + cos(rrt)y)2>

oldugndan birim cember tizerindedir.H fonksiyonu trigonometrik ve rasyonel fonksiyonlarin
bileskesi oldugundan streklidir. Ayrica

H(z,y,0) = (z,y) = Id(z,y)

H(x,y, 1) = (—ZL‘, _y) = f(xay)

esitlikleri saglanyr. Buradan H déndsimd Id birim fonksiyon ve f arasinda homotopi
tanamlar.

Geometrik olarak H dontsimi birim cemberi t parametresine bagl olarak stirekli bir
sekilde déonddirir:

o t =0 amnda hi¢ donme yoktur (birim fonksiyon)
o t arttikca, cember saat yoninde donmeye baslar
e t =3 anwnda 90° donmais olur

o t =1 amnda toplam 180° donmiis olur (f fonksiyonu)

Ornek 3.1.22 f, g : S' — S* siirekli iki fonksiyon olsun. Bu fonksiyonlarin birlesiminin
derecesini (degree) deg(fog), deg(f) ve deg(g) cinsinden ifade edelim. fog fonksiyonunun
go f fonksiyonuna homotop oldugunu gdsterelim.

Birim ¢ember tdizerindeki siirekli bir fonksiyonun derecesi, ¢emberin etrafinda ka¢ kez
“dolastigina” élger. Eger f ve g strekli ise birlesimin derecesi

deg(f o g) = deg(f) - deg(g)
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ile verilir.

fog: St — St fonksiyonu dnce g fonksiyonunun S* tizerindeki etkisini ardindan f
fonksiyonunun etkisini uygular. Derece cemberin etrafinda kag¢ kez dolasildigin olgtigi icin
g fonksiyonunun derecesi kadar “dolagsma” f tarafindan deg(f) kez tekrar edilir. Buradan

deg(f o g) = deg(f) - deg(g)

olarak tanimlanar.
Derece, homotopi altinda degismeyen bir ézelliktir. Yani, eger iki fonksiyon homotop
ise dereceleri aynidir. Simdi f o g ve g o f fonksiyonlarinin homotop oldugunu gdsterelim.
fogwvego f icin dereceleri

deg(f o g) = deg(f) - deg(g)

deg(g o f) = deg(g) - deg(f)

olur. Carpma islemi degismeli (komiitatif) oldugu igin

deg(f o g) = deg(go f)

elde ederiz. Bu, fog ve go f fonksiyonlarinin ayni dereceye sahip oldugunu gosterir. Derece
homotopt altinda degismediginden, f o g ve go f homotop olur.
fogvego f fonksiyonlar arasinda H : S* x [0,1] — S homotopisi

H(z,t) = (L=t)(f og)(x)+t(go f)(z)

seklinde tanwvmlanabilir. H dondisimai sireklidir. Ayrica, t = 0 igin H(x,0) = f o g(x) ve
t =1 1d¢in H(x,1) = go f(x) esitlikleri saglanwr. Béylece f o g ve go f homotop olur.

3.2 Homotopi Denklik

Iki fonksiyonu yalnizca homotop olduklarinda denk kabul etmek homeomorfizm tanimin
buna uygun sekilde degistirerek elde edilir. Bu durumda, esitlik igaretlerini homotopilerle
degistirmeliyiz. Boyle bir yaklagim, topolojik uzaylarin daha genel bir gekilde simiflandiril-
masini saglar ve bizi "homotopi denkligi” kavramina gotiiriir.

Homotopi denkligi, iki uzayin ayni "temel topolojik yapiya” sahip oldugunu ifade eder,
ancak bu denklik, birebir bir egleme gerektirmez. Bunun yerine, bir uzaydan digerine stirekli
bir dontigiim ve bunun tersi bir doniistim bulunmasi, bu dontigsiimlerin bilegimlerinin birim
fonksiyona homotop olmasi yeterlidir. Bu, homeomorfizmden daha zayif bir iligki tanimlar,
ancak bir¢ok durumda uzaylarin temel ozelliklerini anlamak i¢in yeterli bir aractir.

Tanim 3.2.1 X ve Y iki topolojik uzay olmak tzere f : X — Y ve g: Y — X sirekli
fonksiyonlar: verilsin. Eqger,

e go f fonksiyonu X tzerindeki birim fonksiyona homotop, yani g o f ~ Idx
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o fog fonksiyonu'Y dzerindeki birim fonksiyona homotop, yani f o g ~ Idy

ise X ve Y wuzaylarina homotopi denk uzaylar denir.

f ve g fonksiyonlarina homotopi denklikleri denir. Eger X ve Y homotopi denk ise
X~Y
ile gosterilir.
Lemma 3.2.2 X ~ Y we Z herhangi bir topolojik uzay olmak tzere
(X, Z] =Y, Z]

ve
12, X] = [2,Y]
esitlikleri saglanar.

Ispat. X ~ Y oolsun. f : X — Y ve g : Y — X siirekli fonksiyonlar vardir ve bu
fonksiyonlarin bilegimleri ilgili birim fonksiyonlara homotop olur.

gof=~Ildy ve fog=~Idy

h : X — Z bir fonksiyon olsun. g ile bilegke alarak ho g : Y — Z fonksiyonunu elde
ederiz. Benzer sekilde, 7 : Y — Z bir fonksiyon olsun. f ile bilegke alarak jo f: X — Z
fonksiyonunu elde ederiz. Buradan

(hog)of=ho(gof)~hoidy =h
(Jofleg=jo(fog)=joidy =j

elde ederiz. Bu iki iglem homotopi agisindan birbirinin tersidir. Ciinkii A fonksiyonunu g
ve f ile bilegke alip tekrar h fonksiyonuna geri donebiliriz. Benzer sekilde j fonksiyonunu
f ve g ile bilegke alip tekrar j fonksiyonuna geri donebiliriz.

jof hog
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Bu iki durum, h ve j fonksiyonlarinin homotopi agisindan birbirine ters iglemlerle eslendi-
gini gosterir. Dolayisiyla, [X, Z] ve [Y, Z] arasinda birebir bir egleme vardir ve bu egleme
homotopi simflarin1 korur. Dolayisiyla, [ X, Z] ve [Y, Z] arasinda birebir bir egleme oldu-
gundan

(X, Z] =Y, Z]

elde edilir.
Benzer gekilde, Z — X ve Z — Y fonksiyonlar igin f ve g ile bilegke alarak [Z, X| ve
[Z,Y] arasinda birebir bir esleme elde ederiz. Bu da [Z, X| = [Z, Y] oldugunu gosterir. O

Not. Iki uzayin “homotopi denk” oldugunu soylemek yerine, onlarin homotop oldugunu
ifade etmek daha yaygin olarak kullanilir. “Homotopi denk” terimi daha kesin ve geleneksel
bir kullanim olsa da, 6zellikle gayri resmi tartigmalarda “homotop” terimi daha sik tercih
edilmektedir. Ancak, “homotop” teriminin teknik olarak uzaylardan ziyade dontigiimleri
tanimlamak icin kullanildigi unutulmamalidir. Bu nedenle, karigikligi énlemek i¢in dikkatli
olunmalidir. O

Lemma 3.2.3 X veY uzaylars homeomorf ise, bu uzaylar ayni zamanda homotopi denktir.

Ispat. X ve Y homeomorf oldugundan, 6yle f : X — Y ve g : Y — X homeomorfizmleri
vardir ki:

1) f ve g stireklidir

2) f ve g birebir ve értendir

3) fog=1Idy ve go f =1dx

Lemma geregi her siirekli fonksiyon kendisine homotop oldugundan

fog~fog=Idy = fog~Idy

ve
gof~gof=Idy = gof~Idx

olur. Bu durumda, f ve g fonksiyonlar1 homotopi denkligi tanimindaki kosullar1 saglar.
Dolayisiyla X ve Y homotopi denktir

X~Y
O

Ornek 3.2.4 X tek bir noktadan olusan bir uzay ve Y = R olsun. Bu iki uzayin homotopi
denk oldugunu gdsterelim.

f R — X fonksiyonu tek tiurli tanimlabilir. Cinki X uzaynin tek bir noktasy vardar.
Her r € R igin f(r) = zg olarak tanamlayalim. Burada xo, X uzayinin tek noktasidar.

g : X = R fonksiyonu X uzayinin tek noktasint R uzayinda bir noktaya, diyelim ki 0
noktasina gotiren fonksiyon olsun. Yani g(xo) = 0 olsun. Buradan

(f o g)(x0) = flg(x0)) = f(0) = zo = Idx (o)
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ve
(go f)(r) = g(f(r)) = g(xo) = 0
olur. Her fonksiyon kendisine homotop oldugundan lemm gereqgi

gof=1Idx = go f~lIdx

elde edilir. g o f fonksiyonu R dizerinde 0 noktasina giden sabit fonksiyondur ve sabit
fonksiyon her uzayda streklidir. Birim fonksiyon alisilmis uzayda stureklidir. R dizerindeki
herhangi iki siirekli fonksiyon homotop oldugundan Lemmas3.1.q geregi

go [~ Idg
elde edilir. Sonu¢ olarak X ve R wzaylar: homotopi denk olur.
X~R
Burada (g o f) ve Idg fonksiyonlary arasindaki homotopi t € [0,1] ve r € R igin
H(rt)=0—-t)(go f)(r)+t-idg(r)=(1—1t)-0+t-r=t-r
ile verilebilir.

Sonug 3.2.5 [R,R] = [{0},{0}]. Clinki {0} — {0} arasinda yalnizca bir siirekli fonksiyon
tanimlanabilir. Bu nedenle, {0} — {0} fonksiyonlarinin homotopi sinifi yalnizca bir eleman
icerir. Dolayswyla, [R,R] de yalnizca bir eleman icerdiginden (6rnek3.1.14

R, R] = [{0}, {0}]

~

elde edilir.

Not. Ornek tek noktadan olugan uzayin R ile homotopi denk oldugunu gosterir. Bu
sonug, topolojik uzaylarin homotopi tiplerini anlamak acisindan 6nemlidir, ¢iinkii R gibi
sonsuz bir uzayin tek bir noktaya biiziilebilecegini” gosterir.

(Il

Tanim 3.2.6 Bir uzay, tek bir noktadan olusan bir uzayla homotopi denk ise, bu uzaya
biiziilebilir uzay denir.

Ornek 3.2.7 R biiziilebilir uzaydar. ( Orne )

Ornek 3.2.8 [0,1] aralg ile tek bir noktadan olusan {0} uzaynin homotopi denk oldugunu
gosterelim. f :[0,1] — {0} fonksiyonunu her x € [0,1] i¢in f(xz) =0 ve g : {0} — [0,1]
fonksiyonunu g(0) = 0 olarak tanimlayalvm. Buradan

(f 2 9)(0) = f(g(0)) = f(0) = 0 = Id;(0)
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ve her x € [0, 1] i¢in
(go f)(x) =g(f(x)) =g(0) =0

olur. go f fonksiyonunun [0, 1] dzerindeki birim fonksiyona homotop oldugunu gésterelim:
H(z,t)=(1—-t)-0+t-z=t-z
¢
H(z,0)=0, H(z,1) ==

olur. Dolayswyla, g o f ~ Idgyy elde edilir. Sonug olarak f o g = Idyy ve go f ~ Idj
oldugundan, [0,1] ve {0} homotopi denk olur

[0,1] ~ {0}.
Bu, [0,1] aralginin bizilebilir oldugunu gdsterir.

Ornek 3.2.9 (0,1) agik arahgiman tek bir noktadan olusan {0} wuzaiy ile homotopi denk
oldugunu gdosterelim.

f :(0,1) — {0} fonksiyonunu her x € (0,1) i¢in f(x) = 0 ve g : {0} — (0,1)
fonksiyonunu g(0) = 1 ile tanumlayalim. Buradan

(0.9)0) = Fla0) = £ (5 ) =0= 0

ve her x € (0,1) i¢in

1
(9o f)(z) = g(f(x)) = 9(0) = 5
olur. go f fonksiyonunun (0,1) tzerindeki birim fonksiyona homotop oldugunu gésterelim:
1—1
H(x,t) = T+t-x
¢
1-0 1
H E—— = =
(x,0) 5 +0-2 5
ve L1
(¢, ])=——+1-2=2x

2
olur. Ayrica,

1—-1
H(x,t):Tth'x
icin x € (0,1) ve t € [0, 1] oldugundan
0<zr<l = O0<H(zt)<l

olur. Dolayrswyla, H(x,t), (0,1) arahginda kalir ve H stireklidir. Sonug olarak fog = Idgy
ve go f =~ Idgqy oldugundan, (0,1) ve {0} homotopi denktir:

(0,1) ~ {0}

Bu, (0,1) araliginin biizilebilir oldugunu gdsterir.
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Ornek 3.2.10 Herhangi bir (a,b) agik aralige tek bir noktadan olusan {0} uzay ile homo-
topi denk oldugunu géosterelim. Ayrica, bu durum sonsuz araliklar (a,o0) ve (—00,b) igin
de gegerlidir.

Her ac¢ik aralik birbirine homeomorf oldugundan

(a,00) =~ (—00,b) =~ (a,b) ~ (0,1) ~ {0}.

olur. Herhangi bir a¢ik aralik (a,b), (a,00) veya (—o0,b), tek bir noktadan olusan bir uzay
{0} ile homotopi denktir. Bu, R tzerinde a¢ik araliklarin bizilebilir oldugunu gésterir.

Ornek 3.2.11 (0,1) ag¢ik arahgs ile [0,1] kapal aralge arasinda bir homotopi denkligini
tanimlayalim.
f:10,1] — (0,1) fonksiyonunu

ve g :(0,1) — [0, 1] fonksiyonunu

ile tanimlayalim. Buradan

(gof)(w)zg(f(x))=g<§+§) =2(%+§) -

1 2z-1
(fog)(x)=f(g(x))=f(2x—1):§+ ;=T
elde edilir. Sonug olarak go f = Idjy ) ve fog = Idg) oldugundan, (0,1) ve [0, 1] homotopi

denktir:

(0,1) ~ [0, 1]
Onerme 3.2.12 Egjer X bizilebilir bir uzay ve Y herhangi bir topolojik uzay ise
frg:Y =X

stirekli fonksiyonlar, homotoptur. Ozellikle, biiziilebilir bir uzaya giden herhangi bir siirekli
fonksiyon sabit bir fonksiyona homotop olur.

ispat. f,g : Y — X sirekli iki fonksiyon olsun. X biiziilebilir bir uzay oldugundan h :
X — {0} ve j : {0} — X siirekli fonksiyonlar: igin

hOjZId{o}, ]OhZIdX

olur. Bu durumda:

f=dxof)~(johof)



3.2. HOMOTOPI DENKLIK 7

g=(ldxog)~(johoy)
olur. Burada ho f : Y — {0} oldugundan joho f : Y — X sabit bir fonksiyon olur. Yani,
her y € Y igin
(joho f)(y) =3(0)
olur. Benzer sekilde, johog:
(Fohog)(y) =j(0)

sabit fonksiyon olur. Dolayisiyla

f~johof ~—gx~johog
elde edilir. Sonug olarak:
f~yg

olur. Bu, f ve g fonksiyonlarimin homotop oldugunu gosterir. Ayrica joho f ve johog

sabit fonksiyonlar oldugundan f ve g fonksiyonlar: sabit bir fonksiyona homotop olurlar.
O

Sonug 3.2.13 Buizilebilir bir uzaya giden herhangi bir strekli fonksiyon, sabit bir fonksi-
yona homotoptur.

Ornek 3.2.14 A = {(z,y) € R? : 1 < 2 + y? < 2} halkasumn birim cember S* ile
homotopi denk oldugunu gdsterelim.
f: 8 — A fonksiyonunu f(x,y) = (x,y) igine doniisim ve g : A — St fonksiyonunu

O —
g\r,y \/m Y

ile tanvmlayalim.
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Buradan

(go )z, y) =g(f(z,y) = g(x,y) = (v,y)

ve

1 1
o x? - x? = T x’ Y x?
(feg),y) = f(9(x,y)) = f (\/m( y)) \/m( v)
olur. Bu, A tzerinde bir fonksiyondur ve (z,y) noktasin radyal olarak dlceklendirilmis bir
noktaya gotiurir. f o g fonksiyonunun A dzerindeki birim fonksiyona homotop oldugunu
gosterelim

F(z,9),1) = ﬁmy) + %@s )
dontistimai
Fi(r0).0) = —=ss(r0) = (fo9)(0.0)

F((:L’,y), 1) = (Ivy> = [dA(‘r7y>

esitliklering saglar. Ayrica,
1< +y*<2 = F((z,9),t) € A

oldugundan F((x,y),t), A iginde kalir. F fonksiyonu carpma ve toplama islemlerinin bi-
leskesi oldugundan stireklidir.
Sonug olarak fo g~ Ids ve go f = Ids1 oldugundan, A ve S* homotopi denktir:

A~ Gt

Ornek 3.2.15 Orijinden delinmis dizlem C* = R? — {(0,0)} ile S* birim ¢emberin ho-
motopi denk oldugunu gosterelim.
f: St — C* fonksiyonunu f(z,y) = (z,y) ve g : C* — S fonksiyonunu

1

g(r,y) = \/ﬁ(%y)

olarak tanimlayalim. Buradan

1

(go f)(z,y) =g(f(x,y)) = g(x,y) = \/IQ:W(%Q) = (z,y)

oldugundan

go f = Ids:
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ve

1 1
o ‘/L" - T x? Y ‘/'E’
(fog)(z,y) f( x2+y2( y)) x2+y2( y)
elde edilir. f o g fonksiyonunun C* tzerindeki birim fonksiyona homotop oldugunu goste-

relim
1

H((z,y),t) = ((1 - t)\/ﬁ +t)(z,y)
¢
1
H((x,y),0) = ——=(z,y) = (f o g)(x,
((z,),0) \/m( y) = (fog)(z,y)
H((x7y)7 1) = (l‘,y) = ]d(CX (:E7y)
olur. (z,y) # (0,0) oldugundan t € [0, 1] i¢in

ve

1
(1—t)——=+1t>0

H((z,y),t) hicbir zaman orijine gitmez. H fonksiyonu ¢carpma ve toplama islemlerinin
bileskesi oldugundan streklidir.
Sonug olarak g o f = Ids1 ve f o g~ Idex oldugundan, C* ve S* homotopi denktir:

C* ~ St
Sonug 3.2.16 Orijinden delinmis dizlem birim cembere biizilebilir.

Ornek 3.2.17 S° bizilebilir degildir.

Kabul edelim ki S° biizilebilir bir uzay olsun. Bu durumda, S° ile tek bir noktadan
olusan {0} uzayr arasinda homotopi denklik vardwr. Yani, f : S° — {0} ve g : {0} — S°
surekli fonksiyonlary vardir i¢in

fog=1Idgy wve gof=~Idso

olur. Bu durumda, go f : S° — SY fonksiyonu S° tizerindeki birim fonksiyona homotoptur.
Yani, bir F': S° x I — S° déniisiimii icin

F(z,0) =2 wve F(z,1)=g(f(z)) = g(0)
olur. Simdi, I = [0,1] birim aralgindan S° uzayna sirekli bir fonksiyon
h:I—S° h(t)=F(—g(0),t)

tanimlayalim. Buradan
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h(1) = F(—g(0),1) = g(0)

olur. S° yalmzca iki noktadan olustugu i¢in (g(0) ve —g(0)), h fonksiyonu S° tzerinde
orten olmalidir. Ancak, I = [0, 1] araligr baglantils bir uzaydzr(sonuél.].]]\) ve baglantaly bir
uzaydan baglantily olmayan bir uzaya siirekli érten fonksiyon tanimlanamaz(Onermel.1.18).
Bu geliski, S° uzayiman biizilebilir oldugu varsayimimazin yanls oldugunu gosterir.

Onerme 3.2.18 m tane noktadan olusan ayrik uzay ve n tane noktadan olusan ayrik
uzaywn homotopt denk olmasi i¢in gerek ve yeter sart m = n olmasidar.

Ispat. X ve Y ayrik uzaylan sirasiyla m ve n noktadan olugsun.

X:{xlaw%"wxm}) Y:{ylay27"'7yn}

= X ve Y homotopi denk olsun. Bu durumda f : X — Y ve g : X — Y siirekli
fonksiyonlar1 i¢in
Jog=Idy ve gof=~Idx

olur. fog bilegkesi Y tizerindeki birim fonksiyona homotop oldugundan bir 4 : Y x [0, 1] —
Y stirekli fonksiyonu vardir éyle ki her i € [n] i¢in

h(i’ O) = f(g(l)), h(l7 1) =1

olur. Burada h(i,t) : [0,1] — Y siirekli bir fonksiyondur. [0, 1] baglantili bir uzaydir ol-
dugundan h(i,t) fonksiyonunun gortintisi Y uzaymda baglantilhi bir altkiime olmalidir.
Ancak, Y ayrik bir uzay oldugundan ayrik bir uzaymn baglantili altkiimeleri yalnzca tek
bir noktadan olugabilir. Bu nedenle, h(i,t) fonksiyonunun goriintiisii yalnizca {i} olabilir.
Yani her t € [0, 1] i¢in

h(i,t) =1

olur. Ozel olarak t = 0 alinirsa
h(i,0) = f(g(i)) =i

elde ederiz. Bu, f o g = Idy oldugunu gosterir. Benzer sekilde, g o f = Idx oldugu gosteri-
lebilir. Bu ise

o f orten bir fonksiyon oldugundan n < m
e g birebir bir fonksiyondur oldugundan m < n

oldugunu gosterir. Dolayisiyla,

olmalidar.
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< m = n oldugunu varsayalim. Bu durumda, X ve Y arasinda birebir ve 6rten bir
fonksiyon tanimlanabilir. Ornegin:

f:X=Y f(i)=i

ve
g:Y =X, g(i)=1

olur. Buradan
fog:Idy ve gOfZIdX

elde ederiz. Dolayisiyla, X ve Y homotopi denktir.
O

Onerme 3.2.19 X ve Y homotopi denk ise X wzayindan Y wzayma sirekli ve orten
dontisiim vardr.

Ispat. Kabul edelim ki X ve Y homotopi denk olsun. Bu durumda, f : X — Y ve
g Y — X stirekli fonksiyonlar: vardir 6yle ki:

gofﬁIdX

ve
fog>~Idy

olur. Simdi f fonksiyonunun siirekli ve orten oldugunu gosterelim. Homotopi denkligin
taniminda f stirekli olarak tammlanmigtir. Ayrica f o g ~ Idy oldugundan, f o g(y) ~ y
her y € Y igin saglanir. Bu, f fonksiyonunun orten oldugunu gosterir.

O

Onerme 3.2.20 X baglantils ve Y baglantisiz bir uzay ise, X ve' Y homotopi denk olamaz.

Ispat. Kabul edelim ki X ve Y homotopi denk olsun. Bu durumda f: X - Y veg:Y —
X siirekli fonksiyonlar: vardir 6yle ki

fog>~Idy

ve
gofﬁldx

olur. Bu, f o g fonksiyonunun Y fizerindeki birim fonksiyona homotop oldugu anlamina
gelir. Yani, oyle bir F': Y x [0, 1] — Y stirekli fonksiyonu vardir ki her y € Y igin

F(y,0) = f(g(y)) ve F(y,1)=y

olur. Y baglantisiz uzay oldugundan ayrik, acik ve bog olmayan iki alt kiimeye ayrilabilir:

Y=0UV
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burada U ve V acik, ayrik ve bos olmayan alt kiimelerdir. Bu durumda, Y uzayindan
SY uzayma siirekli orten p : Y — SO fonksiyonu tamimlanabilir. X ve Y homotopi denk
oldugundan h : X — Y siirekli 6rten doniisiim vardlr((")nerme@.). Buradan h o p :
X — SY siirekli ve orten iki fonksiyonun bileskesi oldugundan siirekli ve oérten olur. Bu
ise baglantili bir uzaydan ayrik bir uzaya siirekli 6érten dontiigiim olmamasi ile geligir. Bu
geligki, X ve Y uzaylarinin homotopi denk olamayacagini gosterir.

O

Sonug 3.2.21 Baglantily bir uzay ve baglantisiz bir uzay homotopi denk olamaz.

Sonug 3.2.22 Baglantily olma dzelligi, homotopi denk olmayan uzaylar, ayirt etmek icin
kullanabilir.

Ornek 3.2.23 S' baglantils bir uzay S° baglantisiz bir uzay oldujundan S* ve S° homotopi
denk degildir.

Ornek 3.2.24 X = {1,2} kaba topolojiye sahip bir uzay ve Y = {0} tek noktah bir uzay
olsun. X wve'Y wzaylarinin homotopi denk oldugunu gdsterelim.

f Y — X fonksiyonunu f(0) = 1 olarak tanwmlayalim. X kaba topolojiye sahip
oldugundan, f sirekli bir fonksiyondur. g : X —'Y fonksiyonunu g(x) = 0 olarak tek tirli
tamumlanabilir. Y kaba topolojiye sahip oldugundan, g de strekli bir fonksiyondur. Buradan

(90f)(0) =g(f(0)) =9(1) =0
ve her x € X i¢in
(fog)(x)=f(g(x)) = f(0) =1
olur. f o g fonksiyonunun X dzerindeki birim fonksiyona homotop oldugunu gdosterelim. F
dontistimainai
x, ejert< i
F:Xx|[0,1] - X, F(z,t)= g f
L, egert> ;.

ile tanimlayalim. Buradan

F(z,0)=s

ve
F(z,1)=1

elde edilir. Ayrica, X kaba topolojiye sahip oldugundan, F her durumda strekli bir fonksi-
yondur. Sonu¢ olarak go f = Idy ve f o g~ Idx oldugundan, X ve Y homotopi denktir:

X~Y

Burada dikkat edilirse X kaba topolojiye sahip oldugundan Hausdorff degildir, ancak'Y
Hausdorff uzaydar.

Sonug 3.2.25 Hausdorff olma dzelligini homotopi denkligini ayirt etmek i¢cin kullanilamaz.
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3.3 Cember

Lemma 3.3.1 (Yapistirma Lemmasi (Gluing Lemma)) X herhangi bir topolojik uzay
ve Uy, ..., U,, X uzaymda kapalr alt kiimeler olsun. X wuzayindaki her noktanin en az bir

U; kiimesine ait oldugunu varsayalim. Y herhangi bir topolojik uzay ve her i = 1,....n

icin f; : Uy = Y fonksiyonlari, U; tzerindeki alt uzay topolojisine gire stirekli olsun. Eger

her x € U; N U; igin fi(z) = f;(x) kosulu saglanwyorsa, bu fonksiyonlar birlestirilerek bir

f: X—=Y

f(x) = fi(x) egerx e U

strekli fonksiyonu elde edilir.

Ispat. f: X — Y fonksiyonunu z € U; icin

fx) = fi(x)

ile tammlayalim. = € U; N U; ise, varsayim geregi f;(z) = f;(x) olacagindan bu fonksiyon
iyi tamimhdir.

Y uzayinda herhangi bir kapali kiime K olsun. f fonksiyonunun siirekli oldugnu gos-
termek icin, f~1(K) kiimesinin X uzayinda kapali oldugunu gosterelim.

Her i = 1,...,n icin, f; siirekli oldugundan, f;'(K) kiimeleri kapalidir.

fHC) = {zeX:f(z)eC}
= {zeX:3 sxeUve fi(x) € C}.

3

~ ) = UWin o) ...(sonlu sayida kapal

= kiimenin birlegimi kapali)

= f~!1(C) kapal

elde edilir. Dolayisiyla, f : X — Y siirekli bir fonksiyon olur. O

Onerme 3.3.2 (Path Lifting) ¢ :[0,1] — S* siirekli bir fonksiyon ve x € R i¢in e(z) =
g(0) olacak sekilde bir nokta olmak ‘zere her t € [0, 1] i¢in

900) =«

esitliklerini saglayan g : [0,1] — R sdrekli fonksiyonu tektir.
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@

degismeli e(x) = (cos(2mz), sm(27m)):

Sl

Ispat. Adim 1: g fonksiyonunu parga parca tanimlama.
St {izerindeki 6rtme fonksiyonu e : R — St seklindedir ve bu fonksiyon

e(x) = (cos(2mx),sin(27z))

olarak tammmlanir. ¢ : [0, 1] — S! siirekli bir fonksiyon olsun. [0, 1] arahigini, g fonksiyonun
goriintiisiiniin S! uzayinda uygun alt kiimelerine diistiigii kiiciik araliklara bolelim.

U:SI\{(lvo)}v V:SI\{(_LO)}

olarak secilim. U ve V acik kiimelerdir ve S uzayim orter. g siirekli oldugundan ¢g='(U) ve
g~ 1(V) ongoriintiileri [0, 1] uzaymda agik alt kiimelerdir ve birlegimleri [0, 1] uzaym érter.
[0, 1] kompakt oldugundan bu agik kiimelerden sonlu bir alt 6rtii

117]27---7]n

segilebilir. Her I; arahginda, g(I;) ya U kiimesinde ya da V' kiimesinin elemani olur. Bu
durumda, e fonksiyonu i¢in U veya V tizerindeki 6n goriintiistinii kullanarak g fonksiyonunu
tammlayalim. Ornegin, I, = [y, 1] ve §(dg) = x olarak tammlansm. g(I;), U kiimesinde
ise , e fonksiyonunun U iizerindeki bir kopyasim kullanarak g fonksiyonunu /; iizerinde
siirekli bir gekilde tanimlayabiliriz.

Adim 2: g fonksiyonunu tiim [0, 1] iizerinde tanimlama.

Bu iglemi her I; aralig: i¢in tekrarlayarak g fonksiyonunu parca parca tanimlariz. Her
adimda, ¢ fonksiyonunu bir 6énceki aralikla uyumlu olmasimi saglariz. Bu, ¢ fonksiyonunu
stirekli olmasini garanti eder. Yapistirma Lemmasima gore, bu pargalarin birlegimi [0, 1]
tizerinde stirekli bir fonksiyon tanimlar.

Adim 3: g fonksiyonunun teklik ispati.

Simdi, ¢ fonksiyonunun tek oldugunu gosterelim. Kabul edelim ki g : [0,1] — R, g
fonksiyonu igin bagka bir lifting ve g(0) = §(0) = x olsun. Buradan her ¢ € [0, 1] i¢in
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olur. Bu ise g(t) — g(t) € Z oldugunu gosterir. Ancak, g — g : [0,1] — Z siirekli bir
fonksiyondur ve Z ayrik bir uzaydir. Stirekli bir fonksiyonun gériintiisii baglantili bir kiime
olmalidir, bu nedenle g — g sabit fonksiyon olmahdir. Baglangi¢ kogulundan dolay1 g(0) =
g(0) oldugundan, g(t) = g(t) her ¢t € [0, 1] i¢in gegerlidir. Sonug olarak g tektir. O

Ornek 3.3.3 S' — S' seklindeki herhangi bir sabit fonksiyonun derecesinin 0 oldugunu

gosterelim.
f St — St sabit bir fonksiyon olsun. Yani z € S* i¢in f(z) = p olsun. 7 : [0,1] — S?
standart ortme fonksiyonunu

m(t) = (cos(27t), sin(27t))

ele alalim. Buradan
g=fom:[0,1] — S!

bileske fonksiyonu her t € [0, 1]
g(t) = (fom)(t) = f(=(t)) = p
sabit olur. Path Lifting Teoremi’ne gére
coj=g ve §0)=z,

olacak sekilde strekli g : [0,1] — R fonksiyonu vardir. Burada x € R igin e(x) = g(0) = p
saglanar.
g sabit bir fonksiyon oldugundan, g fonksiyonunu da hert € [0, 1] i¢in

9(t) = x
sabit bir fonksiyon olarak secelim. Buradan
(e0g)(t) = e(g(t)) = e(x) = p = g(t)

olur. Sonug olarak g fonksiyonu g i¢in bir lifting olur.
f fonksiyonunun derecesi g sabit bir fonksiyon oldugundan

deg(f) = g(1) —g(0) ..(3(1) =g(0) =)
=0
olarak bulunur.

Ornek 3.3.4 f:S' — S birim fonksiyonunun derecesinin 1 oldugunu gésterelim.

f St — S birim fonksiyon olsun, yani her z € S* i¢in f(z) = z olsun. Bu fonksiyo-
nun derecesini hesaplamak igin, standart értme fonksiyonu m : [0,1] — St ile bileskesini
inceleyelim.
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g= fom:[0,1] = S fonksiyonunu
g9(t) = (fom)(t) = f(n(t)) = 7(t) = (cos(27t), sin(27t))
ile tanvmlayalim. g icin bir lifting bulalvm. Path Lifting Teoremi’ne gére,
coj=g ve §(0)=0,
olacak sekilde g : [0,1] — R strekli fonksiyonu vardwr. Burada
e:R — S e(x) = (cos(27mz),sin(27x))

ortme fonksiyonudur.
g(t) =t fonksiyonunun g i¢in bir lifting oldugunu gésterelim. Burada

(€0 g)(t) = e(g(t)) = e(t) = (cos(27t), sin(2mt)) = g(t)

olur. Ayrica, g(0) = 0 oldugundan, § fonksiyonu g i¢in bir lifting olur.
f fonksiyonunun derecesi

deg(f) =g(1) —g(0)=1-0=1
olur.

Sonug 3.3.5 Geometrik olarak birim fonksiyonun derecesinin 1 olmasi, fonksiyonun S*
cemberini tam bir kez dolastiginy gosterir.

Ornek 3.3.6 f:S' — S fonksiyonu, n bir tamsay olmak tizere
f(cos(0),sin(0)) = (cos(nd), sin(nh))

ile verilsin. Bu fonksiyonun derecesinin n oldugunu gésterelim.

f St — St fonksiyonu, S* cemberini kendisine doniistiiren ve her noktay: acisal olarak
n katina gotiren bir fonksiyondur. Bu fonksiyonun derecesini hesaplamak i¢in, standart
ortme fonksiyonu m : [0,1] — St ile bileskesini inceleyelim.

g= fom:[0,1] = S fonksiyonunu

g9(t) = (fom)(t)
= f(n(t))
= f(cos(27t), sin(27t))
= (cos(n - 2mt),sin(n - 27t))
= (cos(2nmnt), sin(2nmt))

ile tanvmlayalim. g i¢in bir lifting bulalim. Path Lifting Teoremi’ne gore
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olacak sekilde g : [0,1] — R strekli fonksiyon vardwr. Burada
e:R — S e(x) = (cos(2mx), sin(27x))

ortme fonksiyonudur.
g(t) = nt fonksiyonunun g igin bir lifting oldugunu gésterelim. Burada

(9(1))
(

(e0g)(t)=e
e(nt

)
= (cos(2m - nt), sin(27 - nt))
= (cos(2nmt), sin(2nmt))
9(t)

olur. Ayrica, G(0) =n -0 =0 oldugundan, § fonksiyonu g icin bir lifting olur.
f fonksiyonunun derecesi

deg(f) =g(1) —g(0)=n-1-0=n
olur.

Sonug 3.3.7 Geometrik olarak
f(cos(0),sin(0)) = (cos(nb), sin(nh))

fonksiyonu S' cemberini kendisine n kez dolayarak esler. Ejer n > 0 ise, dénis yoni
korunur; ejer n < 0 ise, donis yoni tersine cevrilir. n = 0 durumunda, fonksiyon sabittir
ve ¢emberi bir noktaya esler.

Onerme 3.3.8 (Alan Bslme (Domain Splitting)) X, R" uzaymn kompakt bir alt kii-
mesi O, Y wzayiman bir agik ortisi olmak tzere f : X — Y fonksiyonuu verilsin. Bu
durumda, dyle bir & > 0 sayist vardwr ki, X uzayiman capr § ‘dan kigik olan herhangi bir V
alt kuimesinin goriuntisi O ailesindeki kiimelerden birinin icinde yer alir.

Ispat. f siirekli oldugundan, O ailesindeki acik kiimelerin f altindaki ¢n gorintiileri X
uzayinda acik kiimeler olur. Bu acik kiimelerin olusturdugu aile, X uzayinin bir acik ortiisi
W olur:

W= {fYU):Uc 0}

X kompakt oldugundan, WV ailesinin sonlu bir
W = {W, Wy,..., W} CW

alt ortisi vardir. Her W; acik oldugundan, her x € X i¢in 6yle bir r, > 0 vardir ki,
B(z,r;) C W; olur, burada B(x,r,), merkezi x ve yarigap1 r,, olan agik kiredir ve z € W;.
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X kompakt oldugundan, {B(z,r,/2) : x € X} agk ortiistinden sonlu bir
Ty Ty T
(5 5) 5 (28). 5 (e 3))

Ty T r
§ = min{e w2 Tme
min{ 59y }
olarak alalim. Her r,, > 0 oldugundan J > 0 olur.
V', X uzaymin c¢apr 6’dan kii¢lik olan herhangi bir alt kiimesi olsun. V' bos kiimeden

farkli oldugundan V’de en az bir nokta vardir, diyelim ki bu nokta v € V olsun. v € X

alt ortl secelim.

Tx; . .. Ty,
oldugundan en az bir j indeksi i¢in v € B (x]-, 7]> olur. V' kiimesinin ¢apt ¢ < 7]

oldugundan
V C B(v,9) C B(wj,74,)

olur. B(zj, rmj) C W; olacak gekilde bir ¢ indeksi bulunabileceginden V' C W; olur.
W; = f~4U;) oldugundan, f(V) C f(W;) C U; olur. Yani, f(V), O ailesindeki kiime-
lerden biri olan U; kiimesinin i¢inde yer alir. O

Lemma 3.3.9 (Lebesgue Lemmasi1) X, R" wzayinin kompakt bir alt uzay ve O, X
uzaywan bir agik ortisi olsun. Bu durumda, éyle bir 6 > 0 wvardwr ki, X uzaymn capr
0 ’dan kigik olan herhangi bir U alt kiimesi, O ailesindeki kiimelerden birinin i¢inde yer
alr.

Ispat. X kompakt oldugundan, @ ailesi sonlu sayida acik kiime Uy, . .., U, iceren bir alt
ortiiye indirgeyebiliriz.

Her 1 < i < n i¢in, f; : X — R fonksiyonunu merkezi x olan ve U; i¢inde kalan en
biiyiik yarigaph agik kiirenin yarigapi f;(z) olarak tanimlayalim. Eger x ¢ Uj ise fi(z) =0
olarak tanimlanir.

fi(x) noktasmi x noktasi ile X — U; kiimesindeki # noktasina en yakin nokta arasmdaki
uzaklik olarak diigiinebiliriz. Uzaklik fonksiyonu stirekli oldugundan f; de siirekli olur.

f X — R fonksiyonunu

f(z) =max{fi(z): 1 <i<n}.

ile tanimlayalim. Sonlu sayida stirekli fonksiyonun maksimumu da siirekli oldugundan, f
siireklidir. Bu fonksiyon, merkezi x olan ve U; kiimelerinden en az birinin i¢inde kalan en
biiyiik yaricaph agik kiirenin yarigapini verir.

Her z € X i¢in f(z) > 0 olacak gekilde 6 > 0 oldugunu gosterelim. Yaricapr ¢’dan
kiiciik olan her acik kiire, U; kiimelerinden birinin i¢inde yer alir. Cap1 6’dan kiic¢iik olan
her kiime, yaricapi 0 olan bir agik kiirenin i¢inde yer aldigindan, lemma ispatlanmis olur.

Boyle bir ¢’nin varhgimi gostermek igin, her = € X igin f(z) > 0 oldugunu not edelim.
Bu, 0 noktasinin f fonksiyonunun goriintiisiinde olmadigi anlamina gelir. X kompakt ve
f strekli oldugundan, f fonksiyonun goriintiisii R uzaymin kompakt bir alt kiimesidir.
Heine-Borel Teoremi'ne gore, bu goriintii R uzayimin kapali bir alt kiimesidir, dolayisiyla



3.3. CEMBER 39

tiimleyeni agiktir. Bu tiimleyen 0 noktasini icerdiginden, 0 etrafinda bir (—d,d) araligim
da igerir. Bu nedenle, her x € X igin f(x) > ¢ olur.

Sonug olarak, X uzaymin cap: d’dan kiigiik olan herhangi bir alt kiimesi, O ailesindeki
kiimelerden birinin i¢inde yer alir. O

Onerme 3.3.10 (Homotopy Lifting) F : [0,1] x [0,1] — S* stirekli bir fonksiyon ve
x € R igin e(x) = F(0,0) olacak sekilde bir nokta olmak tizere her s,t € [0,1] i¢in

eo F(s,t) = F(s,t)

ve

F(0,0) ==z
esitliklerini saglayan F : [0,1] x [0,1] = R siirekli fonksiyonu tektir.

sk

degismeli

Sl

0 1

Ispat. Bu 6nerme, Path Lifting Teoremi’nin iki boyutlu bir genellemesi olarak diisiiniile-
bilir. Ispat1 benzer bir yaklagimla verecegiz.

Adim 1: [0,1] x [0,1] karesini kii¢iik karelere bélme.

St cemberini

U=5\{(1,0)}, V=5\{(-1,00}

acik kiimelerine bolelim. Domain Splitting Onermesi'ni kullanarak, éyle bir § > 0 sayis1
vardir ki, [0, 1] x [0, 1] karesinin ¢ap1 6’dan kiigiik olan herhangi bir alt kiimesinin gortntisii,
F' altinda ya U kiimesine ya da V kiimesine diiger.

[0,1] x [0, 1] karesini n x n karelerine bélelim, burada n sayis1 & < % olacak sekilde
secilir. Bu durumda, her kiigiik karenin c¢ap1 ¢’dan kii¢lik olur ve dolayisiyla her kiigiik
kare, F' altinda ya U kiimesine ya da V' kiimesine diiger.

Adim 2: F fonksiyonunu parca parca tanimlama.



90 BOLUM 3. HOMOTOPI

F(0,0) = z alalm. Ik kiigiik kare [0, 1] % [0, 2] tizerinde F' fonksiyonunu tammlayalim.
F bu kareyi ya U kiimesine ya da V kiimesine gotiiriir. e=}(U) veya e~! (V) kiimelerinden
uygun bir bilegenini segerek ve bu bilesen ile U veya V' arasindaki bir homeomorfizmi
kullanarak, F fonksiyonunu bu kare {izerinde tanimlayabiliriz.

Boylece, F (0, %) degerini tammlamig oluruz. Bu degeri kullanarak, F fonksiyonunu
[0, ] x [, 2] karesi iizerinde tammlayabiliriz. Ancak, bu durumda [0, 2] x X kenar tizerinde
F fonksiyonunu yeniden tanimlamis oluruz. Path Lifting Teoremi'nin teklik kismi, bu iki
tanimin ayni olmasini garanti eder.

Benzer sekilde, F fonksiyonunu [0,
tizerinde tanimlayabiliriz.

F (1,0) degerini kullanarak, F fonksiyonunu [L,2] x [0, 1] karesi tizerinde tammlaya-

1] % [0, 2] tizerinde, sonra da tiim [0, +] % [0, 1] seridi

biliriz. Bu, % x [0, %] kenar1 {izerinde F' fonksiyonunu yeniden tammlamay: gerektirir, yine
Path Lifting Teoremi’nin tekligi, bu tanimin 6nceki tanimla ayni olmasini saglar.

Bu sekilde devam ederek, F' fonksiyonunu tiim [0, 1] x [0, 1] karesi tizerinde tanimlaya-
biliriz.

Adim 3:F fonksiyonunun tekligini gosterme.

F, F fonksiyonu i¢in bagka bir lifting olsun ve F(0,0) = F(0,0) = « olsun. Her (s,t) €
0,1] x [0, 1] igin:

eo F(s,t) = F(s,t) = eo F(s,1)

olur. Bu, F(s,t) — F(s,t) € Z oldugunu gosterir. F' ve F siirekli oldugundan ve [0, 1]

[0,1] baglantih oldugundan, F' — F sabit bir fonksiyon olmahdir. F(0,0) = F(0,0) =
oldugundan, bu sabit 0 olmahdir. Yani, F = F elde edilir. Sonu¢ olarak F tektir.

Osg X

Onerme 3.3.11 f,g:S' — S* homotop iki fonksiyon ise deg(f) = deg(g) olur.
Ispat. f ve ¢ homotop oldugundan, her z € S* icin
H(z,0) = f(z) ve H(z1)=g(2)

siirekli H : S* x [0,1] — S! fonksiyonu vardir. S gemberini [0,1] arahg: ile paramet-
rize ederek, H fonksiyonunu [0, 1] x [0,1] — S seklinde diigiinebiliriz. Homotopy Lifting
Teoremi’ne gore her s, t € [0, 1] i¢in

eo H(s,t) = H(s,1)
olacak gekilde siirekli H : [0,1] x [0,1] — R fonksiyonu vardir. Burada e : R — S,
e(r) = (cos(27x),sin(27x)) 6rtme fonksiyonudur.

H fonksiyonunu [0, 1] x {0} iizerine kisitladigimizda, f fonksiyonu igin bir lifting elde
ederiz. f fonksiyonunun derecesi

deg(f) = H(1,0) — H(0,0)

olur. Benzer sekilde, H fonksiyonunu [0, 1] x {1} tizerine kisitladigimzda, ¢ fonksiyonu icin
bir lifting elde ederiz. f fonksiyonunun derecesi

deg(g) = H(1,1) — H(0,1)
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olur. D : [0,1] — Z fonksiyonunu

D(t) = H(1,t) — H(0,1)

ile tammlayalim. Buradan deg(f) = D(0) ve deg(g) = D(1) olur.

H siirekli oldugundan D siirekli bir fonksiyon olur. Ayrica, D fonksiyonunun gorintiisi
Z igindedir. [0, 1] baglantili bir uzay ve Z ayrik bir uzay oldugundan, baglantili bir uzaydan
ayrik bir uzaya giden her siirekli fonksiyon sabit fonksiyon olacagindan D sabit bir fonksiyon
olur. Sonug olarak

deg(f) = D(0) = D(1) = deg(g)
elde edilir. 0

Lemma 3.3.12 g : S* — St bir fonksiyon ve (z,y) € St bir nokta ise, dyle bir h : ST — S1
fonksiyonu vardwr ki, h fonksiyonu g ile homotoptur ve h(w(0)) = (z,y) kosulunu saglar.

Ispat. g(7(0)) noktasimdan (z,y) noktasma olan aciy1 @ olarak tanimlayalim. S cemberi
tizerinde, bir noktadan digerine olan ag1, iki nokta arasindaki en kisa yayin acisidir.

H :S'x[0,1] — S! fonksiyonunu H (p,t), p noktasinin t6 acis1 kadar dondiiriilmiig hali
olarak tanimlayalim. Yani, H fonksiyonu, S! iizerindeki her noktay1, ¢t parametresine bagh
olarak, 0 ile # arasimnda degisen bir ac1 kadar déndiiriir. Buradan her p € S! icin

H(p,0)=p

ve
H(p,1) = p noktasinin @ agis1 kadar dondiirtilmiig hali

olur. Ozellikle:
H(g(m(0)),1) = g(7(0)) noktasimn ¢ agis1 kadar dondirilmis hali = (z,y),

ve her p € S icin
H(g(p),0) = g(p

olur. H siirekli bir fonksiyon oldugundan, ¢ ile A : S* — S! fonksiyonu arasinda bir
homotopi tanimlar, burada h her p € S! icin

ile tanimlanir. Buradan
h(m(0)) = H(g(x(0)),1) = (z,y)

elde edilir. Dolayisiyla, h fonksiyonu g ile homotop olur ve h(7(0)) = (z,y) kogulunu saglar.
O

Onerme 3.3.13 f,g:S' — S fonksiyonlar: igin deg(f) = deg(g) ise, f ve g homotoptur.
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Ispat. Ispat1 iki adimda yapacagiz. Ik olarak, ézel bir durum icin homotopi kuracagiz,
sonra genel duruma gececegiz.

Adim 1: (fo7)(0) = (g o7)(0) durumu.

Path Lifting Teoremi'ne gore, f ve g fonksiyonlari igin

cof=fom eog=gom ve f(0)=40).
olacak sekilde siirekli f , g :10,1] — R fonksiyonlar ile lifting olur. Derece tanimindan

deg(f) = f(1) = f(0), deg(g) = g(1) — g(0)
yazabiliriz. deg(f) = deg(g) oldugundan

F(1) = f(0) = g(1) — §(0)

ve f(0) = g(0) oldugundan )
f(1) =g(1)
elde edilir. H : [0,1] x [0,1] — R fonksiyonunu

H(s,t) = tf(s) + (1 = £)3(s)

ile tamimlayalim. Bu, f ve § arasinda dogrusal bir homotopi tammlar. H siireklidir ve

H(s,0)=g(s), H(s,1) = f(s)

olur. Ayrica, H(0,t) = tf( 0) + (1 —1)g(0) = f(0) = §(0) oldugundan, H(0,t) t’ye bagh
degildir. Benzer sekilde, H(1,t) = tf(1) + (1-1)g(1) = fa 1) = 3(1) oldugundan, H(1,t)
de t'ye bagh degildir. Bu nedenle, H(1,t) — H(0,t) = f(1) — f(0) = deg(f) bir tamsaydar.

H=¢eoH:[0,1] x [0,1] = S" fonksiyonunu tammlayahm. H(0,t) = H(1,t) oldu-
gundan, H fonksiyonunu 51 x [0,1] — S olarak diigiinebiliriz. Bu, f ve g arasinda bir
homotopi tanimlar:

H(2,0) = (eo H)(r'(2),0) = (e 0 g)(n'(2)) = g(2)

H(z,1) = (eo H)(r7'(2),1) = (eo f)(n(2)) = f(2)

Adim 2: Genel durum.

Genel durumda, (f o 7m)(0) # (g o 7)(0) olabilir. Bu durumda, g ile homotop olan ve f
ile 7(0) noktasinda ayni degeri alan bir ¢’ fonksiyonu tanimlamamiz gerekir.

St {izerinde herhangi iki nokta arasinda bir yol vardir. Bu yolu kullanarak, ¢ ile homo-
top olan ve f ile w(0) noktasinda ayni degeri alan bir ¢’ fonksiyonu tammlayabiliriz. Sonra,
Adim 1'i f ve ¢’ icin uygulayarak, f ve ¢’ fonksiyonlariin homotop oldugunu gosterebi-
liriz. g ve ¢’ homotop oldugundan, homotopi iligkisinin gecisli olmas1 nedeniyle, f ve g de
homotop olur. O

Onerme 3.3.14 S* cemberi bizilebilir degildir .
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Ispat. Cemberin biiziilebilir oldugunu varsayalim. Bu durumda, S* tek noktaya homotopi
denk olmahdir. Yani f: S* — {0} ve g : {0} — S* fonksiyonlar1 igin

gof~1lg

olmalidir. f fonksiyonu, S! uzaymdan tek noktal kiimeye giden bir fonksiyon oldugundan,
f(x,y) = 0 her (x,y) € S* igin saglanir. Benzer sekilde, g fonksiyonu, tek noktal kiimeden
S* uzayma giden bir fonksiyon oldugundan, g(0) = (a, b) olacak sekilde sabit bir (a,b) € S*
noktas1 vardir. Bu durumda, bilegke fonksiyon go f : S — S! her (z,y) € St igin

(go f)x,y) =g(f(z,y)) = 9(0) = (a,d)

olur. Yani, g o f sabit bir fonksiyondur. Sabit fonksiyonlarin derecesi 0 oldugundan
deg(go f) =0

elde ederiz. Ote yandan, 1g: birim fonksiyonunun derecesi
deg(lg1) =1

olur. Eger iki fonksiyon homotop ise, dereceleri esit olmalidir. Ancak

deg(go f) =0 # 1 = deg(1g1)

oldugundan, g o f ve 141 homotop olamaz. Bu, baslangictaki varsayimimizla celigir. Dola-
yisiyla, ST biiziilebilir degildir. 0

Onerme 3.3.15 S' — S' seklindeki siirekli fonksiyonlarin homotopi simflarinin kiimesi,
tamsaylar kiimesi ile birebir esleniktir, yani [S*, S'] ~ Z.

Ispat. Her siirekli f : S* — S! fonksiyonunun bir derecesi vardir ve bu derece bir tamsayi-
dir. Derece fonksiyonu deg : [S?, S| — Z seklinde tamimlanir, burada S — S* geklindeki
siirekli fonksiyonlarm homotopi simflarmim kiimesi [S*, S| olur.

Ispat1 iki adimda yapacagiz:

Adim 1: deg fonksiyonu birebirdir.

f,g : St — St iki siirekli fonksiyon ve deg(f) = deg(g) ise, o zaman f ve g homo-
toptur (Onerme3.3.13). Dolayisiyla, farkli homotopi simiflarindaki fonksiyonlarin dereceleri
farkhidir. Bu, deg fonksiyonunun birebir oldugunu gosterir.

Adim 2: deg fonksiyonu ortendir.

Her n € Z igin deg(f,) = n olacak sekilde siirekli f,, : S' — S fonksiyonu vardir. Bu
fonksiyonu her z € C, |z| =1 i¢in

fa(2) = 2"
ile tanimlayabiliriz. Ornegin, n = 1 i¢in, f1(2) = z birim fonksiyondur ve deg(f,) = 1 olur.
n = 0 ig¢in, fo(z) = 1 sabit fonksiyondur ve deg(fo) = 0 olur. n = —1 igin, f_1(2) = Z
(kompleks eglenik) fonksiyonudur ve deg(f-;) = —1 olur.
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Genel olarak, f,, fonksiyonunun derecesi n olur(Ornek3.3.6). Dolayisiyla, her tamsayi,
bir fonksiyonun derecesi olarak gerceklegir. Bu, deg fonksiyonunun o6rten oldugunu gosterir.
Sonug olarak deg : [S!, S| — Z fonksiyonu hem birebir hem de 6érten oldugundan

(54,8 =Z

elde edilir. O

Daha once [0, 1] araligindan kendisine giden herhangi bir stirekli fonksiyonun bir sabit
noktas: olmasi gerektigini gostermistik. S'’den S'’e giden siirekli fonksiyonlar: kullanarak,
bu teoremin Brouwer’e ait iki boyutlu bir versiyonunu verelim.

Teorem 3.3.16 (Brouwer Sabit Nokta Teoremi) D? = {(x,y) € R? : 2? + ¢y < 1}
kapaly diski tizerinde tanvmly her siirekli f : D?* — D? fonksiyonunun en az bir sabit noktas:
vardwr. Yani en az bir (x,y) € D* noktas: i¢in f(x,y) = (z,y) olur.

Ispat. Kabul edelim ki f : D? — D? fonksiyonunun hicbir sabit noktas: olmasim. Yani, her
(z,y) € D? i¢in f(x,y) # (z,y) olsun. Buradan her (z,y) € D? noktas igin

1. (z,y) ve f(x,y) noktalarindan gegen bir dogru ¢izeriz.
2. Bu dogruyu (z,y) noktasinin dtesine, D?'nin siirna (S* ¢gemberine) kadar uzatiriz.
3. Bu dogrunun S! ile kesistigi noktay1 g(x,y) olarak adlandiririz.

Boylece g : D* — S seklinde bir fonksiyon tanimlamig oluruz.

(x,y) noktasi (2, y') noktasina yakinsa, f siirekli oldugundan f(x,y) de f(«’,y’) nokta-
sia yakin olur. Bu durumda, g(z,y) de g(z’,y’) noktasima yakin olacagindan ¢ fonksiyonu
siireklidir.

Eger (z,y) € S* ise (yani disk siirinda ise), g(x,y) = (z,y) olur, ¢iinkii (z,y) zaten
simirdadir. F': St x [0,1] — S! fonksiyonunu

F((z,y),t) = g(tx, ty)

ile tammmlayalim. F' strekli bir fonksiyondur ve h(z,y) = F((x,y),0) ile j(z,y) = F((z,y),1)
fonksiyonlari arasinda bir homotopi tanimlar.
h(z,y) = ¢g(0,0) oldugundan, h sabit bir fonksiyondur ve deg(h) = 0 olur.
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j(z,y) = g(z,y) = (x,y) oldugundan (¢iinkii (x,y) € S'), j birim fonksiyondur ve
deg(j) = 1'dir.

Eger F', h ve j arasinda bir homotopi ise, bu fonksiyonlarin dereceleri egit olmalidir.
Ancak deg(h) = 0 # 1 = deg(j) oldugundan, F' fonksiyonu var olamaz. Bu da ¢ fonksiyo-
nunun var olamayacagi anlamina gelir.

Dolayisiyla, baslangictaki varsayimimiz yanhstir ve f : D? — D? fonksiyonunun en az
bir sabit noktasi olmalidir. O
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Bolum 4

Homotopi Gruplari

St — S geklindeki siirekli fonksiyonlarin homotopi smiflarmin [S1, S & Z oldugunu
gosterdik. Z bir Abelyen grup oldugundan, [S?, S'] de bir grup yapisina sahiptir. Bu grup
islemini topolojik olarak su sekilde agiklayabiliriz:

S* gemberini (1,0) ile (—1,0) noktalarindan birbirine yapigtiralim.

(1,0) (—1,0)

Bu iglem sonucunda, bir noktada birlegen iki gemberden olusan bir uzay elde ederiz.
X herhangi bir topolojik uzay ve f,g : S* — X iki siirekli fonksiyon olsun. Bu fonksi-
yonlar1 birlegtirerek yeni bir
f#g:S' = X

fonksiyonu tanimlayalim. Bunun icin, énce S! iki cembere boliiniir, sonra iist cemberi f
ile, alt gemberi g ile resmedelir.

Ancak, iki cemberin ortak noktasinda celigkili tanmimlar olusabilir. Bu nedenle, f ve g
fonksiyonlarmin en az bir noktada ayn degeri almas1 gerekir. Kolaylik icin, bu noktay1 S*
tizerindeki (1,0) noktas: olarak segebiliriz. Yani, f(1,0) = ¢(1,0) olmaldur.

Bu kosul altinda, f#g: S* — X fonksiyonu

f(2t), eger t
g(2t — 1), egert

(f#9)(t) = {

ile tanimlanir. Burada ¢, S' cemberini parametrize eden [0, 1] arahigindaki bir degerdir.

97



98 BOLUM 4. HOMOTOPI GRUPLARI

f(O,*l f(071)
9(1,0)

f(1,0)

9(0,1) g(0,-1)

g(_lv 0)

f ve g fonksiyonlar igin sirasiyla f ve § birer lifting olsun. g(1,0) = f(1,0) oldugundan,
g(0) = f(1) olacak gekilde g tanmimlayabiliriz. Buradan f+#g igin birer lifting

f(2t), eger
(2t — 1), eger

~

o) - {

olur. f#g¢ fonksiyonunun derecesi

olarak elde edilir. Dolayisiyla

deg(f#g) = deg(f) + deg(g)

olur. Bu, # isleminin Z i¢indeki toplama iglemine karsilik geldigini gosterir. Bu nedenle,
# islemini S — S! fonksiyonlar1 kiimesinde bir toplama iglemi olarak diigiinebiliriz.

4.1 Homotopi Gruplari

St — St siirekli fonksiyonlarinin homotopi siniflarinin kiimesinin, [S?, S'] & Z, bir Abelyen
grup oldugunu biliyoruz. Bu grup yapisini, daha genel bir sekilde, herhangi bir X uzay1
icin homotopi siniflarina uygulayabiliriz. Ancak, bunu diizgiin bir sekilde ifade edebilmek
i¢in "igaretli uzaylar” (pointed spaces) kavramini kullanmamiz gerekiyor.

Tanim 4.1.1 (Isaretli Uzay) Bir isaretli uzay, bir topolojik X uzay ve bu uzayn belirli
bir o € X noktasindan olusur. Bu noktaya temel nokta (base point) denir. Isaretli bir uzay
(X, x0) ile gosterilir.
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Tanim 4.1.2 (i§aretli Déniigiim) Isaretli déniisiimler, isaretli uzaylar arasinda tanam-
lanan strekli fonksiyonlardur. Yani, f: (X, x¢) — (Y, y0) bir isaretli dontisim ise,

f(xo) = wo
esitligi saglanar.

Tanim 4.1.3 (i§aretli Homotopi) Isaretli homotopiler, isaretli doniisiimler arasinda ta-
nemlanan homotopilerdir ve her t € [0,1] igin

F(x()? t) =Y
esitligi saglanar.

Tanim 4.1.4 (Cember igin Isaretli Déniigiimler) S' cemberi i¢in temel nokta olarak
(1,0) segilir. Bu durumda, f,g: S — (X, x0) isaretli doniisimler olmak 1izere

f(1,0) = g(1,0) =z
esitligi saglanar.
Teorem 4.1.5 (Birlestirme Islemi) Isaretli dondisiimlerin # islemi ile birlestirilmesi
(f#9)(1,0) = zg
isaretl bir donustimund olustrur.

Tanim 4.1.6 (Topolojik Cift) Bir topolojik ¢ift, bir topolojik X uzayr ve onun bir A alt
uzayindan olusur. Bu ¢ift, (X, A) ile gosterilir.

Tanim 4.1.7 (Topolojik Ciftin Doniisiimii) Bir topolojik ¢iftin dontisimi, (X, A) —
(Y, B) seklinde stirekli bir fonksiyondur ve

f(A)c B
esitligint saglanar.

Tamim 4.1.8 [ki isaretli déniisiim f, g : (S™,0S™) — (X, x0) d¢in # birlestirme islemsi

f(817"'75n—1728n)7 €§€T Sn <
(f#g)(sla"'asn) = v N
(81,0 Sn_1,28, — 1), eger s, =

b

N N+

ile tanimlanar.

Teorem 4.1.9 (Homotopi Uyumlulugu) Eger f ~ f' ve g ~ ¢ isaretli homotopilerle
homotop ise, f#qg ~ f'#4q olur.
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Tanim 4.1.10 (Homotopi Smiflar1 Uzerinde Toplama) S" — X isaretli déniisiim-
lerin homotopi siniflar kimesi m,(X) tzerinde toplama islemsi

]+ lg] = [f#4]
ile tanemlanar. Burada [f], f fonksiyonunun homotopi sinifiny ifade eder.
Sonug 4.1.11 Tanwmlanan toplama islemi 7, (X) kimesini bir grup yapar.

Uyar1 4.1.12 7,(X) her zaman Abelyen olmayabilir. n = 1 ve X = S oldugunda,
1 (SY) = Z ve bu grup Abelyen’dir. Daha yiiksek boyutlarda, grup yapist daha karmasik
olabilir.

Not. Tim koordinatlar diginda s; ve s, koordinatlarim bastirarak (gérmezden gelerek),
(S™,0S™) tizerindeki déntigiimlerin toplama iglemi iki boyutta su sekilde tasvir edilebilir:

f

Burada ¢ember, S™’i temsil eder ve yatay ¢izgi, s, = % diizlemini gosterir. Ust yar kiire
f ile, alt yar1 kiire g ile doniigtimii gosteririr. O

Onerme 4.1.13 f ~ [’ ve g ~ ¢ isaretli homotopiler ile homotop ise f#q ~ f'#¢'
isaretli bir homotopi ile homotop olur.

Ispat. F': S" x [0,1] = X ve G : S" x [0,1] — X, swrasiyla f fonksiyonunu f’ fonksiyo-
nuna ve g fonksiyonunu ¢’ fonksiyonuna igaretli homotopilerle baglayan stirekli fonksiyonlar
olsun. Buradan her ¢ € [0, 1] igin

F(x,0) = f(z), F(z,1)= f'(z), F(xo,t) =

ve

G(z,0) =g(z), G(z,1) =4 (x), G(xg,t) = x0

olur. f#g¢ fonksiyonunu f'#g¢’ fonksiyonuna baglayan bir isaretli homotopi H : S™x [0, 1] —
X

H(Z‘, t) = E#Gtv
ile tammlayalim. Burada F; : S — X ve G; : 8" — X dontgiimleri her ¢ € [0, 1] i¢in

sirasiyla F' ve G homotopilerinin ¢ anindaki kesitlerini temsil eder. Yani, F}; ve G; donii-
simleri S™ — X isaretli dontisiimlerdir.
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F ve G stirekli oldugundan ve # isleminin siirekli dontigiimler arasinda tanimlandigin-
dan # iglemi, S™ uzaym iki parcaya béler. Ik parca (s, < %) F, ile déniigiir. Ikinci parca
(sn = 1) G, ile doniigiir. Bu nedenle, H siirekli bir fonksiyondur.

F ve G igaretli homotopiler oldugundan her ¢ € [0, 1] igin

F(‘TOa t) = Xo, G(Qjo,t) = Zo
oldugundan Fy(zg) = xo ve Gi(x¢) = x¢ olur. Buradan
H(wg,t) = (Fi#Gy)(x0) = 70

elde edilir. Bu, H déniigiimiiniin isaretli bir homotopi oldugunu gosterir. Ayrica

H(x,0) = Fy#Go = f#g

ve
H(z,1) = Fi#G, = f'#4

oldugundan H doniigiimin f#g fonksiyonunundan f’'#g¢’ fonksiyonununa bir homotopi

olur. -

Onerme 4.1.14 (Sifir Elemanin Varhigi) c: S" — X temel noktaya giden sabit fonk-
siyon olsun. Herhangi bir f . S™ — X fonksiyonu icin, f#c ve c#f fonksiyonlary f ile
homotop olur. (Yani, m,(X) toplama islemi (+) igin bir sifir elemana sahiptir.)

Ispat. Herhangi bir f : S — X fonksiyonu icin, f#c fonksiyonunun f fonksiyonu ile
homotop oldugunu gosterelim.
H :S™x[0,1] — X homotopisini

T eger s, < &
H((sl,...,sn),t):{ 0 ) & o
= 2

ile tanimlayalim. Buradan

(81, -0y Sn_1,28n), eger s, <
f(s1y-0ey8n1,28, — 1), eger s, >

H((s1,.-+,8n),1) :{

ve
H((s1,-+-581),0) = f(s1,---,8n)

olur. Geometrik olarak s; ve s, koordinatlar1 digindaki tiim koordinatlar1 bastirarak, H

doniigimiini iki boyutta
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seklinde gosterebiliriz.
Benzer sekilde, f#c fonksiyonunun f fonksiyonu ile homotop oldu

26n 3
H((s1,--,8n),t) = {f(81, ey Sn1, 57, eiger Sn
Lo, eger s,

u

0ac

dontistimii ile gosterilebilir.
Sonug olarak bu homotopiler, f#c ~ f ve c#f ~ f oldugunu gosterir. Dolayisiyla, [c]
smifi m,(X)’in toplama iglemi igin sifir elemanidir:

Sonug 4.1.15 7, (X) toplama islemi (+) i¢in bir sifur elemana sahiptir.

(?nerme 4.1.16 (Ters Elemanin Varhg) Her f : S" — X fonksiyonu igin dyle bir
f 8" = X fonksiyonu vardwr ki, f#f ve f#f sabit fonksiyon c ile homotop olur.

ispat. B
f (8™, 08") — (X, x0) igin, f: (S™,05™) = (X, z0)

f(s1yoooy8n) = f(s1,--+8n-1,1 — 8p)

ile tanimlayalim. Bu tamm, son koordinati ters gevirir, yani s, yerine 1 — s, kullanir.
f#f fonksiyonundan ¢ fonksiyonuna bir H homotopisini

D510 s501, 150, el 5t < 5 < 12,

H((s1,...,8,),t) = 3
((s1 Sn)s ) {(f#f)(sh.”?sn_l?sn% diger durumlarda.

ile tanmimlayalim.

Sp = % icin tanim acikca tutarhdir. s, = % i¢in celigkili goriinebilir, ancak
= 141 =
(f#f)(slv'--asn—laT) (Sla"'78n—lat)

= f(Sl, ey Sp—1, 1-— t)

- 1—1
= (f#f)(slu cey Sn—1, T)

egitlikleri saglanir. Yapigtirma lemmasi geregi, H siirekli bir fonksiyondur ve 95™’in sini-
rinda sabittir, dolayisiyla isaretli bir homotopidir. Ayrica ¢ = 0 icin H fonksiyonu f#f,
t = 1icin H fonksiyonu tiim noktalar: (f#f)(s1, ..., sp—1,0) noktasina, yani temel noktaya
gotiiriir. Bu, H doniisiimiiniin f# f fonksiyonundan ¢ fonksiyonuna bir homotopi oldugunu
gosterir.
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f#f ~ ¢ oldugunu benzer sekilde ispatlayabiliriz. Alternatif olarak, ?_ = f oldugunu
gozlemleyerek ve yukaridaki ispat1 f i¢in uygulayarsak

f#] ~e = [#f~ec
sonucuna ulagalir. Sonu¢ olarak her f icin bir f fonksiyonu

1+ 11 =1+ [f] =]

olacak gekilde bulunur. Bu da [f] fonksiyonunun [f] fonksiyonunun ters elemani oldugunu
gosterir. O

Sonug 4.1.17 m,(X) de toplama islemi ters elemana sahiptir.

Onerme 4.1.18 (Toplama Isleminin Birlesme Ozelligi) Eger f,g,h : S — X isa-
retli donisimler olmak tzere (f#g)#h donisimi f#(g#h) donisimi ile homotoptur.

Ispat. H : 5™ x [0,1] — X homotopisini

f(slw"vsn—l)%)a eger Sn< %7
H((s1,. 1 80),t) = § g(s1,. .., Sn1, 48, +1—2), eger 27t < s, < 22,
h(s1,- -+, Sn-1, —4521?5), eger s, > L.

ile tammlayalim. ¢t = 0 igin (f#g)#h ve t = 1 ise i¢in f#(g#h) olur.

H doniigiminin s,, = % ve s, = % noktalarinda tutarli oldugunu gosterelim.
sp = 27% icin
4s,
H((s1,--.y80),t) = f(s1,+ s Sn_1,——)
2—t
ve
H((s1,---y8n),t) = g(s1,...,Sp_1,48, +t — 2)
olur. s, = % icin
4. 2=t
f(Sl, ey Sp—1, —4) = f(Sl, ey Sp—1, ]_)
2—1
ve
2—1

g(sl,...,sn_1,4-T+t—2) =9g(S1,.-,50-1,1)

olur. Bu, f ve g fonksiyonlarinin isaretli dontigiimler oldugu goz ontine alindiginda tutar-
hdir. s, = % icin
H(($1,---380),t) = g(S1, -, 8n-1,48, +t — 2)

ve
4s, +t—3

H((s1,..,80),) = h(S1, .+, Sn_1,
(1220 080).8) = s s, =

).
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olur. s, = % icin
g(sl,...,sn_1,4-¥+t—2) =g(s1,--+,8n0-1,1),
ve .y
h(sl,...,snl,ll.Tt_i_——i_f_S) = h(s1,...,Sn_1,1).

olacagindan tutarhdir. Ayrica

f(s1,.0 058021, 25,), eger s, < 1,
H((s1,.--,5),0) =< g(s1,..., 801,48, —2), eger % < s, < %’
h(Sl, cey Sp_1,48, — 3), eger s, = %
olmasi (f#g)#h doniisiimiine karsilik gelir.
f(sh . '7Sn—1748n); eger Sn < %7
H((s1,..,8.),1) =< g(s1,..., 801,48, — 1), eger ;11 < s, < %’
h(si,...,8,-1,45, —3), eger s, > %

olmasi ise f#(g#h) doniigtimiine karsilik gelir.
Sonug olarak H doniigimu (f#g)#h fonksiyonundan f#(g#h) fonksiyonuna bir ho-
motopi tanimlar. O

Sonug 4.1.19 7, (X) de toplama islemi asosyatif(birleseli) olur.
Sonug 4.1.20 7, (X) de toplama islemi ile bir grup olur.

Tanim 4.1.21 (n’inci Homotopi Grubu) Bir X topolojik uzayr ve bir xy € X temel
noktasi verildiginde, n’inci homotopi grubu m,(X, zo), S™ n-boyutlu kiresinden X uzayina
olan ve S™ uzayinin bir temel noktasini xo noktasina gotiren isaretli déntsimlerin homotopi
sinaflariman kimesidir. Bu kime, # islemi ile tanimlanan toplama islemi altinda bir grup
yaprsina sahiptir. Yani

ﬂn(X7 3:0) = [Sn7 X]Z’o)

burada [S™, Xz, S™ — X olan ve temel noktalar koruyan donigimlerin homotopi sinif-
larina temsil eder.
Toplama islemi

1+ 19l = [f#4],

ile tanemlanar. Burada f,q : (S™, so) — (X, x0) isaretli doniisimlerdir. Grup yapist

« ([FT1+19D) + [ = [f] + (lg] + [A])-

o [c], ¢: 8™ = X sabit donisim ve her s € S™ igin c(s) = g
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o Her [f] igin bir [f] vardwr dyle ki [f] + [f] = [f] + [f] = [c].

ile saglamir. Eger n > 2 ise, m,(X, xo) grubu Abelyan grup olur.

Tanim 4.1.22 (Null-homotop Doniisiim) Bir f : X — Y déntsimi, eger bir sabit do-
nistime homotop ise null-homotop olarak adlandirilir. Yani, f dontisimaii i¢cin bir homotopi
H: X x[0,1] =Y var vec: X =Y sabit donisimi i¢in

H(z,0) = f(z)
oluyorsa f null-homotoptur.

Ornek 4.1.23 (Konveks Alt Kiime Uzerine Null-homotopluk) Herhangi bir f : S™ —
X dondisimi, eger X C R™ konveks bir alt kiime ise null-homotoptur. Yani, f, sabit bir
doniisime homotoptur.

X C R" konveks bir alt kime ve f : S™ — (X,xq) isaretli bir donisim olsun. f
fonksiyonunun sabit doniisim c: S™ — X ile homotop oldugunu gésterelim. H dontistimai

H(z,t) =tf(z)+ (1 —t)xy, herazeS" vete|0,1]

ile tanimlansin. Buradan

H(z,0)=0-f(z)+1 2=

ve
H(z,1) =1 f(z) +0- 20 = f(x)
olur. S™’in temel noktasi (1,0,...,0) olsun. Buradan
H((1,0,...,0),t) =tf(1,0,...,0) + (1 — t)zo
icin f isaretli bir donisim oldugundan f(1,0,...,0) = xg olacagindan

H((]_,O,,O),t) :tl'o—f—(l—t)fb():xo

elde edilir. Bu H dontisiminin temel noktay: korudugunu gosterir.
Sonug olarak f, sabit déntsim c ile homotoptur. Dolayiswyla, f homotopi sinifinda sabit
doniistimle ayni sinifa ait olacagindan

m(X) = {0}

olur. X konveks bir alt kiime olmak tizere S™ — X olan tim isaretli dontisimler null-
homotop olur.

Tanim 4.1.24 (Eilenberg-MacLane Uzay1) Bir G grubu ve bir n > 1 tam sayisi ve-
rildiginde, bir K(G,n) Eilenberg-MacLane uzayr,

1. m(K(G,n)) = G (yani, n’inci homotopi grubu G grubuna izomorf).



106 BOLUM 4. HOMOTOPI GRUPLARI

2. m(K(G,n)) =0 heri # n igin (yani, diger tim homotopi gruplar agikardur(trivial).)

ozelliklerini saglayan bir topolojik uzaydir.
Bagska bir deyisle, bir Eilenberg-MacLane uzayr, sadece n’inci homotopi grubunda G
grubuna izomorf olan diger homotopi grular asikar olan bir uzaydir.

Not.
« Bir G grubu ve n sayisi i¢in bir K (G, n) uzay1 her zaman vardir.

e K(G,n) uzayr homotopi denkligi anlaminda tektir. Yani, aym1 G ve n igin iki farkh
K (G, n) uzay1 birbirine homotopi denktir.

« Eilenberg-MacLane uzaylari, homotopi teorisinde énemli bir rol oynar. Ozellikle, s1-
niflandirma uzaylar1 ve kohomoloji teorisi ile yakindan iligkilidirler.

O

Tanim 4.1.25 (Smiflandirma Uzay: ve K(G, 1)) n =1 i¢in K(G, 1) Eilenberg-MacLane
uzayina G grubu i¢in bir ssniflandirma uzayr (classifying space) denir ve genellikle BG
ile gosterilir.

° 7T1(BG) =G
e hern #1 i¢in m,(BG) =0

Baska bir deyisle, BG uzay, sadece birinci homotopi grubu G grubuna izomorf olan ve
diger tiim homotopi gruplar: sifir olan uzaydur.

Ornek 4.1.26 (S* bir Eilenberg-MacLane Uzayidir) S* cemberi, K(Z, 1) bir Eilenberg-
MacLane uzayidar.

St cemberin birinci temel grubu, cember tizerindeki kapali yollarin homotopi simiflarina
temsil eder. Bu yollarin her biri, cemberi belirli bir sayda dolanwr (pozitif veya negatif
yonde). Bu nedenle, m1(S*) tam saylar grubuna izomorftur.

S? — St bir déniistimiinii ele alalim. Bu déndistimii S 'in evrensel értisii olan R uzayina
lifting yapilabilir. Ancak, R konveks bir uzaydir ve bu nedenle tim donisimler bir sabit
fonksiyona homotoptur. Bu, S* — S déndisiimiiniin sabit bir fonksiyona homotop oldugunu
gosterir. Dolayswyla, wo(S') =0 olur.

Yukaridaki argiiman, n > 1 icin de gecerlidir. S™ — S bir déoniisiimi, S* cemberinin
evrensel ortisi olan R uzayina lifting yapilabilir. R konveks oldugu i¢in, bu dontsim bir
sabit fonksiyona homotoptur. Dolayswyla her n > 1 igin m,(S') = 0 olur.

Sonug olarak S*, m(S') 2 Z ve m,(S') = 0 (n > 1) ézelliklerini sagladigu i¢in K(Z,1)
bir Filenberg-MacLane uzayidir.

Sonug 4.1.27 S, Z grubu igin bir ssmflandirma uzaydar (classifying space).
BZ ~ S'
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Tanim 4.1.28 ((n — 1)-Baglantili Uzay) Bir X topolojik uzayr ejer her i < n igin
mi(X) = 0 oluyorsa X uzayina (n — 1)-baglantily (n-1-connected) uzay denir.

Ornek 4.1.29 ( Hopf Déniisiimii) 73(5?) & Z oldugunu Hopf 1930 larda géstermistir.
Bu, homotopi teorisinin baslangicy olarak kabul edilir. Hopf, R* ile C? ézdeslestirerek H -
S3 — 82 bir dondisiim tanimlamastor.

R* wzayinda (xy1,y1, T, y2) noktass C* uzayinda (21,22) ¢ifti ile ifade edilir, burada
21 = @1 +iy; ve zp = Ty +iys. S, C* uzayinda |21|* + |22|* = 1 kosulunu saglayan noktalar
kiimesi olmak tizere Hopf donitistimii

21
H('Zla Z2) -
22
ile tanimlanyr. Burada zo = 0 oldugunda j—; = oo olarak tamvmlanr. Ayrica H(z1, z3),

C U {0} ile dzdeslestirilen S*ye bir doniisim verir.
Hopf Doniigtimiintin Ozellikleri:

o H surekli bir dontistumdiir.

o H'nin S? fizerindeki herhangi bir noktasinan ters gérintiisi, bir cember S*’e home-
omorftur.

e Bu déniisim, 73(S?) = Z oldugunu gésterir. Yani, S*’ten S?’ye olan doniisimler,
tam sayilarla él¢iilen bir homotopi sinifina sahiptir.

Lemma 4.1.30 X ve Y isaretli uzaylar ise
Tn(X X Y) 27, (X) x m,(Y)
saglanar.

Ispat. fx : S" = X ve fy : S — Y iki siirekli doniisiimleri yardmuyla f: S* — X x Y
siirekli bir dontigiimii

[ (fx, fr)

tanimlanabilir. Benzer gekilde, g : S™ — X x Y bagka bir doniigim olsun. F': S™ x [0, 1] —
X xY, file g arasinda bir homotopi olsun. Bu durumda, F', fx ile gx arasinda bir homotopi
Fx : 8" x[0,1] = X ve fy ile gy arasinda bir homotopi Fy : S™ x [0,1] — Y homotopi
¢ifti ile tanimlanir.
F < (F X, F y)

f 9" = X xY bir isaretli doniigiim ise, bu doniigsim fx : S™ = X ve fy : S" = Y
isaretli doniisimlerinden olusan bir ¢ift ile iligkilidir. Benzer sekilde, isaretli homotopiler
de bu ¢iftler arasinda bir iligki kurar.

Buradan 7, (X xY) ile 7, (X) x 7,(Y") arasinda birebir bir egleme vardir. Yani [f], f’nin
homotopi sinifin, [fx| ve [fy] ise sirasiyla fx ve fy'nin homotopi simiflar1 olmak tizere

/] < ([fx] [fv])
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yazabiliriz.Bu egleme, homotopi smiflar1 tizerindeki toplama iglemini de korur. m,(X x Y')
tizerindeki toplama iglemi, 7, (X) ve 7,(Y") tzerindeki toplama iglemlerine

1+ 19l < (Ufx]+ lox], Lv] + lov])

kargilik gelir. Sonug olarak bu birebir esleme ve toplama igleminin korunmasi, m,(X x Y)
grubunun 7,(X) X 7,(Y") grubuna izomorf oldugunu gosterir:

Tn(X X Y) 27, (X) x m,(Y)
O

Ornek 4.1.31 (Silindirin Homotopi Gruplar1) Silindir C = I x S*, S' ¢emberi ile
I =10, 1] arabginin carpymdar. I aralige bizilebilir bir uzaydur, yani tim homotopi gruplar
astkardir. Bu nedenle, silindirin homotopt gruplar:

7o (C) = o (I x SY) = 7, (I) x 7,(S') = 7, (Sh)

olarak elde edilir. Silindirin homotopi gruplar, yalnizea S* ¢cemberinin homotopi gruplarina
esittir.

Geometrik olarak silindir, S* cemberinin bir "uzantisi” olarak diistinilebilir. I aralig
biiziilebilir oldugu igin, silindirin homotopi ézellikleri yalnizca St ’in homotopi ézelliklerine
bagldar.

{1} x S?

0 1
%—J
[=10,1]

Ornek 4.1.32 (Torusun Homotopi Gruplar1) Torus T? = S' x S, iki cemberin car-
prmayla elde edilen bir yizeydir.

e Birinci Homotopi Grubu:
m(T?) = m (St x S1) 2 7y (SY) x m(SY) 2 Z x Z.

Bu, torusun birinci temel grubunun iki cemberin dolanma sayilariyla 6l¢ildigini
gasterir. Yani, torus tzerindeki kapalr yollar, iki bagimsiz ¢ember boyunca dolanma
saylaryla ifade edilir.
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o Yiiksek Boyutlu Homotopi Gruplari:
To(T?) = 7, (S* x SY) 2 71, (SY) x m,(SY)

Stigin m,(SY) =0 (n > 1) oldugundan, torus igin de 7,(T?) =0 (n > 1) olur.

z

Ornek 4.1.33 R? — S' uzaymin homotopi gruplarina hesaplayalim.
R? — S, R? diizleminden bir cemberin ¢ikariimaswyla elde edilen uzaydir. Bu uzaymn
homotopt gruplarine anlamak i¢in, uzayin homotopi acisindan neye benzedigini inceleyelim.
R2 — St homotopi agisindan bir cember ile homotopi denktir. Bunun nedeni, R? — S %in
bir cemberin etrafinda "delik” olusturmasidir. Bu delik, uzayin homotopi yapisine belirler.
Dolaysiyla:

R? - St~ st

olur.
SY%in homotopi gruplarim kullanarak R? — St in homotopi gruplarini hesaplayabiliriz:

o mo(R? — SY) = 7(S?) = 1: Uzay yol baglantiladar.

o m(R?—SY) = m(SY) = Z: Cemberin birinci temel grubu tam sayar grubuna izo-
morftur.

o m(R%2—S") =m,(SY) =0 heri > 1 igin: S'in daha yiiksek homotopi gruplary siferdur.
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4.2 Aciga Cikan Homomorfizmler

Tanim 4.2.1 (Acgiga Cikan Homomorfizm) f : X — Y ssaretli bir sirekli donisim
olsun, f fonksiyonuna bagh olarak aciga ¢ikan fonksiyon

fo i m(X) = ma(Y)
vardir. Bu fonksiyon, herhangi bir j : S™ — X isaretli dondguminai
So(l]) = [f o j]

ile tanymlar. Burada [j], j dontsiminin homotopi sinifine ifade eder ve [f o j], foj
bilesiminin homotopi sinifidar.

Ozellikler:

o f., homotopi simiflar, arasinda bir fonksiyon tanimlar.

o fy, grup yapisine korur, yani bir homomorfizmdir:

Sl + [72]) = £ulln]) + fe([2)).

Not. j ~ k ise
L) = [fedl
= [fok] ..([fejl=1[fok]
= fu([k])
olacagindan f, iyi tanimhdair. O

Teorem 4.2.2 (Agiga Cikan Homomorfizmin Ozellikleri) f : X — Y isaretli sii-
rekli bir donisim ise a¢iga ¢ikan fonksiyon f. : m,(X) — m,(Y) bir grup homomorfizmidir
ve
1. g :Y — Z baska bir isaretli dondisim ise
(gofle=gso fu
2.1 : X — X birim donisium ise, 1, hern i¢in
T (X) = 1 (X)

birim homomorfizmidir.
3. h: X =Y donisimii f ile isaretli homotop ise

h*:f*

4. c: X =Y donisimi X uzayinin her noktasint Y uzayiman temel noktasina gotiiri-
yorsa
e =0

sifir homomorfizmidir
ozellikleri saglanar.
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Ispat. ji,js : S™ — X isaretli déniisiimler olsun. Buradan

flli] + 12]) = fulligtie]) = [f o (i#2)]

olur. j; ve jp fonksiyonlarmi (sy,...,s,) € S™ i¢in

f(jl(sla-"asn—1728n>) ef{.‘;er Sn <
f(ja(s1, .. 81,28, — 1)) eger s, >

F o Gidkia) (s, - 50) = {
olarak yazabiliriz. Burada sag taraftaki ifade (f o j;)#(f o j2) olacagimdan

Lf o (G1#tde)] = [(f o j1)#(f o j2)] = [f o ju] + [f 0 jo] = fuldr] + fili2]

olur.

1. f, fonksiyonu f ile bilegke olarak tanimlandigindan g ile bilegke almak, go f ile bilegke
almakla aym fonksiyonu olacaktir.

2.1 : X — X birim doniigsim ve 7 : S™ — X herhangi bir dontigiim olmak tizere ioj = j
oldgundan i,[j] = [i o j] = [j] olur. Buradan agiga ¢ikan homomorfizm i, m,(X) tizerinde
birim fonksiyon olur.

3.f~g: X—>Yveh~j:Y = Zise, (hof)~(jog): X — Z oldugundan agiktir.

4. Herhangi bir j : S™ — X doniigimiinii ¢ ile bilegke almak, temel noktaya giden
sabit doniigiimii verir ki bu m,(Y) grubunun sifir elemanini temsil eder. Bu nedenle tiim
1j] € T, (X) icin ¢.([j]) = 0 € m,(Y") olur. O

Onerme 4.2.3 Her (z,y) € S* i¢in

flz,y) = (2,y)

olacak sekilde f : D? — S siirekli dondisiim yoktur.

Ispat. Kabul edelim ki her (x,y) € S' icin f(z,y) = (z,%) olacak sekilde f : D? — S*
stirekli déniisiim olsun. f déniisiimiinii S'’in D?'nin siniria dahil edilmesi olan i : S — D?
ile birlegtirerek

st 4 prds gt
dizisi elde edilir. Bu diziyi homotopi gruplarina uygularsak
m(SY) 25 1 (D?) L5 1 (Sh)
grup homomorfizm dizisini elde ederiz. Burada
e m(SH2Z

o m(D?) =0 (D? konveks bir uzay)
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olur. Buradan grup dizisi
75057
olarak yazilabilir. Bu diziden, Z’deki herhangi bir tam sayiy1 alip 6nce i,, ardindan f,

uygulanirsa her n € Z i¢in i,(n) = 0 olacagindan f,(0) olur.
f(z,y) = (x,y) kosulundan f o fonksiyon S! {izerinde birim déniigiim olacagindan

feois=(foi).

olur. Dolayisiyla ( foi), fonksiyonu 7 (S') iizerinde birim grup homomorfizmi olmalidir. Bu
sifir homomorfizm olmasi ile geligir. Bu geligki, béyle bir f déniigiimiiniin var olamayacagini
gosterir. O

Sonug 4.2.4 Siirekli birebir olan bir fonksiyon homotopi gruplar: izerinde birebir olmayan
homomorfizm acija ¢ikaridabilir. Ornegin, i : ST — D? igine déndisimi m ftizerinde sifor
homomorfizm agiga ¢ikarur.

Ornek 4.2.5 p: R — S' evrensel ortii dondisimiini
p(t) = (cos(2mt), sin(27t))

ile tanamlanar. Bu déniisiim stirekli ve her s € S igin p(t) = s olacak sekilde bir t € R var
oldugundan értendir. Ancak, p dénidsiminin agija ¢ikardige homomorfizm

Py T1(R) — m(S1)
m(R) =0 (R konveks oldugundan) ve 7 (S') = Z oldugundan érten degildir.

Sonug 4.2.6 Strekli orten olan bir fonksiyon homotopi gruplar: tizerinde orten olmayan
homomorfizm aciga ¢ikarilabilir.

Onerme 4.2.7 f: S' — S* déndisiimii icin fo f sabit doniisim ise, o zaman f, : m (S*) —
m1(SY) sufir homomorfizmdir.

Ispat. f o f bilesiminden (f o f), = f. o f. homomorfizmi ac¢iga cikar. Herhangi bir
7 8" = X doniigiimiinii sabit dontisiim c¢ ile bilegske almak, temel noktaya giden sabit
doniigiimii vereceginden f o f sabit bir dontigiim oldugundan a¢iga ¢ikan homomorfizm sifir
homomorfizmdir. O

Ornek 4.2.8 f : S* — S doniisiimii icin f o f sabit doniisiim olsun. 7 (S') = Z oldu-
gundan, 7 — 7 seklindeki grup homomorfizmleri yalnizca tam sayilarla carpma islemiyle
tamemlanar. Yani k € 7 igin f.(n) = kn geklindedir. Ancak, f. o f. = 0 oldugundan her
n €z igin

fo(fi(n)) = fulkn) = k*n =0
olur. Bu, k* = 0 anlamina gelir, ancak k € Z oldugundan bu durum yalmizea k = 0 icin
mimkindir. Bu nedenle f, =0 sifir homomorfizmdir.



4.3. TEMEL GRUP 113

Onerme 4.2.9 X we Y isaretli homotopi agisindan denk ise, o zaman ,(X) ve m,(Y)
her n i¢cin izomorf olur.

Ispat. X ve Y isaretli homotopi acisindan denk oldugundan f o g ~ Idy ve go f ~ Idy
olacak gekilde f : X — Y ve g : Y — X siirekli doniigiimleri vardir Buradan aciga ¢ikan
homomorfizmler f, ve g, birbirinin tersidir.

Ornegin, f o gl doniisiimii Y iizerinde birim doniisiime homotop oldugundan, (fog), =
Id olur. Ancak, (f o ¢)« = f« o g« oldugundan

fiog.=1d

elde edilir. Benzer sekilde, g o f dontisimt X iizerinde birim déniigiime homotop oldugun-
dan, (g o f), = Id olur. Ancak, (g o f). = g« o f. oldugundan

g0 fi =1d

elde edilir. Bu, f, ve g,’nin birbirinin tersi oldugunu ve dolayisiyla izomorfizm olduklarini
gosterir. Sonug olarak her n igin

1%

T (5) = 7 (T)

olur. O

Sonug 4.2.10 Homeomorf uzaylar ayni homotopi gruplarina sahiptir.

Ornek 4.2.11 R? — {0} uzayn S* ¢emberine homotopi agisindan denktir.

R%— {0}, orijini ¢ikardigimiz R? diizlemidir. Bu uzay, orijinden uzaklasan tiim noktala-
rin birim cembere (S') radyal olarak biiziilmesiyle S* uzayima homotopi agisindan denktir.
Buradan R?* — {0} uzayrmn homotopi gruplart S* uzaymmin homotopi gruplaryla aynidar.
Bu biiziilme, R? — {0} 'daki her noktay, ayni dogrultuda bulunan S* tizerindeki bir noktaya
esler.

° ’7T1(R2 - {0}) = 7T1(Sl) =7.

o m(R?—{0})=m(S") =0 heri > 1 igin.

4.3 Temel Grup

Tanim 4.3.1 (Temel Grup 7,(X)) Bir X topolojik uzayr ve bir xy € X temel noktas
verildiginde, X wuzayinin birinci homotopi grubuna X uzayimin temel grubu denir.

Teorem 4.3.2 n > 1 igin m,(X) bir Abelyan gruptur.
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Ornek 4.3.3 X C R? wzay, (|z| — 1)? +y? = 1 kosulunu saglayan noktalar kiimesi (sekiz
sekli) olmak tizere m (X) Abelyan degildir.

X = {(e,y) €R2: (fa] — 12 + 32 = 1}
Yy

X, tki cemberin bir noktada birlesmesiyle olusan bir "sekiz sekli”dir. Bu durumda, X uza-
yrnan birinei temel grubu m (X)), iki cemberin birlestirilmesiyle olusan serbest bir gruptur.
Bu grupta, cemberlerin dolanma sayilary bagimsizdir ve toplama islemi genellikle komaitatif
degildir.
f:St—=X
f(xvy) = (1 _Ivy)

dondisiimii S* cemberini X 'in sag cemberi boyunca dolastirir.
veg:St— X
g(x,y) = (x — L,y).

dondisiimii ST cemberini X 'in sol ¢cemberi boyunca dolagtirir.
f#g: f dondisimiini, ardindan g dontisimiini takip eden bir yol ve g# f : g dondistimiin,
ardindan f déntsimaini takip eden bir yol olmak tizere

[f#g] # [9#f]

oldugundan Bu iki yol, homotopi a¢isindan denk degildir.
Bu, m(X) grubunun toplama islemi altinda komaitatif olmadigine, yani m (X) grubnun
Abelyan bir grup olmadigini gosterir.

Sonug 4.3.4 Sekiz sekli gibi bir uzaywn birinci temel grubu m (X), genellikle serbest bir
grup olur ve Abelyan degildir. Bu, X tizerindeki yollarin birlestirilme sirasimin homotopi
acrsindan onemli oldugunu gosterir.
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Lemma 4.3.5 X wuzay yol baglantiidir ancak ve ancak mo(X) yalmizea bir elemana sahip-
tir.

Ispat. = X yol baglantiliysa, X uzaymin herhangi iki noktas: arasinda bir yol vardur.
Bu durumda, X uzaymin tiim noktalar: ayn1 baglanti bilegenine aittir. Dolayisiyla, 7o (X)
yalnizca bir elemana sahiptir.
< 7o(X) yalmzca bir elemana sahipse, bu X uzaymin yalnizca bir baglant1 bilegeni
oldugu anlamina gelir. Bu durumda, X uzayinin herhangi iki noktasi arasinda bir yol vardir
ve X yol baglantili olur.
O

Uyar1 4.3.6 X wuzaiy yol baglantily degilse, X uzayinin noktalar: tizerinde
x ~y < x iley arasinda bir yol vardir.

denklik bagintisy tanimlayabiliriz. Bu bagintt X uzayinin noktalarine yol baglantily bilesen-
lere ayrir. Elde edilen denklik simaflary kiimesi, tam olarak [S°, X] homotopi sinaflarinin
kiimesidir. Burada [S°, X| denklik sinaife S° uzayindan X uzaywna olan isaretli sirekli do-
nistimlerin homotopi simiflaring ifade eder.

Bu kiime, homotopi gruplarwyla birlikte ele alinir ve bazen 0. homotopi grubu olarak
adlandwrilir. Ancak, bu bir grup yapisina sahip degildir.

Onerme 4.3.7 X bir isaretli topolojik uzay olmak izere n > 0 ise
T (X) = T (Xo)
olur. Burada Xy, X "in temel noktayr iceren yol baglantily bilesenidir.

Ispat. n > 0 oldugunda, 7,(X), S* — X olan isaretli siirekli doniigiimlerin homotopi
siniflarindan olugur. Bu dontigtimlerin homotopi simiflari, yalnizca temel noktayi iceren yol
baglantili bilesen X ile ilgilidir.

S™ (n > 0) yol baglantili bir uzaydir. Bu nedenle, S — X herhangi bir stirekli dontigtim,
X uzaymin yalnizca bir yol baglantili bilesenine gériintii alabilir. Ozellikle, temel noktay:
sabit tutan igaretli dontiigiimler, yalnizca X, kiimesine gotiirtir.

f 8™ — X bir isaretli doniigiimse, f fonksiyonunun goriintiisit X uzayimin temel
noktay1 iceren yol baglantili bileseni X, kiimesinde yer alir. Bu nedenle, f ve g gibi iki
doniistimiin homotopi siniflar1, yalmzca X, kiimesindeki yollarla ilgilidir. Buradan

T (X) = m(Xo).

olur.

X uzaymin diger yol baglantili bilegenleri, temel noktay:1 icermediginden, S™ uzayin-
dan bu bilegenlere herhangi bir isaretli doniigiim olamaz. Bu nedenle, X uzaymin diger
bilegenleri , (X) de bulunmaz.

Sonug olarak, m,(X) yalnmzca X, kiimesine baghdir. Buradan

7Tn<X) = Wn(XO)

elde edilir. 0
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Sonug 4.3.8 Eger n > 0 ise, bir topolojik uzayin homotopi gruplar, yalnizca temel nok-
tayr iceren yol baglantily bilesen tarafindan belirlenir. Diger bilesenler homotopi gruplarna
katkida bulunmaz.

Ornek 4.3.9 Q rasyonel saylar ve Z tam sayplar i¢in homotopi gruplar

e m(Q) =Q ve m(Q) =0 heri> 0 igin.
o m0(Z) =7 ve mi(Z) =0 heri> 0 igin.

olur.
m0(Q), Q wzayinda yol baglantily bilesenlerini ifade eder. Ancak Q uzayinda her bir
nokta kendi basina bir yol baglantily bilesendir, ¢iinki Q yol baglantily degildir. Buradan

Wo(@) =Q

olur
Benzer sekilde 7. uzayrda her bir tam sayr kendi yol baglantily bileseni oldugundan

o(Z) =7

olur.

Daha yiiksek homotopi gruplar: (m; i¢in i > 0), yalmzca yol baglantily bilesenler tize-
rinde tanimlanir. Ancak Q ve Z uzaylarinda her bir yol baglantily bilesen tek bir noktadan
olustugundan her v > 0 i¢in

ve

elde edilir.

Not. Homotopi gruplari, Q gibi ayrik olmayan bir topolojik uzay1, Z gibi ayrik bir uzaydan
ayirt edemez. Bu, homotopi gruplarinin topolojik uzaylarin tiim karmagikligini yakalaya-
madigini gosterir. O

4.4 Van Kampen Teoremi

Teorem 4.4.1 (Van Kampen Teoremi) X = U UV wve U,V agik alt kimeler olmak
tizere UNV yol baglantily ve X uzayinan temel noktasina iceriyorsa, o zaman her o € mp(X)
cim

a=p1+ 0+ + B,
olur. Burada her B;, ya j.(mi(U))’de ya da k.(m (V) de bir elemandur ve j. : m(U) —
m(X) ve ki : m (V) — m(X), swraswyla 7 : U C X ve k : V. C X igine donisimleri
tarafindan agiga ¢ikarilan homomorfizmlerdir.
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Ispat. o € m(X) elemanni, f : S' — X déniigiimii tarafindan temsil edilen bir kapali yol
olarak digtinelim. f, [0, 1] araliginda tanimh bir yol ve f(0) = f(1) temel nokta olsun.

f,10,1/2] araliginda U kiimesine ve [1/2, 1] araliginda V' kiimesine gotiirstn, f(1/2) €
UNV olur. UNYV yol baglantili oldugundan, f(1/2) noktasindan temel noktaya bir yol
g :10,1] = U NV tamumlanabilir. Simdi f fonksiyonunu

ve

_ Jg(1—2s), egers<1/2,
fa(s) = {f(s), eger s > 1/

seklinde iki yol olarak pargalayalim. Burada f; tamamen U iginde, f5, tamamen V iginde

bir yol olugturur. Buradan [f1] € j.(m1(U)) ve [fa] € ki«(m1(V)) olur. Ayrica, fi# fo'nin f'ye
homotop oldugu bir F' homotopisi

F(s,t) = J1i# [2 (%H) , eger s <
’ Jit 2 (i—ﬁ) , eger s>1/2.

ile tammmlanabilir. Bu homotopi, fi# f2’nin f’ye homotop oldugunu gosterir. Dolayisiyla
[f1] € Ju(m1(U)) ve [f2] € ku(m1(V)) olmak tizere

a=[f]=[f] + [f2],

olur.

f, birden fazla kez U ve V arasinda gegis yapiyorsa, [0, 1] araligin1 uygun alt araliklara
bolebiliriz. Her alt aralik, ya tamamen U kiimesine ya da tamamen V kiimesine gotiiriir.
Bu alt araliklar birlegtirilerek, f, U ve V kiimelerinde tanimli yollarin bir # toplami olarak
ifade edilebilir.

Sonug olarak, her a € m(X), j.(m(U)) ve k.(m(V))deki elemanlarin bir toplami
olarak yazilabilir. O

Sonug 4.4.2 Van Kampen Teoremi, bir uzayin birinci temel grubunun, uygun sekilde ta-
nimlanmas altkiimelerin temel gruplarindan tiretilebilecegini gosterir.

Ornek 4.4.3 (S™’in m(S") = 0 oldugunun Van Kampen Teoremi ile Gosterimi) S"
kiiresinin w1 (S™) = 0 oldugunu Van Kampen Teoremi kullanarak gosterelim.

S™ kiiresini siraswla kuzey kutbunun ¢ikaridmase U = S™ — {(0,...,0,1)} ve giiney
kutbunun ¢ikardmas: V = 8" —{(0,...,0,—1)} olmak tizere

S"=UUV

seklinde iki acik kimenin birlesimi olarak yazalim.
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U ve V', stereografik projeksiyon ile R™ uzayina homeomorftur. R™ biizilebilir bir uzay
oldugundan, U ve V' de biizilebilir olacagindan

olur.

UNV, S"’den hem kuzey hem de giiney kutbunun ¢ikarimaswyla elde edilir. Bu, S™~1 x
(—1,1) kiimesine homeomorftur ve S™ ' kiimesine homotopi denktir. S™! yol baglantil
oldugundan, U NV de yol baglantiladar.

Van Kampen Teoremi’ne géore, S™’in birinci temel grubu 7 (S™), U, V ve U NV 'nin
temel gruplarindan tiuretilir. Buradan

m(U) =m (V) =0,
ve UNV yol baglantily oldugundan, Van Kampen Teoremi'ne gore:
m(S") =0
elde edilir. Sonug¢ olarak S™’in birinci temel grubu asikardir, yani:
m(S") =0
olur.

Sonug 4.4.4 Eger U ve V kiimelerinin temel gruplar asikkar ise (m(U) = m (V) = 0),
Van Kampen Teoremi, X uzayinin temel grubunun da trivial oldugunu (m(X) = 0) gésterir.

Ornek 4.4.5 X = S* ve U =V = S! olsun. Buradan U =V = S* oldugundan 7 (U) =
m(V)=Z ve UNV = 8t oldugundan m (U NV) =Z olur.

X =D?U=D*>—-{(-1,0)} ve V= D?—{(1,0)} olsun Buradan U ve V, D*’den
birer noktanin cikarimaswyla elde edilir ve S'’e homotopi denktir. Buradan

7T1(U) — 7T1(V) =7

olur. U NV, D*'den iki noktamn c¢ikarlmaswyla elde edilir ve yol baglantihdir. Ancak,
UNV 'nin homotopi grubu m (UNV), i (U) ve w1(V') 'den farkl olabilir. X = D? biizilebilir
bir uzaydir oldugundan

m(X)=0

olur. Bu tki durum, m (U) ve w1 (V') 'nin tek bagina m (X)) i belirlemek i¢in yeterli olmadigina
gosterir. U ve V 'nin kesisimi olan U NV 'nin homotopi ozellikleri de dikkate alinmalidar.

Sonug 4.4.6 U ve V' kiimelerinin temel gruplar: asikar degilse, Van Kampen Teoremi
m1(X) degerini tam olarak belirleyemez. Bu durumda, U NV i¢in homotopi ézellikleri ve
m(U), m (V) ile olan iligkisi de dikkate alinmalidar.
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Teorem 4.4.7 (Whitehead Teoremi) X wve Y baglantile simplisel kompleksler ve f :
X =Y surekli dontisimi icin her i i¢in

fo o mi(X) = m(Y)
bir izomorfizm ise, o zaman f, X ve Y arasinda bir homotopi denkligidir. Yani,
fog~1Idy we gof~Idx
olacak sekilde bir g 1 Y — X dondistimii vardr.

ispat.[Ispatm Ana Fikri] Whitehead Teoremi, homotopi gruplarinin izomorfizminin, simp-
lisel kompleksler arasinda bir homotopi denkligi olusturmak icin yeterli oldugunu ifade
eder.

fo 1 mi(X) = m(Y) her 7 igin bir izomorfizm oldugundan, f, X’in homotopi gruplarin
Y ’nin homotopi gruplarina birebir ve orten bir sekilde esler.

f’nin homotopi gruplarindaki etkisi bir izomorfizm oldugundan, f, X ve Y arasinda
bir homotopi denkligi olusturur. Bu, f’nin bir ters doniigsiimii g : ¥ — X oldugu anlamina
gelir. Bu ters dontisiim, homotopi a¢isindan f’nin tersidir:

fogNIdy ve gOfNIdX

X ve Y simplisel kompleksler oldugundan, bu yapilarin homotopi gruplarindaki izo-
morfizm, simplisel komplekslerin homotopi denkligi i¢in yeterlidir.
Sonug olarak, f, X ve Y arasinda bir homotopi denkligidir. O

Sonug 4.4.8 Whitehead Teoremi, simplisel kompleksler arasinda homotopi gruplarinin izo-
morfizminin, bu kompleksler arasinda bir homotopi denkligi olusturmak icin yeterli oldu-
gunu gosterir.
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Yol (path), 18-20, 108-110

Yol baglihg: (path-connected), 18-22
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