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PREFACE

Bacterial biofilms have emerged as one of the most critical research
domains in modern microbiology, gaining increasing significance in
both fundamental science and clinical practice. These structures,
which arise when microorganisms adhere to surfaces and organize into
multilayered communities embedded within a protective extracellular
matrix, lie at the center of contemporary health challenges such as
antibiotic resistance, the persistence of chronic infections, and
therapeutic failure. In particular, the biofilm-forming capacity of
ESKAPE pathogens substantially exacerbates the difficulties
encountered in managing infectious diseases and necessitates the

pursuit of novel intervention strategies.

This book provides a comprehensive examination of the structural and
functional characteristics of biofilms, their developmental stages,
quorum-sensing—based communication mechanisms, and the
biological outcomes of these processes that contribute to antimicrobial
resistance. Furthermore, it delineates the limitations of conventional
control approaches and critically evaluates current literature on next-
generation therapeutic strategies targeting the biofilm matrix.
Spanning a broad spectrum from natural compounds and
nanotechnological applications to matrix-degrading enzymes and
quorum-sensing inhibitors these approaches offer innovative solutions
aimed at disrupting biofilm integrity and restoring bacterial

susceptibility.



In this context, I believe that the book will offer substantial
contributions to researchers, clinicians, and all scholars interested in
understanding, analyzing, and developing effective strategies against
biofilm-associated infections. Considering the pivotal role of biofilms
in microbial ecology, antimicrobial resistance, and clinical infectious
diseases, it is evident that any academic work in this field holds
critical value for the future of infection control and therapeutic

success.
24/11/2025

Res. Assist. Sena Nur Bagaran
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STRUCTURE, INFECTION DYNAMICS AND CONTROL
STRATEGIES OF BACTERIAL BIOFILMS

Res. Assist. Sena Nur BASARAN

INTRODUCTION

The biofilm provides a protective environment for bacterial cells
against antibiotic activity, host immune responses, nutrient limitations,
and various environmental stresses (Rather et al., 2021). Composed of
components such as carbohydrates, lipids, proteins, and extracellular
nucleic acids (eDNA), this structure primarily consists of two main
elements: extracellular polymeric substances (EPS) and bacterial cell
communities (J. Li et al., 2019; Yi et al., 2019). Biofilm formation is
considered one of the fundamental strategies employed by bacteria to
survive under adverse conditions and adapt to the host (Koo et al.,
2017).

Biofilm development generally occurs as a five-stage cyclical process:
initial surface attachment (reversible followed by irreversible
adhesion), EPS synthesis, biofilm maturation, and the dispersion of
cells to colonize new surfaces (Rather et al., 2021; Sauer et al., 2022).
After adhering to biotic or abiotic surfaces, bacteria secrete EPS,
encapsulating themselves within a protective matrix. As the cell
population increases, the matrix thickens, leading to the development
of a mature biofilm. Cells that disperse from the mature biofilm attach

to new surfaces, thereby initiating the cycle anew (Sauer et al., 2022).



This process is regulated by the quorum sensing (QS) mechanism,
which controls communication among bacterial cells (Kameswaran et
al., 2024). QS enables bacteria to coordinate gene expression and
metabolic activities in response to population density. Through this
mechanism, the production of EPS-composed of lipids,
polysaccharides, proteins, eDNA, and ions-occurs in a synchronized
manner at the community level (Yi et al., 2019). This physio-
metabolic shift confers resistance to desiccation, antimicrobial agents,

and host immune responses in bacteria (Preda et al., 2019).

Biofilms often comprise multiple bacterial species, resulting in
polymicrobial communities (Anju et al., 2022; Fang et al., 2020;
Wicaksono et al., 2022). Close cell-to-cell contact and the EPS matrix
facilitate horizontal gene transfer, providing a conducive environment
for the rapid dissemination of antibiotic resistance genes (Michaelis et
al., 2023). Therefore, biofilms are considered a significant reservoir
for multidrug-resistant (MDR) bacteria (Khan et al., 2021). Infections
associated with MDR bacteria are difficult to treat, often chronic, and
frequently result in fatal clinical outcomes. The Centers for Disease
Control and Prevention (CDC) report that over 2 million infections
and approximately 23,000 deaths occur annually due to MDR bacteria
(CDC, 2019).

ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa and Enterobacter spp.) are particularly associated with
biofilm formation (De Oliveira et al., 2020). Infections caused by
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these pathogens are typically chronic and exhibit resistance to
treatment (Schulze et al., 2021). Biofilm-associated infections are
commonly observed in the lungs of patients with cystic fibrosis,
surgical wounds, orthopedic implants, and on intravenous and urinary
catheters (Su et al., 2022). The biofilm structure hinders antibiotic
penetration, enhances efflux pump activity, induces target
modifications, and contributes to the formation of persistent cells
(Halawa et al., 2023; Upadhyay et al., 2025).

Biofilms play a role not only in the development of antibiotic
resistance but also in the persistence of chronic infections and,
potentially, in the progression of certain cancer types. Some studies
indicate that biofilms can release biological molecules such as
polyamines, influencing toxin production and carnitine metabolism,
processes that may be associated with cellular proliferation and

carcinogenesis (Upadhyay et al., 2025).

Consequently, therapeutic strategies targeting biofilms constitute a
central focus of current antimicrobial research. Since the eradication
of biofilm-associated infections is highly challenging, studies aim to
target the early stages of biofilm development (Delik et al., 2023).
Within this context, modulation of the QS mechanism is considered a
promising approach (Y. Li et al., 2023). In cases where preventive
strategies prove insufficient, the EPS matrix is targeted to enhance the
susceptibility of pathogenic strains to antibiotics (Mirghani et al.,
2022; Ramakrishnan et al., 2022). Biotechnology and
nanotechnology-based approaches have attracted significant attention
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due to their potential to enhance the efficacy of conventional
antibiotics and to restore susceptibility in resistant strains (Liu et al.,
2022; Sheridan et al., 2022).

In conclusion, biofilm formation represents a complex defense
mechanism developed by bacteria to withstand environmental stress
conditions. Given its central role in antimicrobial resistance, chronic
infections, and therapeutic failure, the development of novel treatment
strategies targeting biofilms is of paramount importance for future
infection control approaches.

1. Structure and Functional Dynamics of the Bacterial Biofilm
Matrix

Microorganisms organize into biofilm communities within a three-
dimensional EPS matrix that they synthesize themselves and that
surrounds the cells. This matrix provides the structural integrity,
functional flexibility, and environmental adaptability of the biofilm
(Flemming et al., 2024).

The primary components of the biofilm matrix include
polysaccharides, proteins, eDNA, lipids, and lipoproteins. The main
components and structural roles of the biofilm matrix are summarized
in Table 1. Polysaccharides, as the major constituents of EPS,
facilitate intercellular adhesion and surface attachment. The three-
dimensional structure of the matrix is supported by structural proteins

and amyloid like fibers. eDNA contributes to the matrix’s volume and
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aids in maintaining its structural stability (Campoccia et al., 2021) The
hydrophobic properties and barrier function of the matrix are

supported by membrane vesicles and lipids (Flemming et al., 2022).

Table 1. Major Components of the Biofilm Matrix and Their
Structural Roles.

Structural
Matrix Function and
Component Characteristics Key Features |References
Polysaccharides |Main  scaffold,|Surface (Saharan et
viscoelastic attachment, |al., 2024)
properties, protection
cohesion, and
layering
Proteins Filamentous Mechanical |(Kavanaugh
fibers, cross- |strength, etal., 2019)
links, and |scaffold
amyloid
structures
eDNA Structural Matrix (Secchi et al.,
stability, integrity, 2022)
interactions with|gene transfer
proteins and
polysaccharides
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Lipids /|Hydrophobic Barrier (Bohning et
Lipoproteins barrier, cross- |function, al., 2024)
linking with |stability
eDNA
Water Constitutes ~90% | Metabolic (Saharan et
of the matrix,|activity, al., 2024)
nutrient transport |diffusion
and diffusion

Physically, the biofilm matrix exhibits both viscous and elastic
behavior. The mechanical resistance of the biofilm to stress and its
capacity for deformation are determined by the polymeric nature of
EPS. Biofilm adhesion, stiffness, and cohesion are directly influenced
by the quantity and composition of EPS (Hasan et al., 2024).
Moreover, the layered structure of the matrix allows for the spatial
segregation of different EPS components and microbial communities
within the biofilm (Moreau et al., 2025; Xin et al., 2025).

Microorganisms are protected in multiple ways by the biofilm matrix.
EPS shields the cells by forming a physical barrier against
antimicrobial agents and the immune system (Karygianni et al., 2020).
The matrix facilitates the retention and storage of nutrients, thereby
enhancing the resilience of cells within the biofilm to environmental
changes (Yin et al., 2019). Additionally, extracellular enzymes within

the matrix function similarly to an external digestive system, breaking
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down various nutrients and making them available to the cells
(Flemming et al., 2022).

The matrix facilitates intercellular communication, including quorum
sensing and signaling molecules, while also coordinating gene
expression (Wong et al., 2022). The structural properties of the matrix
confer resistance to the biofilm against environmental stresses such as

pH, temperature, and toxic substances (Flemming et al., 2024).

Environmental stress and changes lead to the continuous remodeling
of the biofilm matrix. The physical properties and components of the
matrix can be influenced by antibiotic stress, nutrient limitation, and
other environmental factors. For example, as a result of phosphorus or
nitrogen limitation, the polysaccharide and eDNA content of EPS may
increase, leading to a denser and more homogeneous matrix structure
(Desmond et al., 2017). The remodeling and modification of the
matrix under stress support the survival and adaptation of the biofilm
(Moreau et al., 2025).

As the biofilm matures or encounters environmental signals, matrix
components such as polysaccharides and proteins are enzymatically
degraded. This process leads to the detachment of cells from the
biofilm, initiating the dispersal phase (Pandit et al., 2020). These
dynamic processes determine both the stability of the biofilm and its

ability to respond to environmental opportunities (Wong et al., 2022).
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2. Mechanisms of Bacterial Biofilm Formation and the Role of

Quorum Sensing

Biofilm development is a multi-stage process. In the initial stage,
bacteria attach reversibly to substrates such as dental surfaces or
medical implants, remaining vulnerable to antibiotics during this
period. Subsequently, bacteria produce EPS, adhere irreversibly to the
surface, proliferate, and form colonies. During the maturation phase,
the biofilm acquires a mushroom-like three-dimensional structure that
can reach up to 50 pum in thickness (Alexander et al., 2016). During
this process, factors such as twitching motility, cell signaling, and
environmental conditions shape the architecture of the biofilm
(Stoodley et al., 2002). Mature biofilms possess water channels that
facilitate nutrient and metabolite transport and exhibit an organization
reminiscent of primitive multicellular organisms. In the final stage,
portions of the biofilm dissolve, allowing bacteria to become free and

establish colonies on new surfaces (E. A. George et al., 2007).

The QS mechanism plays a critical role in regulating biofilm
formation. QS is a cell-to-cell communication system based on
chemical signaling that enables bacteria to regulate gene expression in
response to population density (Omwenga et al., 2023). This system
operates through the synthesis and detection of small signaling
molecules called autoinducers (Als). Through the QS mechanism,
bacteria coordinate behaviors such as virulence factor expression,

toxin production, and biofilm development (Zhou et al., 2020).
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In Gram-negative bacteria, QS is typically mediated by N-acyl
homoserine lactone (AHL) molecules. P. aeruginosa activates the
LasR and RhIR receptors through signaling molecules (OdDHL and
BHL) synthesized by the lasl and rhll genes, thereby regulating
biofilm formation and the expression of virulence genes (Dekimpe et
al., 2009). The Las system controls the production of factors such as
elastase, alkaline protease, and exotoxin A, which enhance the
structural integrity of the biofilm and the pathogenicity of the
bacterium. The Rhl system regulates swarming motility and
pyocyanin production, thereby promoting colonization and increasing

the potential for damage to host tissue (Omwenga et al., 2023).

Although Escherichia coli lacks the gene for AHL synthesis, it
possesses a receptor called SdiA that can detect AHLs produced by
other species. Through this receptor, E. coli regulates biofilm-
associated processes such as EPS production and surface attachment
(Jamuna Bai et al., 2016). Additionally, many Gram-negative bacteria
engage in interspecies communication using Al-2 or Al-3 systems. In
V. cholerae, the Al-2 signal is detected via the LuxPQ receptor
complex, and high levels of Al-2 suppress biofilm progression
(Anderson et al., 2015).

In Gram-positive bacteria, the signaling molecules are typically
autoinducing peptides (AIPs). In S. aureus, the agr system
(comprising the agrA, agrB, agrC, agrD, and hld genes) regulates the

maturation and dispersal stages of the biofilm. agr mutants form
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thicker and more resilient biofilms due to a reduced ability to detach
from mature biofilms (Eric Omori Omwenga et al., 2024).

These mechanisms clearly demonstrate the central regulatory role of
bacterial QS in biofilm formation. A detailed understanding of QS
systems is crucial for the development of novel therapeutic strategies
targeting these communication networks. In particular, QS antagonists
have the potential to inhibit biofilm formation by blocking signal
transduction and represent promising alternatives in the treatment of

antibiotic-resistant infections (Jiang et al., 2019).

3. Modulation of Host Immune Response and Evasion

Mechanisms in Biofilm Formation

Bacterial biofilms, a primary cause of chronic infections, protect
themselves from the host immune system and antibiotics by
modulating immune responses and employing various evasion
mechanisms. Biofilm-associated bacteria exhibit phenotypes distinct
from planktonic bacteria, reducing the effectiveness of the immune
response (Peng et al., 2022; Sahu et al., 2025).

Biofilms can modulate the host immune system at both adaptive and
innate levels. In innate immunity, biofilms reduce the activity of
neutrophils and macrophages. A study reported that S. aureus biofilms
promote bacterial persistence by directing macrophages toward an
anti-inflammatory and pro-fibrotic M2 phenotype (Mirzaei et al.,
2022). Biofilms hinder the access of immune cells to these structures
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by impairing neutrophil chemotaxis and inhibiting the formation of
neutrophil extracellular traps (Batoni et al., 2021; Cangui-Panchi et
al., 2023).

In adaptive immunity, biofilm infections generally become chronic by
disrupting the Th1/Th2 balance and rendering the antibody response
ineffective. In particular, P. aeruginosa biofilms cause tissue damage
and prevent the clearance of infection (Thomsen et al., 2022).
Additionally, biofilms enhance the production of immunosuppressive
cytokines such as IL-10, which attenuates the inflammatory response
(Cruickshank et al., 2024; Van Roy et al., 2025).

Biofilms employ multiple mechanisms to evade host defenses,
including the extracellular matrix barrier, protease and toxin secretion,
cytokine modulation, phenotypic heterogeneity and persister cells, as
well as the regulation of virulence factors. The extracellular matrix
barrier prevents the penetration of antimicrobial agents and immune
cells into the biofilm (Mathew et al., 2023). The secretion of bacterial
proteases and toxins degrades immunoglobulins and components of
the complement system, thereby weakening the immune response
(Ramirez-Larrota et al., 2022). The induction of anti-inflammatory
cytokines such as IL-10 reduces the microbicidal activity of
macrophages and other immune cells (Van Roy et al., 2025). Bacterial
biofilms evade both antibiotics and the immune system by exhibiting
phenotypic heterogeneity and forming dormant persister cells (Peng et

al., 2023). In particular, species such as S. aureus and S. epidermidis
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evade phagocytosis and complement activation through surface
proteins and polysaccharides (Le et al., 2018).

Biofilm infections contribute to the persistence of chronic
inflammation, which in turn impairs tissue repair. In conditions such
as chronic wounds and cystic fibrosis, biofilms can adversely affect

both tissue integrity and the immune response (Thomsen et al., 2022).

A comprehensive understanding of how biofilm formation exploits
immune evasion mechanisms is crucial for the development of novel
therapeutic strategies. Emerging approaches that target the biofilm
matrix show promise in the treatment of chronic biofilm-associated
infections (Ge et al., 2024; Sahu et al., 2025).

4. Clinical Significance of Biofilms and Medical Device Associated

Biofilms

Biofilms are microbial communities that exhibit high resistance to
antimicrobial treatments and host immune responses. These structures
play a crucial role in the pathogenesis of chronic infections
characterized by prolonged inflammation, such as chronic wound
infections and osteomyelitis, which show tendencies for treatment

resistance and recurrence (Diban et al., 2023; Masters et al., 2019).

In modern healthcare, the majority of hospital-acquired infections
originate from biofilms associated with medical devices. It has been
reported that 60—-80% of nosocomial infections arise from biofilms
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developing on devices such as catheters, prosthetic joint materials,
heart valves, orthopedic implants, endoscopes, and stents (Mishra et
al., 2024; S. Sharma et al., 2023). Similarly, it has been reported that
approximately 65% of medical device—associated infections originate
from biofilms (Khatoon et al., 2018). These biofilms can lead to
serious clinical syndromes such as prosthetic joint infections,
endovascular infections, CLABSI, and CAUTI, often necessitating the
removal of the device (Bouhrour et al., 2024; Caldara et al., 2022). A
study reported biofilm colonization on central venous -catheters
ranging up to 81% within 1-14 days (Bouhrour et al., 2024).

Biofilm formation begins when bacteria adhere to a “conditioning
film” formed by the accumulation of proteins and cellular materials on
the device surface (P. Li et al, 2023; Mishra et al., 2024).
Subsequently, the synthesis of the EPS matrix leads to the
development of a mature biofilm structure. Bacteria within this
structure exhibit 100- to 1000-fold greater antibiotic tolerance
compared to their planktonic counterparts (Di Domenico et al., 2022).
The primary mechanisms underlying this resistance include the
inhibition of antibiotic penetration by the EPS matrix, low metabolic
activity, enzymatic inactivation, and the presence of persister cells
(Bouhrour et al.,, 2024). The reactivation of persister cells after
treatment leads to the recurrence and spread of infections (D. Sharma
et al., 2019). The EPS structure also diminishes the effectiveness of
phagocytic cells and triggers a chronic inflammatory response, leading

to tissue damage (Ramirez-Larrota et al., 2022).
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The diagnosis of biofilm-associated infections can be challenging, as
many bacteria within biofilms exist in a “viable but non-culturable”
state (Percival et al., 2015). Clinical manifestations are often non-
specific and resemble those of other infections (Mendhe et al., 2023).
Therefore, molecular methods, ultrasonography, MRI, biosensor-
based approaches, and advanced imaging techniques are increasingly
important for the detection of biofilms (Amod et al., 2025; Sahoo et
al., 2024).

During treatment, conventional antibiotic therapies often fail, and in
many cases, the infected device must be completely removed
(Khatoon et al., 2018). Local applications, such as catheter lock
solutions, and prolonged high-dose antibiotic treatments achieve only
partial success (Wi et al., 2018). Therefore, strategies involving
surface modifications with non-antibiotic agents, antifouling and
antimicrobial coatings, enzymes, nanoparticles, quorum-sensing
inhibitors, and bacteriophages have been intensively investigated in
recent years (Mishra et al., 2024). The biocompatibility and long-term
efficacy of these novel approaches need to be evaluated for clinical

application (Scalia et al., 2025).

5. In Vitro Methods Used for the Evaluation of Biofilm Formation

Studying bacterial biofilm formation is crucial in both clinical and
research settings to guide infection management and to develop novel
anti-biofilm strategies. Techniques used for the detection and

characterization of biofilms allow the examination of their structural,
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functional, and viability properties from various perspectives.
Currently, methods for biofilm assessment include a wide range of
approaches, such as measuring biomass, evaluating metabolic activity,
determining viable cell counts, and performing structural and
chemical analyses (Funari et al., 2022; Haney et al., 2018). While each
method in biofilm research has its advantages and limitations, a
combination of multiple approaches is generally preferred (Cleaver et
al., 2023).

5.1. Congo Red Agar Method

The Congo Red Agar (CRA) method is a widely used, cost-effective,
and practical screening technique for the phenotypic detection of
bacterial biofilm and slime layer production. This method enables the
rapid assessment of the biofilm-forming capacity of many clinical
isolates, particularly species of Staphylococcus (Anan et al., 2024;
Harika et al., 2020).

CRA is a specialized medium composed of brain heart infusion agar,
sucrose, and Congo red dye. After bacterial isolates are inoculated
onto this medium, they are incubated at 37°C for 2448 hours (Figure
1). Biofilm-producing bacteria synthesize polysaccharides that react
with Congo red, forming black, dry-crystalline colonies on the agar.
Non-biofilm producers, in contrast, appear as red or pink colonies

(Basnet et al., 2023).
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Biofilm Positive

Congo Red Agar 24-48 hours at 37 °C Biofilm Negative

Figure 1. Appearance of biofilm-negative and biofilm-positive
bacterial isolates incubated on Congo Red Agar at 37°C for 24-48

hours.

The advantages of the CRA method include its rapidity, low cost, and
ease of application. It directly indicates the presence of biofilm
through colony morphology and allows for the rapid screening of a

large number of samples (Anan et al., 2024).

Limitations of the method include its qualitative nature, as results rely
on observation and color changes, which can introduce variability in
subjective assessments. Additionally, some studies have shown that
CRA may yield false-negative results, particularly for weak biofilm-
producing bacteria. Quantitative methods, such as the microtiter plate
assay, have been reported to be more reliable than CRA (Er, 2024;
Kord et al., 2018).
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5.2. Standard Glass Tube Method

The standard glass tube test is one of the most commonly used,
practical, and cost-effective methods for the phenotypic assessment of
biofilm formation. This method allows for the rapid and visual
evaluation of the biofilm-forming capacity of bacterial isolates,
particularly in clinical laboratories and research settings (Furtuna et

al., 2018; Gangashettappa et al., 2019; Halim et al., 2018).

The glass tube method involves inoculating a bacterial suspension into
sterile glass tubes containing growth medium, followed by incubation
for 24 to 48 hours. After incubation, the tube contents are discarded,
and the tubes are washed several times with phosphate-buffered saline
(PBS). The biofilm adhering to the inner surface of the tube is then
stained with 0.1% crystal violet. Excess dye is removed by washing
with PBS, and the tube is allowed to dry. The presence of a visible
purple film on the inner surface indicates biofilm formation.
Depending on the thickness and density of the biofilm, its amount can
be classified as negative, weak, moderate, or strong (Figure 2)

(Gangashettappa et al., 2019).
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Figure 2. Procedural Steps of the Glass Tube Method for the

Detection of Biofilm Formation.

The advantages of the glass tube method include its low cost, ease of
use, rapidity, and the lack of need for specialized equipment. It also
allows for the screening of a large number of samples in a short time
(Basnet et al., 2023). Its limitations include the subjective nature of
the results, which can vary depending on the observer. The method
may produce false-negative results for weak biofilm-producing

bacteria, and the outcomes are not quantitative (Kord et al., 2018).

Compared to the microtiter plate method, the glass tube method has
been found to be less sensitive and specific in studies; however, due to

its practicality, it is frequently used as a screening test. It provides
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reliable results, particularly for strong biofilm-producing bacteria

(Basnet et al., 2023).

5.3. Methods Using Microtiter Plates

One of the most common and reliable methods for the sensitive,
specific, and quantitative assessment of biofilm formation is the
spectrophotometric microtiter plate (96-well microplate) assay. This
method is frequently used in biofilm research, often with various

modifications (Allkja et al., 2021; Thibeaux et al., 2020).

The bacterial suspension is typically incubated in 96-well microplates
with an appropriate growth medium containing 1-3% glucose (De
Jesus et al., 2019). After incubation, the contents of the microplate
wells are removed, and the wells are washed with PBS. Sodium
acetate or methanol can be used to fix the biofilm (Shukla et al.,
2017). The biofilm is then stained using dyes such as crystal violet,
safranin, or trypan blue (Centorame et al., 2020). After staining, the
microplates are dried, and the dye is subsequently solubilized using

acetic acid or acetone (T. George et al., 2025).

The optical density (OD) of each well is typically measured at 570 nm
using a microplate reader. Biofilm presence and its degree are
determined by comparing the OD values to those of control wells

(Thibeaux et al., 2020).
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The method provides quantitative results, high sensitivity,
reproducibility, and the capacity for the analysis of multiple samples
simultaneously (Allkja et al., 2021). During the washing steps, care
must be taken not to damage the biofilm, and precautions should be
taken to prevent errors such as evaporation and the “edge effect” in
the outer wells (Centorame et al., 2020). The dyes used and the
measurement wavelengths should be standardized (T. George et al.,

2025).

5.3.1. Crystal Violet

Crystal violet staining is the most commonly used and standard
method for the quantitative assessment of biofilm formation in 96-
well microplates. This technique allows for the rapid, cost-effective,

and efficient measurement of biofilm biomass (Andersen et al., 2024).

Bacteria should be incubated in microplate wells with an appropriate
growth medium. After incubation, the wells are washed, and a 0.1-
0.5% crystal violet solution is added, followed by incubation for 15—
30 minutes (Altuwaijri et al., 2025; Kamimura et al., 2022). To
remove excess dye, the wells are washed several times (Stiefel et al.,
2016). The crystal violet bound to the biofilm is solubilized with 33%
acetic acid or 94-100% ethanol, and the OD is typically measured
spectrophotometrically at 570-595 nm (Figure 3) (Altuwaijri et al.,
2025; T. George et al., 2025).
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Figure 3. Procedural Steps of the Crystal Violet Method for the

Detection of Biofilm Formation.

Its advantages include simplicity, low cost, reproducibility, and
suitability for the simultaneous analysis of a large number of samples

(Shukla et al., 2017; Thibeaux et al., 2020).

Its limitations include potential toxicity, the inability to distinguish
between live and dead cells or matrix components, the “edge effect” in
outer wells, and variability during washing steps (Amador et al., 2021;

Kragh et al., 2019).
5.3.2. Safranin Staining

Safranin staining is a non-toxic and reliable alternative to crystal
violet for the quantitative measurement of biofilm biomass. In recent

years, it has gained prominence, particularly for laboratory safety and
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reproducibility. Safranin binds to the negatively charged components
of bacterial cells and the extracellular matrix within the biofilm,

staining the total biomass (Ommen et al., 2017).

A 0.5% safranin solution is typically used, and excess dye is washed
away after staining. The optical density is measured
spectrophotometrically at approximately 535 nm (Upadhyay et al.,
2024).

Compared to crystal violet, safranin is much less toxic, offering
advantages in terms of laboratory safety. Measurements performed
with safranin yield results similar to those of crystal violet while
providing higher reproducibility and sensitivity (Ommen et al., 2017).
It has been successfully used for the analysis of bacterial and yeast
biofilms across different species (Upadhyay et al., 2024). However,
safranin does not differentiate between live and dead cells and

measures the total biomass (Stiefel et al., 2016).

5.3.3. Use of XTT Assay

The XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-
5-carboxanilide) assay is a widely used, rapid, and reliable
colorimetric method for measuring the metabolic activity of biofilm-
forming bacteria and fungi. It is particularly preferred for assessing
the activity of viable cells and testing antimicrobial efficacy. XTT is
reduced by dehydrogenase enzymes in live cells to form a water-

soluble orange formazan dye, with the color change being
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proportional to the cells’ metabolic activity (Corte et al., 2019;

Magafia-Montiel et al., 2024).

In this method, 96-well microplates are most commonly used. An
electron carrier such as menadione or phenazine methosulfate is added
along with the XTT solution (0.25-1 mg/mL), followed by incubation
for 30 minutes to 4 hours. Absorbance is measured

spectrophotometrically at 470-492 nm (Chavez-Dozal et al., 2016).

Its advantages include rapidity, high efficiency, reproducibility, and
the selective measurement of live/metabolically active cells. When
used alongside biomass-measuring methods such as crystal violet, it
allows differentiation between biofilm viability and total biomass

(Dogan et al., 2021; Ramage, 2016).

A limitation is that it measures only metabolically active cells, which
may lead to underestimated results in the deeper layers of the biofilm
due to low activity. Metabolic differences between species and strains

can also affect the results (Dogan et al., 2021).

The addition of metabolic substrates, such as glucose or D-glutamine,
can enhance sensitivity, particularly in mature biofilms (Gobor et al.,
2011). Viability assessment of bacterial and fungal biofilms can be
employed in antimicrobial susceptibility testing, environmental
toxicity analyses, and bioplastic degradation studies (Corte et al.,

2019; Magana-Montiel et al., 2024).
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5.3.4. Use of MTT

The MTT assay is a widely used colorimetric method for assessing
cell viability, proliferation, and cytotoxicity in cell cultures. It
provides a rapid and sensitive measurement of cellular metabolic
activity, particularly in drug screening, toxicity analyses, and biofilm
studies. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) is reduced by mitochondrial enzymes in viable cells to form
insoluble purple formazan crystals. The resulting formazan is
solubilized using a solvent such as DMSO, and absorbance is typically
measured at 540-570 nm. The intensity of the color produced is
proportional to the number of viable/metabolically active cells
(Bahuguna et al., 2017).

In this method, 96-well plates are used, and MTT is added to the wells
followed by incubation for 2-6 hours. The resulting formazan crystals
are then dissolved using a solvent and  measured

spectrophotometrically (P. Kumar et al., 2018).

It measures only metabolically active cells; certain drugs or
compounds can directly affect MTT reduction, potentially leading to
inaccurate results. In agents that impair mitochondrial function, a
distinction between viability and metabolic activity may not be
possible (Hoogstraten et al., 2022; Malinowski et al., 2022).

Parameters such as MTT concentration, cell type, incubation time, and
choice of solvent should be optimized. To ensure the reliability of
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results, the MTT assay is generally supported by additional viability
tests (Ghasemi et al., 2023; Stindlova et al., 2025).

6. Conventional Approaches to Combat Biofilm Formation

Conventional methods, such as mechanical treatments, surface
modifications, and chemical approaches, are employed to prevent
biofilm formation or to eliminate existing biofilms (Schilcher et al.,
2020). These strategies aim to disrupt the biofilm structure, eliminate
embedded microorganisms, and prevent surface adhesion. Mechanical
treatments, such as brushing and scrubbing, physically remove
biofilms, thereby reducing microbial load. Surface modifications
using hydrophilic polymers and antimicrobial coatings also inhibit
biofilm development (String et al., 2020). Chemical agents, such as
detergents, facilitate the removal of bacteria by disrupting biofilm
cells (Fagerlund et al., 2020). Additionally, antimicrobial agents
suppress biofilm growth, while biosurfactants disrupt existing
biofilms, enhancing their susceptibility to other agents (Allegrone et
al., 2021). Careful monitoring is required during the treatment process
to prevent the release of pollutants and to minimize environmental

impacts (Muhammad et al., 2020).

However, conventional approaches are often time-consuming, costly,
and require specialized equipment. In some cases, they may be
ineffective, and their applicability in sensitive environments is limited
(Bayramov et al., 2017). Moreover, they lack the real-time data
feedback and high accuracy offered by modern techniques and are

31



often inadequate for the removal of complex biofilm communities
(Darvishi et al., 2022).

7. Novel Approaches for the Prevention and Treatment of Biofilm

Infections

In combating biofilm-associated infections, novel strategies are being
developed, including the use of natural compounds, nanotechnology-
based approaches, quorum sensing inhibition, enzymatic degradation,
and antimicrobial photodynamic/sonodynamic therapies
(Pourhajibagher et al., 2022). These methods disrupt the biofilm
structure, reduce bacterial populations, suppress virulence factors, and
enhance the efficacy of antibiotics (Bai et al., 2022). Additionally, by
exerting targeted effects on specific bacterial species, they help limit
the spread and complications of biofilm-associated infections
(Hemmati et al., 2021).

7.1. Natural Compounds

Plant extracts, essential oils, and marine-derived compounds have
emerged as promising natural agents for inhibiting biofilm formation.
These compounds offer an alternative to synthetic drugs due to their
low risk of side effects, environmentally friendly nature, and cost-
effectiveness. Moreover, they hold significant potential in anti-biofilm
strategies because of their efficacy against resistant strains and lower

susceptibility to mutations (Nuta et al., 2021).

32



Extracts from neem (Azadirachta indica), eucalyptus (Eucalyptus
globulus), oregano (Origanum vulgare), garlic (Allium sativum), and
grape (Vitis vinifera) exhibit antimicrobial activity by disrupting
bacterial cell walls and metabolism (Hochma et al., 2021). In
particular, the essential oils of O. vulgare and A. sativum exhibit anti-
biofilm activity by inhibiting growth and reducing inflammation in
pathogens such as E. coli, S. aureus, and S. enterica (Peng et al.,
2023).

Natural compounds such as quercetin, thymol, polyphenols, and
curcumin also inhibit biofilm formation through their antibacterial,
antioxidant, and anti-inflammatory properties (Veiko et al., 2023).
Terpenoids found in plants inhibit bacterial growth and biofilm
formation, and are considered potential sources for the development of

new antibiotics (Kostoglou et al., 2020).
7.2. Advanced Nanotechnology-Based Strategies

Nanotechnology offers an innovative approach for the prevention and
treatment of biofilm-associated infections (Sabzi et al., 2024).
Nanomaterials, due to their unique physical and chemical properties,
can disrupt biofilm structures and prevent pathogen adhesion to
surfaces. Additionally, targeted drug delivery systems have been
developed to transport antibiotics directly to biofilms, thereby

reducing systemic toxicity (L. Kumar et al., 2023).
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Coating medical device surfaces with nanoparticles prevents bacterial
colonization and reduces the risk of infection (Varma et al., 2023).
Silver, gold, zinc, copper, and iron nanoparticles exhibit potent anti-
biofilm activity by disrupting cell membranes, inhibiting QS, and
targeting the EPS matrix (Kotrange et al., 2021). For example, silver
nanoparticles significantly reduce the colonization of bacteria such as
S. aureus, E. coli, and K. pneumoniae on catheter surfaces. Similarly,
ZnO and Cu nanoparticles inhibit fungal biofilms, offering alternative

therapeutic options (Joshi et al., 2022).
7.3. Quorum Sensing Inhibition

Quorum sensing inhibition is an innovative strategy that targets
bacterial communication to prevent biofilm formation (Zhao et al.,
2020). These inhibitors reduce bacterial virulence factors and limit the
development of antibiotic resistance by preventing the production of
autoinducer molecules (Naga et al., 2023). Additionally,
bacteriophage-based inhibitors disrupt bacterial signaling pathways,
helping to control infections and providing a more sustainable solution

against the development of resistance (Faleiro et al., 2022).
7.4. Enzymatic Degradation of Biofilms

Enzymatic treatments target the biofilm matrix, facilitating its
breakdown and removal. Enzymes such as proteases, lipases,

amylases, and DNases degrade key structural components of the
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biofilm, rendering microorganisms more susceptible to antibiotics
(Pakkulnan et al., 2023).

Enzymes such as lysozyme and Dispersin B support biofilm
elimination by targeting the cell wall and EPS structure. However,
factors such as high cost, environmental sensitivity, and the risk of

surface damage limit their effectiveness (Amankwah et al., 2021).

7.5. Antimicrobial Photodynamic and Sonodynamic Therapy

Photodynamic (aPDT) and sonodynamic (aSDT) therapies eliminate
bacteria through reactive oxygen species generated upon activation by
light or ultrasound energy. While aPDT is suitable for superficial
biofilms, aSDT is effective in infections located in deeper tissues.
Both approaches provide safe and non-invasive options against
antibiotic-resistant bacteria (Garapati et al., 2023; Xu et al., 2023).

The combination of aPDT with PNA nanoparticles enhances treatment
efficacy by allowing deeper penetration into the biofilm (Farahani et
al., 2021). The use of ultrasound in combination with antibiotics
enhances biofilm disruption and drug penetration. The combined
application of these two approaches provides a synergistic effect in the

treatment of biofilm-associated infections (Xiu et al., 2023).
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CONCLUSION

Bacterial biofilm formation is a multi-stage process involving
microbial cell adhesion to a surface, EPS synthesis, and community-
level organization. This process plays a critical role in enabling
bacteria to develop resistance against antibiotics, host immune
responses, and environmental stresses. Clinically, biofilm-forming
microorganisms are responsible for a range of infections, including
those associated with medical devices, chronic wound infections, and
catheters, complicating treatment and increasing the risk of
recurrence. Compared to planktonic bacteria, cells within biofilms
exhibit significantly higher levels of resistance due to reduced
antibiotic  penetration, efflux systems, target modification,

metabolically inactive “persister” cells, and horizontal gene transfer.

Traditional approaches for managing biofilm associated infections
such as mechanical cleaning, surface modifications, chemical
disinfectants, and antimicrobial agents remain important but
demonstrate limited efficacy against mature biofilm communities.
Consequently, there is a need for novel strategies that disrupt biofilm

structures or prevent their formation.

In this context, emerging therapeutic options including natural
compounds, nanotechnology-based approaches, quorum sensing
inhibitors, enzymatic degradation, and antimicrobial therapies have
become areas of active research. These methods exhibit effects such as

disrupting biofilm architecture, resensitizing bacteria to antibiotics,
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suppressing virulence factors, and ultimately supporting and

enhancing treatment outcomes.

In conclusion, biofilm formation is not merely a biological system
facilitating microbial survival; it also represents a clinical challenge
due to its contribution to antimicrobial resistance, chronic infections,
and treatment failures. Therefore, a deeper understanding of biofilm
formation mechanisms, the development of early diagnostic tools, and
the widespread implementation of biofilm-targeted therapeutic
strategies are of great importance for future infection control and the

management of resistant microbial pathogens.
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