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PREFACE 

Spatial regression analysis has emerged as a fundamental subfield 

within spatial statistics and econometrics, addressing the limitations of 

classical regression models in the presence of spatial dependence. The 

recognition that spatially proximate observations frequently exhibit 

statistical interdependence has necessitated the development of models 

and methods capable of capturing such relationships. This monograph 

presents a systematic treatment of the theoretical foundations, 

methodological frameworks, and applied implementations of spatial 

regression techniques. 

The work is organized to provide a comprehensive exposition, 

beginning with the conceptualization and formalization of spatial 

neighborhood structures and spatial weight matrices, which constitute 

the basis for any spatial analysis. Subsequently, measures of spatial 

autocorrelation, both global and local, are examined in depth, including 

their statistical properties, interpretation, and practical considerations. 

The core chapters focus on the formulation, estimation, and evaluation 

of major spatial regression models, including the Spatial 

Autoregressive Model (SAR), the Spatial Error Model (SEM), the 

Spatial Durbin Model (SDM), the Spatial Autocorrelation Model 

(SAC), the Spatially Lagged X Model (SLX), and the General Nesting 

Spatial Model (GNS). Each model is presented with its mathematical 

derivation, underlying assumptions, estimation procedures, and 

potential advantages and limitations. 

 



ii 

 

The volume also addresses model specification and diagnostic testing, 

recognizing that rigorous model selection is essential for valid inference 

in spatial econometric applications. The final sections demonstrate the 

practical implementation of spatial regression models using an 

empirical dataset, thereby bridging theoretical discussion with 

empirical practice and providing a reproducible analytical framework. 

This book is intended as a reference for researchers, graduate students, 

and practitioners across disciplines such as economics, geography, 

urban and regional planning, environmental sciences, epidemiology, 

and political science, fields in which spatial dependence is an intrinsic 

characteristic of the data. It aims to equip the reader with both the 

theoretical insights and the applied skills required to model spatial 

processes accurately and to interpret the resulting analyses with 

methodological rigor. 

By integrating theoretical constructs with empirical applications, this 

work aspires to contribute to the methodological advancement of spatial 

analysis and to facilitate the adoption of spatial regression techniques 

in addressing complex, spatially structured phenomena. 

24.11.2025 

Assist. Prof. Dr. Elif Özge ÖZDAMAR 
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SPATIAL REGRESSION MODELS 

INTRODUCTION 

Spatial statistics is becoming increasingly central in modern data 

analysis and plays a fundamental role in critical decision-making across 

numerous disciplines. The methodology examines spatiality through 

topological and geometric characteristics within a dataset alongside 

additional variables, is employed across various domains including 

urban planning, agriculture, environmental management, logistics, and 

public health. Spatial statistics analyses integrate locational data, 

cartographic layers, and analytical techniques to identify patterns, 

correlations, and trends within the examined areas. One   of the most 

powerful and comprehensive tools in this field, spatial regression 

analysis not only considers spatial structures but also represents an 

approach that questions and redefines the fundamental assumptions of 

classical regression models. The emergence of spatial regression 

analysis began with the recognition of spatial dependence. In 1948, 

Patrick A. Moran pioneered the field by developing Moran’s I index, 

which defined the concept of spatial autocorrelation. Subsequently, 

Charles Geary (1954) proposed the Geary’s C ratio as an alternative to 

Moran’s approach. These metrics enabled the mathematical expression 

of similarity among spatial units and filled a significant gap in literature.  

In the 1970s, Cliff and Ord made significant contributions regarding 

spatial weight matrices and spatial relationship structures, thus leading 

the institutionalization of spatial statistics. Luc Anselin’s work, Spatial 
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Econometrics, published in 1988, systematized spatial regression 

models and established spatial econometrics as a distinct sub-discipline. 

With the development of local statistics by Getis and Ord in the 1990s, 

it became possible to analyze spatial clustering not only at the global 

but also at the local level. 

This evolving literature has led to diversification in spatial regression 

models. The SAR (Spatial Autoregressive) model, which incorporates 

interactions between the dependent variable and neighboring units into 

the model; the SEM (Spatial Error Model), which addresses spatial 

dependence in the error structure; the SDM and SLX models, which 

include spatial effects of both dependent and independent variables; and 

the more comprehensive structures of SAC and GNS models allow for 

the representation of spatial analyses with varying structures. 

The use of spatial regression analysis is not confined to theoretical 

academic discussions but also finds extensive practical application. In 

economics, analyses of regional development, income inequality, and 

housing prices; in health sciences, analyses of disease clustering, access 

to healthcare, and environmental health risks; in urban planning, studies 

on population density, land use, and distribution of urban services; in 

environmental sciences, research on air and water pollution, land 

degradation, and other spatially sensitive indicators; in agriculture and 

natural resource management, assessments of crop productivity, soil 

quality, and the effects of climate change; and in political analyses, 

evaluations of vote distributions, political trend maps, and regional 

preference patterns are just a few of the many applications. 
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This book addresses spatial regression analyses in both theoretical and 

applied contexts across these diverse domains. It is structured around 

four main themes. The first chapter introduces the concept of spatial 

neighborhood, the foundational element of spatial analysis, and 

explains the construction of weight matrices with different 

neighborhood structures and weighting methods. The second chapter 

elaborates on spatial autocorrelation techniques, identifying spatial 

patterns through global metrics such as Moran’s I, Geary’s C, and 

Getis-Ord G, and local metrics such as LISA, Local Geary, and Gi* 

statistics. The third chapter presents the core of the book spatial 

regression models. Models such as the Spatial Autoregressive Model 

(SAR), which directly incorporates the interaction of the dependent 

variable with neighboring units, the Spatial Error Model (SEM), which 

considers spatial dependence in the error structure, and advanced 

models such as SDM, SLX, SAC, and GNS are discussed in detail, 

including their theoretical background, assumptions, advantages, 

disadvantages, and estimation techniques. Each of these models offers 

different advantages depending on the spatial structure and 

characteristics of the dataset. The fourth chapter explains how to select 

the most appropriate spatial model for a given dataset using model 

specification tests, including Lagrange Multiplier tests and other 

diagnostic tools. The fifth and sixth chapters present the analysis of 

theoretical information using applied datasets and provide 

interpretations of the findings. In conclusion, the book evaluates the 

opportunities offered by spatial regression analysis and provides 

guidance for future research. 
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1. SPATIAL NEIGHBORHOOD AND SPATIAL 

WEIGHT MATRIX 

The foundation of spatial data analysis lies in the neighborhood 

structure of observations within the dataset and the weight matrix that 

reflects the degree of such neighborhood. Neighborhood refers to the 

concept that defines the spatial proximity between observations. In 

spatial data analysis (SDA), neighborhood refers to associating 

observations that are positioned near or adjacent to a specific area 

(point, region, polygon, etc.). It can be defined using criteria such as 

two observations being adjacent in space (contiguous) or located within 

a specific distance threshold.  

A spatial weight matrix for a dataset is represented by a square matrix 

of size 𝑁 × 𝑁, denoted by 𝑊, where each element expresses whether a 

unit (observation or region) has a neighborhood relationship with 

another, and to what degree. 

𝑊 = [

𝑤11 𝑤12 ⋯ 𝑤1𝑁

𝑤21 𝑤22 ⋯ 𝑤2𝑁

⋮ ⋮ ⋮ ⋮
𝑤𝑁1 𝑤𝑁1 ⋯ 𝑤𝑁𝑁

] 

Given two observations i and j, Wᵢⱼ expresses the neighborhood between 

observation i and observation j. If this value is 1, the observations are 

neighbors; if 0, they are not. For polygon-based spatial data, 

neighborhood is defined through contiguity; for point data, it is defined 

through a distance threshold. Researchers may also employ other types 

of neighborhood definitions. In the literature, commonly used 
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boundary-based neighborhood structures are inspired by chess piece 

movements and are named as rook, bishop, and queen contiguities. 

Figure 1.1 illustrates these neighborhood structures. On a map grid, 

areas that share an edge with the above, below, left, or right neighbors 

represent rook contiguity (edge-based); areas that touch diagonally at 

the corners represent bishop contiguity (vertex-based); and areas 

adjacent in both edge and corner directions form queen contiguity 

(combined). Distance-based neighborhood, on the other hand, is 

determined by a radius defined by the researcher or through a k-nearest 

neighbors algorithm.  

 

Figure 1.1 Rook, Bishop, and Queen Contiguities 

After defining spatial neighborhood, the spatial weight matrix must be 

constructed. The weight matrix (W) is used to grade the defined 

neighborhood. Determining the weight matrix is a critical step in spatial 

analysis, as it can significantly impact the statistical test results derived 

from the analysis (Tiefelsdorf et al., 1999). 

Since the pioneering studies of Moran (1948), Geary (1954), Cliff and 

Ord (1973 and 1981), determining the spatial weight matrix has been 

considered a complex and debated issue (A. C. Cliff & Ord, 1973; A. 

D. Cliff & Ord, 1981; Geary, 1954; P. A. Moran, 1948). Nevertheless, 
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a shared understanding from these works is that spatial weights should 

reflect accessibility between observations. Furthermore, spatial weights 

are expected to decrease as the distance between observations increases 

and to increase proportionally as the shared boundary lengths increase 

for adjacent units. Although there is consensus on these points, the 

literature has not converged on a standardized approach. It is 

recommended that researchers construct a spatial weight matrix that 

best reflects the spatial characteristics of the dataset being used (A. C. 

Cliff & Ord, 1973). 

Getis, one of the leading figures in the field, proposed three perspectives 

for constructing spatial weight matrices: theoretical, topological, and 

empirical (Getis, 2009): 

 Theoretical Perspective: Uses one of the general approaches 

established in literature. Approaches based on spatial distance 

are usually preferred. An example is a function where weight 

decreases with increasing distance. The challenge here is that 

such weightings may not always be suitable for real-world 

conditions. 

 Topological Perspective: Arises from the need to realistically 

define the physical properties of spatial units within a study 

area. In standard weight matrices, all adjacent observations are 

weighted equally without regard to topological differences. 

Thus, observations with different spatial structures are 

represented in the same way. In this approach, topological 

features are reflected in the weight matrix. For instance, the ratio 
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of the shared edge length of adjacent regions to their area can be 

used. 

 Empirical Perspective: According to Cliff and Ord, this is the 

most consistent approach. They noted that “the researcher can 

highlight the spatial features they consider important using a 

flexible weighting system”  (A. D. Cliff & Ord, 1969). Here, the 

researcher builds a weight matrix that best represents the spatial 

relationship structure. 

Based on a review of the literature, the principal methods for 

constructing spatial weight matrices include: 

 Contiguity-based weighting 

 Distance-based weighting 

 Inverse-distance weighting 

 K-nearest neighbors weighting 

 Shared boundary length weighting 

The spatial weight matrix proposed by Getis and Aldstadt, based on the 

local Getis-Ord Gi statistics, differs from other approaches. In this 

method, not only the neighborhood status but also whether neighbors 

exhibit similar characteristics is considered during matrix construction 

(Getis & Aldstadt, 2004). 

Despite the diversity in the literature, general practice tends toward 

using distance-based neighborhoods for point data, boundary contiguity 

for polygon data, and rook or queen contiguity for raster (grid) data. 
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1.1 Contiguity-Based Weighting 

The weight matrix constructed based on contiguity is fundamentally 

binary in structure, as it solely accounts for the condition of adjacency. 

If two observations share a common border, the matrix assigns a value 

of 1; otherwise, it assigns a value of 0. The weight matrix based on 

contiguity can be expressed as follows: 

𝑤𝑖𝑗 = {
1, if unit 𝑖 and 𝑗 are adjacent

0, otherwise
(1. 1) 

The Wij matrix is symmetric, and the diagonal elements are zero. When 

necessary, it can be row-standardized such that the row sums equal 1, 

using the following expression:   

𝑤𝑖𝑗
∗ =

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑗∈𝐶
∑ 𝑤𝑖𝑗

∗ = 1

𝑗∈𝐶

(1. 2) 

In Equation (1.2), C represents the set of observations that are 

contiguous (i.e., neighbors) to observation i. 

1.2 Distance-Based Weighting 

Distance-based weighting is determined according to the distance 

between observations. Observations that fall within a distance threshold 

specified by the researcher are considered neighbors. Observations 

identified as neighbors are assigned a weight of 1 in the matrix, while 

non-neighbors receive a weight of 0. The matrix is defined as follows: 

𝑤𝑖𝑗 = {
1, 𝑑𝑖𝑗 ≤ 𝛿

0, otherwise
(1. 3) 
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Here, 𝑑𝑖𝑗 is the distance between observations i and j, and 𝛿 is the 

threshold distance defined to determine neighborhood. The choice of 

distance metric may vary. This approach is commonly used with point 

data. For polygon data, weighting can be applied based on the distance 

between centroid points instead of using contiguity. As with the 

previous approach, standardization using Equation (1.2) may be applied 

when necessary.  

1.3 Inverse Distance-Based Weighting 

Inverse distance weighting is based on Tobler’s First Law of 

Geography, which states that “everything is related to everything else, 

but near things are more related than distant things.” When the W 

matrix is constructed using this method, the weights decrease as the 

distance between observations increases. The weights are calculated 

using the following equation: 

𝑤𝑖𝑗 =
1

𝑑𝑖𝑗
𝑝 (1. 4) 

Here, 𝑑𝑖𝑗 is the distance between observations i and j, and p is a power 

parameter determined by the researcher. Increasing the power 

parameter p increases the standardized weights for closer observations 

while decreasing those for distant ones.  

1.4 K-Nearest Neighbors-Based Weighting 

Another binary structure is the k-nearest neighbors weighting matrix. 

In this approach, each observation defines as neighbors the k closest 

observations to itself. The weighting matrix is obtained as follows: 
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𝑤𝑖𝑗 = {
1, if 𝑗 is among the 𝑘 nearest neighbors of 𝑖
0, otherwise

(1. 5) 

The resulting matrix may not be symmetric. The number of neighbors 

k is the sole parameter and must be specified by the researcher. An 

advantage of this method is that every observation is guaranteed to have 

at least one neighbor, regardless of the dataset structure. 

1.5 Shared Boundary Length-Based Weighting  

This approach considers the topographical characteristics of the regions 

and is a refined version of boundary-based contiguity weighting 

matrices. Various methods exist for constructing this type of matrix, 

with one of the most used being the generalized weight matrix, which 

accounts for both the shared boundary length and the distance between 

the centroids of the observations. The matrix is calculated as: 

𝑤𝑖𝑗 =
1

𝑑𝑖𝑗 ∑ 𝑙𝑖𝑗𝑗∈𝐶

(1. 6) 

Here, C represents the set of observations neighboring observation i, 𝑙𝑖𝑗 

denotes the length of the shared boundary between observations i and j, 

and 𝑑𝑖𝑗 is the distance between their centroids. 

2. MEASURES OF SPATIAL AUTOCORRELATION  

In natural systems, the random distribution of observations across space 

is rarely observed. As Tobler stated, all things are related, but near 

things are more related than distant things. Therefore, observations that 

are geographically close to each other are expected to exhibit higher 



11 

 

similarity compared to those that are far apart. At this point, spatial 

autocorrelation emerges as the statistical measure that reveals such 

relationship structures among observations. In its simplest form, spatial 

autocorrelation refers to the investigation of whether spatially adjacent 

(neighboring) observations on a map exhibit similarity in terms of a 

given variable.  Similar values of nearby observations indicate positive 

spatial autocorrelation, whereas different values indicate negative 

spatial autocorrelation. In practice, negative spatial autocorrelation is 

rarely observed. Figure 2.1 illustrates structures of positive and 

negative autocorrelations respectively.  

 

Figure 2.1: Positive spatial autocorrelation (a), Negative spatial 

autocorrelation (b) 

 The concept of spatial autocorrelation was first introduced in the late 

1950s by geographer Michael F. Dacey. His efforts to develop 

thisstatistics and received significant support from W. L. Garrison and 

Edward Ullman. German economic geographer Walter Christaller's 

works was known to have influenced all three of these geographers 
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(Çubukçu, 2015). *Although the term “autocorrelation” did not yet 

exist in the literature prior to Dacey studies had already acknowledged 

that nearby spatial units tend to be similar and interact strongly, while 

distant units exhibit relatively weak interactions (Ravenstein, 1885; von 

Thünen, 1826; Zipf, 1949). The development of the concept was later 

best summarized by Tobler’s First Law of Geography. Although the 

term spatial autocorrelation was first formally introduced by Garrison 

in the late 1960s, its theoretical foundation had already been established 

in 1948 when Patrick Alfred Pierce Moran published his calculation. In 

1954, Robert Charles Geary proposed an alternative approach for 

calculating spatial autocorrelation (Geary, 1954). Since the term 

autocorrelation had not yet been coined, both researchers referred to 

their measures as contiguity ratios. These two approaches are now 

widely accepted and frequently used in the literature. Up until 1964, the 

concept of spatial autocorrelation was referred to in the literature by 

various other names such as spatial dependence, spatial association, or 

spatial interaction. More recently, the studies by Getis and Ord have 

further popularized the concept  (L. Anselin & Getis, 1992). 

Spatial autocorrelation is generally analyzed in two ways: global and 

local. Global spatial autocorrelation evaluates the structure of spatial 

relationships across the entire study area using a single summary 

statistic. It is used to provide an overall view and to identify spatial 

patterns. Local spatial autocorrelation, on the other hand, calculates a 

separate statistic for each observation, revealing localized patterns and 

clusters. 



13 

 

While global measures determine whether spatial clustering exists, 

local methods also identify where such clustering occurs. Several 

techniques exist in the literature to measure both global and local spatial 

autocorrelation. These measures are detailed in the following sections. 

2.1 Global Measures of Spatial Autocorrelation  

Global spatial autocorrelation measures determine whether neighboring 

observations exhibit similar characteristics. The most well-known 

global measures for spatial autocorrelation, are Moran’s I Index and 

Geary’s C Ratio, introduced by Austrian statistician Patrick Alfred 

Pierce Moran and Irish statistician Robert Charles Geary respectively. 

Even though developed in the 1950s, these statistics continue to be 

widely accepted by practitioners today. Apart from the statistics 

mentioned, there is another global spatial autocorrelation measure that 

is named as Getis-Ord General G. Compared to the other two measures, 

Getis-Ord General G is used less frequently.  

2.1.1 Moran’s I Index  

Moran’s I Index was introduced by Moran in 1950, and it is the most 

widely used measure of global spatial autocorrelation in the literature. 

Moran’s I Index simultaneously considers both the spatial proximity of 

observations and the values of the variable under study (P. A. P. Moran, 

1950). It is calculated as in Equation (2.1): 

𝐼 =
𝑛

𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅)𝑛
𝑗=1

𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

(2. 1) 

In this equation, n represents the number of observations in the sample; 
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𝑥𝑖 and 𝑥𝑗, the values of the i-th and j-th observations respectively; 𝑥‾, 

the overall-mean; 𝑤𝑖𝑗 , the spatial weight between observations i and j, 

representing the degree of spatial proximity, and 𝑆0 (𝑆0 =

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ) denotes the sum of all spatial weights in the weight 

matrix.  

The I Index takes values in the range of -1 to 1. A positive value 

indicates positive spatial autocorrelation, meaning spatially adjacent 

observations tend to have similar values and generating spatial clusters. 

Conversely a negative value indicates negative spatial autocorrelation, 

meaning that spatially close observations have dissimilar values, so that 

no spatial clustering is present. 

The closer the index approaches to 1, the stronger the spatial 

relationship becomes. If the I Index is close or equal to 0, it indicates 

that the observations are randomly distributed, with a conclusion   there 

is no spatial clustering. To test whether the spatial autocorrelation is 

statistically significant, the normal distribution is used. The z-values of 

the calculated I indices are obtained using Equation (2.2). 

𝑧𝐼 =
𝐼 − 𝐸(𝐼)

√𝑉(𝐼)
(2. 2) 

The expected value and variance of the I Index are calculated as 

follows: 

𝐸(𝐼) = −1 𝑛 − 1⁄  𝑎𝑛𝑑 (2. 3) 

𝑉(𝐼) = 𝐸(𝐼2) − 𝐸(𝐼)2 =
𝑛𝑃1 − 𝑃1𝑃2

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑊
− 𝐸(𝐼)2 (2. 4) 
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In the literature, Equation (2.4) is expressed in various forms. Here, it 

has been reformulated and presented in a simplified manner by 

decomposing it into the terms P1, P2 and P3, where they are denoted as 

follows respectively: 

𝑃1 = (𝑛2 − 3𝑛 + 3)𝑆1 − 𝑛𝑆2 + 3𝑆0
2 (2. 5) 

𝑃2 =
𝑚4

𝑚2
2

(2. 6) 

 𝑃3 = (𝑛2 − 𝑛)𝑆1 − 2𝑛𝑆2 + 6𝑆0
2 (2. 7) 

Due to simplification, the term S emerges in the equations, and it is 

calculated according to whether the weight matrix is symmetric or 

asymmetric. In practice, weight matrix 𝑤𝑖𝑗  is usually taken as 

symmetric (𝑤𝑖𝑗 = 𝑤𝑗𝑖), in order to simplify computation. 

𝑆0 = ∑ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(2. 8) 

𝑆0 represents the total sum of all spatial weights in the spatial weight 

matrix W, providing a measure of the overall spatial connectivity in the 

dataset. 

𝑆1 =
1

2
∑ ∑(𝑤𝑖𝑗 + 𝑤𝑗𝑖)

2
𝑛

𝑗=1

𝑛

𝑖=1

(2. 9) 

𝑆1 shows the symmetry and magnitude of spatial relationships 

between observations, indicating bidirectional spatial interactions. 

Taking the weight matrix as symmetric, the computation of 𝑆1  
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simplifies. It reflects the second-order moment of the spatial 

weight matrix 

𝑆2 = ∑ (∑ 𝑤𝑖𝑗
𝑛
𝑗=1 + ∑ 𝑤𝑗𝑖

𝑛
𝑗=1 )

2𝑛
𝑖=1 (2. 10)

S2 captures the variability in the row and column sums of the weight 

matrix, reflecting heterogeneity in spatial connectivity per location. 

Under the assumption that the data follow a normal distribution, the 

variance of the I Index can also be calculated as below: 

𝑉(𝐼) =
𝑛2𝑆1 − 𝑛𝑆2 + 3𝑆0

2

𝑆0
2(𝑛2 − 1)

− 𝐸(𝐼)2 (2. 11) 

However, in practice, the variance formula (2.4) is preferred for more 

realistic results. 

2.1.2 Geary’s C Ratio 

Geary’s C Ratio is considered an alternative to Moran’s I Index and is 

one of the most frequently used measures in calculating global spatial 

autocorrelation. It was introduced by Charles Geary in 1954 (Geary, 

1954). Analogous to Moran’s I, the Geary’s C statistics incorporates 

both spatial relationships and attribute values and is formally computed 

as shown in Equation (2.12). 

𝐶 =
𝑛 − 1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2𝑛

𝑗=1
𝑛
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

(2. 12) 

In this equation, n represents the number of observations in the sample; 

𝑥𝑖 and 𝑥𝑗, the values of the i-th and j-th observations respectively; 𝑥‾, 

the overall mean; and 𝑤𝑖𝑗  denotes the spatial weight between the two 
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observations.  The C Ratio is always positive and takes a value between 

0 and 2. Its interpretation differs from that of Moran’s I Index. While a 

higher Moran’s I value indicates positive spatial autocorrelation, this 

interpretation does not apply for Geary’s C Ratio. When the calculated 

C value is less than 1, it indicates the presence of positive spatial 

autocorrelation, whereas a value greater than 1 indicates negative 

spatial autocorrelation. In cases where the C value is equal to or 

approximately 1, the spatial distribution of observations is random, 

implying no spatial clustering. Like as Moran’s I Index, the statistical 

significance of the calculated spatial autocorrelation is tested under the 

assumption of normal distribution. The expected value and variance of 

Geary’s C Ratio are calculated as follows: 

𝐸(𝐶) = 1 𝑎𝑛𝑑 (2. 13) 

𝑉(𝐶) =
𝑇1+𝑇2+𝑇3

4𝑛(𝑛 − 2)(𝑛 − 3)𝑆4

(2. 14) 

In Equation (2.14), the formula is simplified by breaking it down into 

parts named as  𝑇1, 𝑇2, and 𝑇3. These parts are calculated with the usage 

of the terms P1, P2 and P3, with referring to the Equations (2.5), (2.6), 

and (2.7) respectively, which used in the calculation of Moran’s I Index. 

𝑇1 = 4(𝑛 − 1)𝑆1[𝑛2 − 3𝑛 + 3 − (𝑛 − 1)𝑃2] (2. 15) 

𝑇2 = −(𝑛 − 1)𝑆2[𝑛2 − 3𝑛 − 6 − (𝑛2 − 𝑛 + 1)𝑃2] (2. 16) 

𝑇3 = 4𝑆0
2[𝑛2 − 3 − (𝑛 − 1)2𝑃2] (2. 17) 

Under the assumption that the data follow a normal distribution, the 

variance of the C Ratio can also be calculated as follows: 
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𝑉(𝐶) =
(2𝑆1 + 𝑆2)(𝑛 − 1) − 4𝑆0

2

2(𝑛 + 1)𝑆0
2

(2. 18) 

Here, the terms  𝑆0, 𝑆1 and 𝑆2 used here correspond to those defined in 

Equations (2.8), (2.9), and (2.10) in the section on Moran’s I Index. 

Comparing their usage in the literature, Geary’s C Ratio is employed 

less frequently than Moran’s I Index. 

Among the global spatial autocorrelation measures, the Getis-Ord 

General G statistic offers a distinct analytical perspective. Unlike 

Moran’s I and Geary’s C, the Getis-Ord G specifically targets the 

spatial clustering of particularly high or low values. Although it is less 

widely utilized in comparison to Moran’s and Geary’s measures, it is 

conceptually regarded as an extension of the local Getis-Ord Gi 

statistics. By omitting the terms 𝑑() and 𝑤𝑖𝑗(𝑑) from the local 

formulation, the global version is derived as follows (Bivand & Wong, 

2018): 

𝐺 =
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∀𝑗 ≠ 𝑖 (2. 19) 

The expected value and variance of the Getis-Ord General G statistic 

are calculated as follows: 

𝐸(𝐺) =
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛(𝑛 − 1)
=

𝑆0

𝑛(𝑛 − 1)
∀𝑗 ≠ 𝑖 (2. 20) 

𝑉(𝐺) = 𝐸(𝐺2) − 𝐸(𝐺)2 (2. 21) 

𝐸(𝐺2) =
𝐴 + 𝐵

𝐶
(2. 22) 
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The terms used in these calculations are defined below: 

𝐴 = 𝐷0 (∑ 𝑥𝑖
2

𝑛

𝑖=1

)

2

+ 𝐷1 ∑ 𝑥𝑖
4 + 𝐷2 (∑ 𝑥𝑖

𝑛

𝑖=1

)

2

∑ 𝑥𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

(2. 23) 

𝐵 = 𝐷3 (∑ 𝑥𝑖

𝑛

𝑖=1

) ∑ 𝑥𝑖
3

𝑛

𝑖=1

+ 𝐷4 (∑ 𝑥𝑖

𝑛

𝑖=1

)

4

(2. 24) 

𝐶 = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) [(∑ 𝑥𝑖

𝑛

𝑖=1

)

2

− ∑ 𝑥𝑖
2

𝑛

𝑖=1

]

2

(2. 25) 

The terms used in the calculations of A, B, and C are as follows: 

𝐷0 = (𝑛2 − 3𝑛 + 3)𝑆1 − 𝑛𝑆2 + 3𝑆0
2 (2. 26) 

𝐷1 = −[𝑛(𝑛 − 1)𝑆1 − 2𝑛𝑆2 + 6𝑆0
2] (2. 27) 

𝐷2 = −[2𝑛𝑆1 − (𝑛 + 3)𝑆2 + 6𝑆0
2] (2. 28) 

𝐷3 = 4(𝑛 − 1)𝑆1 − (𝑛 + 1)𝑆2 + 8𝑆0
2 (2. 29) 

𝐷4 = 𝑆1 − 𝑆2 + 𝑆0
2 (2. 30) 

The values 𝑆0, 𝑆1, and 𝑆2 used above were defined in previous 

measures. To eliminate the condition ∀𝑗 ≠ 𝑖, the Getis-Ord General G 

statistic can be redefined as follows: 

𝐺 =
(∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1 ) − (∑ 𝑤𝑖𝑖𝑥𝑖

2𝑛
𝑖=1 )

(∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ) − ∑ 𝑥𝑖

2𝑛
𝑖=1

(2. 31) 

Unlike Moran’s I Index and Geary’s C Ratio, the Getis-Ord General G 

statistic is not bounded within a predefined numerical range. Therefore, 

to enable meaningful interpretation, a standardization process is 
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required. In general, larger values of the statistic suggest a stronger 

degree of spatial association. 

2.1.3 Getis-Ord General G  

Among the global spatial autocorrelation measures, the Getis-Ord 

General G statistic offers a distinct analytical perspective. Unlike 

Moran’s I and Geary’s C, the Getis-Ord G specifically targets the 

spatial clustering of particularly high or low values. Although it is less 

widely utilized in comparison to Moran’s and Geary’s measures, it is 

conceptually regarded as an extension of the local Getis-Ord Gi 

statistic. By omitting the terms 𝑑() and 𝑤𝑖𝑗(𝑑) from the local 

formulation, the global version is derived as follows (Bivand & Wong, 

2018): 

𝐺 =
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∀𝑗 ≠ 𝑖 (2. 32) 

The expected value and variance of the Getis-Ord General G statistic 

are calculated as follows: 

𝐸(𝐺) =
∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛(𝑛 − 1)
=

𝑆0

𝑛(𝑛 − 1)
∀𝑗 ≠ 𝑖 (2. 33) 

𝑉(𝐺) = 𝐸(𝐺2) − 𝐸(𝐺)2 (2. 34) 

𝐸(𝐺2) =
𝐴 + 𝐵

𝐶
(2. 35) 

The terms used in these calculations are defined below: 
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𝐴 = 𝐷0 (∑ 𝑥𝑖
2

𝑛

𝑖=1

)

2

+ 𝐷1 ∑ 𝑥𝑖
4 + 𝐷2 (∑ 𝑥𝑖

𝑛

𝑖=1

)

2

∑ 𝑥𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

(2. 36) 

𝐵 = 𝐷3 (∑ 𝑥𝑖

𝑛

𝑖=1

) ∑ 𝑥𝑖
3

𝑛

𝑖=1

+ 𝐷4 (∑ 𝑥𝑖

𝑛

𝑖=1

)

4

(2. 37) 

𝐶 = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) [(∑ 𝑥𝑖

𝑛

𝑖=1

)

2

− ∑ 𝑥𝑖
2

𝑛

𝑖=1

]

2

(2. 38) 

The terms used in the calculations of A, B, and C are as follows: 

𝐷0 = (𝑛2 − 3𝑛 + 3)𝑆1 − 𝑛𝑆2 + 3𝑆0
2 (2. 39) 

𝐷1 = −[𝑛(𝑛 − 1)𝑆1 − 2𝑛𝑆2 + 6𝑆0
2] (2. 40) 

𝐷2 = −[2𝑛𝑆1 − (𝑛 + 3)𝑆2 + 6𝑆0
2] (2. 41) 

𝐷3 = 4(𝑛 − 1)𝑆1 − (𝑛 + 1)𝑆2 + 8𝑆0
2 (2. 42) 

𝐷4 = 𝑆1 − 𝑆2 + 𝑆0
2 (2. 43) 

The values 𝑆0, 𝑆1, and 𝑆2 used above were defined in previous 

measures. To eliminate the condition ∀𝑗 ≠ 𝑖, the Getis-Ord General G 

statistic can be redefined as follows: 

𝐺 =
(∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1 ) − (∑ 𝑤𝑖𝑖𝑥𝑖

2𝑛
𝑖=1 )

(∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ) − ∑ 𝑥𝑖

2𝑛
𝑖=1

(2. 44) 

Unlike Moran’s I Index and Geary’s C Ratio, the Getis-Ord General G 

statistic is not bounded within a predefined numerical range. Therefore, 

to enable meaningful interpretation, a standardization process is 
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required. In general, larger values of the statistic suggest a stronger 

degree of spatial association. 

2.2 Local Spatial Autocorrelation Measures 

Global spatial autocorrelation measures whether there is an overall 

spatial relation within a dataset. Specifically, they determine whether 

geographically proximate observations tend to exhibit similar values. 

These measures produce a single summary statistic, which allows for 

general inferences about the presence of spatial clustering. However, 

such global indicators do not provide information about the specific 

locations or spatial units involved in the clustering. To address this 

limitation, local spatial autocorrelation measures have been developed 

to identify the spatial extent and intensity of clustering more precisely. 

These measures assign an individual association value to each spatial 

unit, thereby enabling the identification of localized clusters. Among 

the various techniques introduced in the literature, the most widely used 

are Local Moran’s I, Local Geary’s C, and Local Getis-Ord G. 

The moments of Local Moran’s I and Local Geary’s C statistics often 

violate the assumption of normality. Therefore, standard hypothesis 

testing based on p-values, as used in global spatial autocorrelation 

analysis, may not be appropriate in this context. As a result, a spatial 

unit may appear significantly different from its neighbors purely by 

chance, which can lead to statistically unreliable test outcomes. To 

overcome this issue, a permutation-based measure is employed to 

generate a pseudo p-value. This approach involves repeatedly 

permuting the values of neighboring observations for a selected spatial 
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unit, where each permutation yields a new test statistic and its 

associated p-value. The pseudo p-value is then calculated by comparing 

the distribution of the permuted values with the observed value. 

𝑝 =
𝐿 + 1

𝑀 + 1
(2. 45) 

Here, L denotes the number of permuted statistics that are less than or 

equal to the observed statistic, and M represents the total number of 

permutations. The pseudo p-value serves as a robust alternative when 

the assumption of normality is questionable (Emrehan, 2022). 

2.2.1 Local Moran’s I  

Local Moran’s 𝐼 is one of the most extensively utilized statistics for 

assessing local spatial autocorrelation. It represents the localized 

extension of the global Moran’s 𝐼 index and was introduced into the 

literature by Belgian statistician and economist Luc Anselin in 1995  

(Luc Anselin, 1995). It is also commonly referred to as LISA (Local 

Indicators of Spatial Association). This statistic not only detects the 

spatial locations of clusters in datasets exhibiting spatial dependence, 

but it also identifies observations that significantly deviate from their 

spatial neighbors. Consequently, it serves as a valuable tool for 

detecting spatial outliers (Çubukçu, 2015). It is computed for each 

observation in the sample using the following expression: 

𝐼𝑖 = 𝑧𝑖 ∑ 𝑤𝑖𝑗𝑧𝑗

𝑛

𝑗=1

(2. 46) 
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In this formulation, 𝑛 denotes the number of observations in the sample, 

𝑤𝑖𝑗  represents the spatial weight between observations 𝑖 and 𝑗, and 𝑧𝑖 

and 𝑧𝑗 are the standardized values associated with these observations. 

Since the 𝐼𝑖 statistic does not fall within a fixed numerical range, it is 

interpreted in a relative manner, rather than absolute. High positive 

values of  𝐼𝑖  indicate that both the observation and its neighbors possess 

similarly high values. Conversely, negative values of 𝐼𝑖, deviating 

significantly from zero, indicate that the observation's value 

substantially differs from those of its neighbors, suggesting spatial 

dissimilarity or outlier status. 

To evaluate the statistical significance of the detected spatial 

association, the expected value of 𝐼𝑖 is calculated as follows: 

𝐸(𝐼𝑖) =
−𝑤𝑖

(𝑛 − 1)
(2. 47) 

Where 𝑤𝑖 represents the total spatial weight of the neighbors of 

observation 𝑖, and is given by: 

𝑤𝑖 = ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝑗 ≠ 𝑖 (2. 48) 

The variance of the Local Moran’s 𝐼 statistic is computed using the 

following expression: 

𝑉(𝐼𝑖) =
𝑤𝑖(2)(𝑛 − 𝑏2)

(𝑛 − 1)
−

2𝑤𝑖(𝑘ℎ)(2𝑏2 − 𝑛)

(𝑛 − 1)(𝑛 − 2)
−

𝑤𝑖
2

(𝑛 − 1))2
(2. 49) 

Where the components are defined as: 
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𝑤𝑖(2) = ∑(𝑤𝑖𝑗
2 )

𝑛

𝑗=1

𝑗 ≠ 𝑖 (2. 50) 

𝑏2 =
𝑛 ∑ 𝑧𝑖

4𝑛
𝑖=1

(∑ 𝑧𝑖
2𝑛

𝑖=1 )2
(2. 51) 

2𝑤𝑖(𝑘ℎ) = ∑ ∑(𝑤𝑖𝑘𝑤𝑖ℎ)

𝑛

ℎ=1

𝑛

𝑘=1

𝑘, ℎ ≠ 𝑖 (2. 52) 

Based on the resulting standardized 𝑧-score, the statistical significance 

of spatial association is tested at the predefined confidence level 𝛼. 

2.2.2 Local Geary's C 

The Local Geary’s 𝐶 statistic constitutes another widely used measure 

for evaluating local spatial autocorrelation. Like other approaches, it is 

derived from its global counterpart and is employed to determine the 

spatial location of clusters (Luc Anselin, 1995). The statistic is 

calculated using the following expression: 

𝐶𝑖 =
1

𝑚2
∑ 𝑤𝑖𝑗(𝑧𝑖 − 𝑧𝑗)

2
𝑛

𝑗=1

(2. 53) 

In this formulation, 𝑛 denotes the total number of observations in the 

sample, 𝑤𝑖𝑗  represents the spatial weight between observations 𝑖 and 𝑗, 

𝑧𝑖 and 𝑧𝑗 are their standardized values, and 𝑚2 corresponds to the 

second-order moment. The expected value and variance of the 𝐶𝑖 

statistic are defined as: 

𝐸(𝐶𝑖) =
2𝑛𝑤𝑖

𝑛 − 1
(2. 54) 
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𝑉(𝐶𝑖) = (
𝑛

𝑛 − 1
) (𝑤𝑖

2 + 𝑤𝑖(2))(3 + 𝑏2) − 𝐸(𝐶𝑖)
2 (2. 55) 

The terms 𝑤𝑖, 𝑤𝑖(2), and 𝑏2 are identical to those introduced in the 

section on the Local Moran’s 𝐼 statistic. Owing to the lack of a clearly 

defined distribution, the Local Geary’s 𝐶 statistic is considerably less 

prevalent in the spatial autocorrelation literature compared to 

alternative local measures. 

2.2.3 Local Getis-Ord Gi  

The Local Getis-Ord 𝐺𝑖 statistic is the most widely used technique for 

local spatial autocorrelation. It was developed by geographer Arthur 

Getis and statistician J.K. Ord (Getis & Ord, 1992). Similar to other 

measures, it assesses whether observations exhibit similar values based 

on a given variable, thereby identifying potential clustering. This 

statistic is commonly employed in the mapping of hot and cold spots. 

Hot spots indicate areas where observations and their neighbors exhibit 

similarly high values, while cold spots indicate clusters of similarly low 

values. 

In their initial work, Getis and Ord calculated local statistics using a 

binary spatial weight matrix based on distance. Accordingly, local 

statistics for each observation are calculated using the following 

formula: 

𝐺𝑖(𝑑) =
∑ 𝑤𝑖𝑗(𝑑)𝑥𝑗

𝑛
𝑗=1

∑ 𝑥𝑗
𝑛
𝑗=1

𝑖 ≠ 𝑗 (2. 56) 
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Here, 𝑛 denotes the number of observations, 𝑤𝑖𝑗(𝑑) represents the 

spatial weight between observations 𝑖 and 𝑗 based on a threshold 

distance 𝑑, and 𝑥𝑗 indicates the observed value for unit 𝑗. The parameter 

𝑑 defines the neighborhood structure within the spatial weight matrix. 

When an inverse-distance weighting scheme is used, which is common 

in applied studies, the binary neighborhood structure is no longer 

preserved. In such cases, the weight of an observation with itself 

becomes equal to one. 

To allow for analysis with non-binary weight structures, the 𝐺𝑖 statistic 

is reformulated as follows: 

𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗𝑥𝑗 − 𝑥̅ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑆√(𝑛 ∑ 𝑤𝑖𝑗
2𝑛

𝑗=1 ) − (∑ 𝑤𝑖𝑗
𝑛
𝑗=1 )

2

𝑛 − 1

(2. 57)
 

In this equation, 𝑥𝑗 is the observed value of unit 𝑗, 𝑤𝑖𝑗  is the spatial 

weight between units 𝑖 and 𝑗, 𝑥‾ denotes the global mean, and 𝑆 

represents the standard deviation, which is calculated as: 

𝑆 = √
(∑ 𝑥𝑗

2𝑛
𝑗=1 )

𝑛
− 𝑥̅2 (2. 58) 

The 𝐺𝑖
∗ statistic follows the standard normal distribution, and the 

resulting values are interpreted as 𝑧-scores. High positive values 

indicate that an observation and its neighbors exhibit high attribute 

values. Conversely, low negative values suggest clustering of low 
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attribute values. The statistical significance of the computed 𝐺𝑖
∗ values 

is evaluated at a predefined confidence level 𝛼. 

 

Figure 2.2: Identification of statistically significant hot and cold spots 

3. SPATIAL REGRESSION MODELS  

Spatial regression analysis has increasingly become one of the most 

prominent branches of statistics in recent years. In studies where space 

plays a critical role, it has been recognized that classical statistical 

methods are inadequate for explaining statistical variation and for 

making sound inferences. As a result, spatial statistical methods have 

been adopted in place of traditional approaches. These methods include 

spatial models that incorporate spatial information and consider the 

influence of location on observations. 

Data that exhibit spatial relationships do not satisfy one of the 
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fundamental assumptions of classical statistics, namely the 

independence of observations. In spatial datasets, the presence of spatial 

dependence or spatial autocorrelation causes classical statistical 

methods to produce biased or inconsistent results. Therefore, 

specialized methods and techniques have been developed for analyzing 

spatially dependent data. Spatial regression models are among the most 

important of these methods, as they provide more reliable results by 

accounting for spatial relationships among observations. 

Spatial regression models are generally based on the classical linear 

regression model. The classical linear regression model is a statistical 

framework that describes the linear relationship between a dependent 

variable and one or more independent variables, and it is expressed as 

follows: 

𝑦𝑖 = ∑ 𝑋𝑖𝑞𝛽𝑞 + 𝜀𝑖       , 𝑖 = 1,2, … , 𝑛

𝑄

𝑞=1

(3. 1) 

In this equation, 𝑦𝑖 represents the value of the dependent variable for 

the 𝑖th observation, 𝑋𝑖𝑞  represents the value of the 𝑞th explanatory 

variable for the 𝑖th observation, 𝛽𝑞 is the regression coefficient for the 

𝑞th variable, and 𝜀𝑖 denotes the error term for the 𝑖th observation. In 

classical regression, error terms are assumed to have a mean of zero 

𝐸[𝜀𝑖] = 0, constant variance Var[𝜀𝑖] = 𝜎2, and to be mutually 

uncorrelated 𝐸[𝜀𝑖, 𝜀𝑗] = 𝐸[𝜀𝑖]𝐸[𝜀𝑗] = 0. The matrix form of the model 

is: 

𝑦 = 𝑋𝛽 + 𝜀 (3. 2) 
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Here, 𝑦 denotes an 𝑛 × 1 vector of the dependent variable, 𝑋 is an 𝑛 ×

𝑄 matrix of independent variables, 𝛽 is a 𝑄 × 1 vector of regression 

coefficients, and 𝜀 is an 𝑛 × 1 vector of error terms. The assumption of 

independent observations simplifies the model significantly. However, 

this assumption is generally not valid in spatial data analysis. If the 

explanatory variables, the residuals, or the dependent variable exhibit 

spatial dependence, the model becomes misspecified and the resulting 

estimators may be biased or inconsistent (Fischer & Wang, 2011). 

Spatial dependence refers to the situation in which observations located 

near each other in space are interconnected. Based on this assumption, 

three main approaches have been proposed for incorporating spatial 

dependence into regression models. The first approach is known as 

endogenous spatial interaction models. These models examine and 

include in the model the relationship between the dependent variable 

and the values of the dependent variable in neighboring areas. This type 

of model is commonly referred to in the literature as the Spatial 

Autoregressive Model (SAR). 

The second approach is exogenous spatial interaction models. These 

models investigate how independent variables in neighboring areas 

influence the dependent variable of a given unit. This structure is 

referred to as the Spatial Lag of X Model (SLX) or the Cross-

Regressive Model in the literature. 

The third approach is spatial error interaction models. In these models, 

spatial dependence is not introduced through the dependent variable but 

rather through unobserved influences captured in the error terms. In 
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other words, spatial relationships arise when error terms display similar 

patterns across neighboring units. This approach is known as the Spatial 

Error Model (SEM) in the literature. 

3.1 Spatial Autoregressive Models (SAR) 

The SAR model is used to capture situations in which the dependent 

variable is directly influenced by the values of the dependent variable 

in neighboring regions. This type of interaction represents an 

endogenous form of spatial autocorrelation. By incorporating the 

spatial relationship directly through the dependent variable, the model 

aims to produce more accurate and consistent results in contexts where 

classical regression methods are inadequate. In the literature, it is also 

referred to as the Spatial Lag Model. The SAR model is expressed as 

follows: 

𝑦𝑖 = 𝜌 ∑ 𝑊𝑖𝑗𝑦𝑗 + ∑ 𝑋𝑖𝑞𝛽𝑞 + 𝜀𝑖

𝑄

𝑞=1

𝑛

𝑗=1

(3. 3) 

In this model, 𝑦𝑖 denotes the dependent variable for the 𝑖th unit; 𝜌 is the 

spatial autoregressive coefficient; 𝑤𝑖𝑗  represents the spatial weight 

between units 𝑖 and 𝑗; 𝑦𝑗 is the dependent variable for unit 𝑗; 𝑥𝑖𝑞 is the 

𝑞th independent variable for unit 𝑖; 𝛽𝑞 is the regression coefficient 

corresponding to the 𝑞th variable; and 𝜀𝑖 is the error term for unit 𝑖. The 

weight matrix is row-standardized such that each row sums to one. The 

matrix form of the model is given as: 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀 (3. 4) 
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In this formulation, 𝑦 is the 𝑛 × 1 vector of the dependent variable, 𝑋 

is the 𝑛 × 𝑄 matrix of independent variables, 𝛽 is the 𝑄 × 1 vector of 

regression coefficients, 𝑊 is the 𝑛 × 𝑛 spatial weights matrix, 𝜌 is the 

spatial autoregressive coefficient, and 𝜀 is the 𝑛 × 1 vector of error 

terms. Solving the SAR model for 𝑦 yields the following expression: 

𝑦 = (𝐼 − 𝜌𝑊)−1𝑋𝛽 + (𝐼 − 𝜌𝑊)−1𝜀 (3. 5) 

The expected value and variance of 𝑦 are then computed as follows: 

𝐸[𝑦] = (𝐼 − 𝜌𝑊)−1𝑋𝛽 (3. 6) 

𝑉𝑎𝑟[𝑦] = 𝜎2(𝐼 − 𝜌𝑊)−1[(𝐼 − 𝜌𝑊)−1]𝑇 (3. 7) 

The matrix (𝐼 − 𝜌𝑊)−1 is referred to as the spatial multiplier, 

emphasizing that the expected value of each observation 𝑦𝑗 depends on 

a linear combination of 𝑋 values from neighboring observations 

(Fischer & Wang, 2011). The spatial autoregressive coefficient 𝜌 is one 

of the most critical parameters in the SAR model, indicating the extent 

to which the dependent variable of a given observation is influenced by 

the dependent variables of its neighbors. This coefficient typically 

ranges between -1 and 1. A positive value of 𝜌 suggests that 

neighboring observations tend to have similar values of the dependent 

variable. In other words, a high value in one observation exerts an 

upward influence on surrounding observations. Conversely, a negative 

value of 𝜌 indicates a negative relationship among neighboring 

observations, implying that spatially proximate observations exhibit 

dissimilar values. A value of 𝜌 close to zero implies that the spatial 

relationship is negligible, in which case classical regression methods 
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may be appropriate. 

In SAR models, coefficient estimation cannot be performed using the 

Ordinary Least Squares (OLS) method, as in classical regression 

models. This is because the spatially lagged dependent variable 𝑊𝑦 is 

correlated with the dependent variable itself, and hence with the error 

term. This correlation leads to biased and inconsistent estimates. 

Therefore, Maximum Likelihood (ML) estimation is typically used in 

SAR models. ML estimation possesses desirable asymptotic properties 

such as consistency, efficiency, and asymptotic normality. It is based 

on the assumption that the error terms follow a normal distribution. 

Accordingly, the reduced form of the SAR model and the corresponding 

log-likelihood function are given as follows: 

𝑦 = (𝐼 − 𝜌𝑊)−1𝑋𝛽 + (𝐼 − 𝜌𝑊)−1𝜀 (3. 8) 

ℒ(𝜌, 𝛽, 𝜎2) =) = −
𝑛

2
𝑙𝑛(2𝜋) + 𝑙𝑛|𝐼 − 𝜌𝑊| −

1

2𝜎2
(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽)′(𝑦

− 𝜌𝑊𝑦 − 𝑋𝛽) −
𝑛

2
𝑙𝑛(𝜎2) 

(3.9) 

Since the transformed model has the structure of a classical linear 

regression, a new dependent variable is defined as 𝑦∗ = (𝐼 − 𝜌𝑊)𝑦. In 

this way, the 𝛽 parameter can be estimated using OLS as follows: 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑦∗ = (𝑋′𝑋)−1𝑋′(𝑦 − 𝜌𝑊𝑦) (3. 10) 

This estimator is conditionally unbiased and consistent for a given value 

of 𝜌. The estimator for 𝜎2 is obtained using the residual term: 

𝜀̂ = 𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂ (3. 11) 
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𝜎̂2 =
1

𝑛
𝜀̂′𝜀̂ =

1

𝑛
(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂)′(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂) (3. 12) 

The final variance estimate is obtained by substituting the optimized 

value of 𝜌. This procedure is consistent with the concentrated log-

likelihood approach and constitutes an integral part of SAR model 

estimation. By substituting the above expressions into the log-

likelihood function, the number of unknowns is reduced, resulting in a 

simplified concentrated log-likelihood function that depends only on 

the parameter 𝜌: 

ℓ𝐶(𝜌) = 𝑙𝑛|𝐼 − 𝜌𝑊| −
𝑛

2
𝑙𝑛[(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂(𝜌))′(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂(𝜌))] (3. 13) 

Because the spatial autoregressive coefficient 𝜌 cannot be solved 

analytically, numerical optimization methods are used to find the value 

that maximizes the log-likelihood function. One of the simplest such 

methods is grid search. In this approach, a plausible interval for 𝜌 is 

selected, typically between -1 and 1, although a narrower interval may 

be chosen based on the eigenvalues of the 𝑊 matrix to ensure model 

stability and invertibility. In particular, the matrix (𝐼 − 𝜌𝑊) must be 

invertible, which requires that 𝜌𝜆𝑖 < 1 for all eigenvalues 𝜆𝑖. 

Therefore, 𝜌 is often constrained to be less than 1/𝜆max. Within the 

chosen interval, a set of equally spaced grid points is defined and ℓ𝐶(𝜌) 

is calculated for each. The 𝜌 value that yields the highest function value 

is selected. Although this method is straightforward, it typically has 

lower accuracy. 

Another method for estimating 𝜌 is the Newton-Raphson method. This 

technique involves taking the first derivative (score function) and the 
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second derivative (Hessian) of the concentrated log-likelihood function, 

which are expressed as follows (LeSage & Pace, 2009): 

𝜕ℓ𝐶(𝜌)

𝜕𝜌
= −tr[(𝐼 − 𝜌𝑊)−1𝑊] +

𝑒0′𝑒𝐿 − 𝜌𝑒𝐿′ 𝑒𝐿

(𝑒0 − 𝜌𝑒𝐿)′(𝑒0 − 𝜌𝑒𝐿)
(3. 14) 

𝑒0 = 𝑦 − 𝑋𝛽0    𝛽0 = (𝑋′𝑋)−1𝑋′𝑦 (3. 15) 

𝑒𝐿 = 𝑊𝑦 − 𝑋𝛽𝐿    𝛽𝐿 = (𝑋′𝑋)−1𝑋′𝑊𝑦 (3. 16) 

The value of 𝜌 that maximizes this function is the maximum likelihood 

estimate 𝜌̂. However, since an analytical solution does not exist, the 

second derivative is also required: 

𝐻(𝜌) = ∑
𝜆𝑖

2

(1 − 𝜌𝜆𝑖)
2

𝑛

𝑖=1

+
𝑒𝐿′𝑒𝐿

(𝑒0 − 𝜌𝑒𝐿)′(𝑒0 − 𝜌𝑒𝐿)
− [

𝑒0′𝑒𝐿 − 𝜌𝑒𝐿′𝑒𝐿

(𝑒0 − 𝜌𝑒𝐿)′(𝑒0 − 𝜌𝑒𝐿)
]

2

(3. 17) 

The first term here represents the second derivative of the log-

determinant (expressed in terms of eigenvalues), while the other two 

terms arise from the derivative of the sum of squared errors. The 

iterative update formula for 𝜌 used in the Newton-Raphson method is 

given as: 

𝜌(𝑡+1) = 𝜌(𝑡) − [
𝜕2ℓ𝐶(𝜌)

𝜕𝜌2
]

−1

⋅ [
𝜕ℓ𝐶(𝜌)

𝜕𝜌
] (3. 18) 

Determining when to terminate the iterative process is critical for the 

accuracy and efficiency of the algorithm. The literature generally 

follows three criteria. The first is the parameter change criterion, which 

is the most commonly used: 

|𝜌(𝑡+1) − 𝜌(𝑡)| < 𝜀1 (3. 19) 
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If the difference between consecutive estimates is sufficiently small, the 

algorithm is considered to have converged. Another criterion is based 

on the score function: 

|
𝜕ℓ𝐶(𝜌)

𝜕𝜌
| < 𝜀2 (3. 20) 

A score function value close to zero suggests that the estimate is near 

the maximum, at which point the iterations are halted. In the literature, 

the threshold is typically chosen as 𝜀2 = 10−5 or smaller. A third 

commonly used criterion is based on changes in the log-likelihood 

function. If the function no longer increases during iterations, further 

updates are deemed unnecessary and the procedure is terminated (Kazar 

& Celik, 2012). 

3.2 Spatial Error Models (SEM) 

Spatial Error Models represent a class of spatial regression models that 

account for spatial dependence in the error terms. When the 

independent variables included in the regression model fail to fully 

capture the spatial variation, spatial autocorrelation may manifest in the 

residuals. This form of dependence typically arises from spatially 

structured but unobserved factors, the influence of latent variables, or 

systematic measurement errors that follow a spatial pattern. 

SEM captures such dependence as an exogenous form of spatial 

autocorrelation. It is particularly useful when classical regression 

models yield biased or inefficient results due to unmodeled spatial 

effects. The model is commonly referred to in the literature as the 
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Spatial Error Model. The core structure of SEM is defined as follows  

(Fischer & Wang, 2011): 

𝜀𝑖 = 𝜆 ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝜀𝑗 + 𝑢𝑖 (3. 21) 

In this formulation, 𝜀𝑖 denotes the total error for unit 𝑖, 𝜆 is the spatial 

error dependence coefficient, 𝑤𝑖𝑗  represents the spatial weight between 

units 𝑖 and 𝑗, 𝜀𝑗 is the error term for unit 𝑗, and 𝑢𝑖 is an independently 

distributed disturbance term. This equation forms the foundation of the 

spatial error model and indicates that the error terms are not 

independent from one another but are influenced by the errors of 

neighboring units. In other words, the spatial structure is explicitly 

modeled within the residual terms. The matrix representation of the 

model is expressed as follows: 

𝜀 = 𝜆𝑊𝜀 + 𝑢 (3. 22) 

𝑢 ∼ 𝒩(0, 𝜎2𝐼) (3. 23) 

By substituting this spatial error structure into the regression model, the 

SEM formulation becomes: 

𝜀 = (1 − 𝜆𝑊)−1 + 𝑢 (3. 24) 

𝑦 = 𝑋𝛽 + (𝐼 − 𝜆𝑊)−1𝜀 (3. 25) 

This model structure clearly demonstrates that the errors do not follow 

a random distribution but instead propagate according to spatial 

adjacency relationships. It illustrates why classical regression models 

can produce misleading results in the presence of spatial error 
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dependence. In this context, 𝐸[𝜀𝜀′] = 𝜎2𝐼, and the covariance matrix 

is given as follows: 

Var[𝜀𝜀′] = 𝜎2(𝐼 − 𝜆𝑊)−1[(𝐼 − 𝜆𝑊)−1]𝑇 (3. 26) 

The variance-covariance matrix further indicates that the error terms are 

not independent and that the errors of neighboring units are 

interdependent. The spatial error dependence coefficient λ in the model 

is generally not interpreted as a direct structural effect coefficient. 

Rather, it is regarded as a technical component aimed at improving the 

model’s estimation accuracy. In the literature, this coefficient is 

frequently referred to as a nuisance parameter. In other words, it is 

considered an element that falls outside the primary interest of the 

analysis but must be accounted for to ensure the structural consistency 

of the model. A positive value of the spatial error dependence 

coefficient λ implies that the unobserved effects in neighboring units 

move in similar directions, whereas a negative value indicates that these 

effects move in opposite directions. If λ is close to zero, it suggests that 

spatial error dependence is weak or negligible and that classical 

regression models may be sufficient. 

In the SEM model, parameter estimation cannot be performed using the 

classical Ordinary Least Squares method due to the presence of spatial 

dependence among the error terms. This dependence violates the 

assumptions required for OLS to yield efficient and reliable estimates. 

Therefore, parameter estimation in SEM is typically carried out using 

the Maximum Likelihood (ML) method. The ML approach 

simultaneously estimates the regression coefficients β, the spatial error 
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dependence coefficient λ, and the error variance σ² by explicitly 

accounting for spatial dependence in the error structure. The log-

likelihood function for the SEM is given as follows: 

ℒ(𝜆, 𝛽, 𝜎2) = −
𝑛

2
𝑙𝑛(2𝜋) + 𝑙𝑛|𝐼 − 𝜆𝑊| −

1

2𝜎2
𝑒′𝑒 −

𝑛

2
𝑙𝑛𝜎2 (3. 27) 

𝑒 = (𝐼 − 𝜆𝑊)(𝑦 − 𝑋𝛽) (3. 28) 

For a given value of 𝜆, the conditional least squares estimate of 𝛽 is: 

𝛽̂(𝜆) = (𝑋′𝑋)−1𝑋′(𝑦 − 𝜆𝑊𝑦) (3. 29) 

Alternatively, the generalized least squares (GLS) estimator may be 

employed using the error covariance matrix Ω = [(𝐼 − 𝜆𝑊)′(𝐼 −

𝜆𝑊)]−1. The variance of the error term is estimated as: 

𝜎̂2(𝜆) =
1

𝑛
𝑒′𝑒 =

1

𝑛
(𝑦 − 𝑋𝛽̂)′(𝐼 − 𝜆𝑊)′(𝐼 − 𝜆𝑊)(𝑦 − 𝑋𝛽̂) (3. 30) 

𝑒 = (𝐼 − 𝜆𝑊)(𝑦 − 𝑋𝛽̂) (3. 31) 

As with the SAR model, the spatial error coefficient 𝜆 is typically 

estimated by maximizing the concentrated log-likelihood function with 

respect to 𝜆: 

ℓ𝐶(𝜆) = 𝑙𝑛|𝐼 − 𝜆𝑊| −
𝑛

2
𝑙𝑛[(𝑦 − 𝑋𝛽̂)′(𝐼 − 𝜆𝑊)′(𝐼 − 𝜆𝑊)(𝑦 − 𝑋𝛽̂)] (3. 32) 

The maximum of this function is found using numerical techniques 

such as grid search or the Newton-Raphson method. The first derivative 

of the concentrated log-likelihood with respect to 𝜆 is: 

𝜕ℓ𝐶(𝜆)

𝜕𝜆
= tr[𝑊(𝐼 − 𝜆𝑊)−1] −

1

𝜎2
𝑒′𝑊(𝑦 − 𝑋𝛽̂) (3. 33) 
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Since this derivative cannot be solved analytically, the Newton-

Raphson algorithm is applied. The second derivative of the 

concentrated log-likelihood is: 

𝜕2ℓ𝐶(𝜆)

𝜕𝜆2
= tr[𝑊2(𝐼 − 𝜆𝑊)−2] +

2

𝜎2
𝑒′𝑊2𝑒 (3. 34) 

Using these expressions, the Newton-Raphson iterations are conducted 

until convergence is achieved. While the ML approach is widely 

adopted in the literature, alternative methods such as the Generalized 

Method of Moments (GMM) can be employed for large samples (Luc 

Anselin, 1988). 

3.3 Spatial Durbin Model (SDM) 

The Spatial Durbin Model (SDM) is an extended spatial regression 

framework that incorporates both the spatial lag of the dependent 

variable and the spatial lags of the independent variables. It enables the 

assessment of both direct effects (on the observation itself) and indirect 

effects (from neighboring observations), thereby allowing a more 

comprehensive understanding of spatial interactions. The model 

accounts for both endogenous and exogenous spatial autocorrelation 

simultaneously. Its primary objective is to capture the influence not 

only of neighboring regions’ dependent variables but also of their 

explanatory variables. The SDM is specified as: 

𝑦𝑖 = 𝜌 ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 + ∑ 𝑋𝑖𝑞

𝑄

𝑞=1

𝛽𝑞 + ∑ ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝑄

𝑞=1

𝑋𝑗𝑞𝜃𝑞 + 𝜀𝑖 (3. 35) 
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In this model, 𝑦𝑖 is the dependent variable for unit 𝑖, 𝜌 is the spatial 

autoregressive coefficient, 𝑊𝑖𝑗  represents the spatial weight between 

units 𝑖 and 𝑗, 𝑋𝑖𝑞  is the 𝑞th explanatory variable for unit 𝑖, 𝑋𝑗𝑞  is the 

same variable for neighboring unit 𝑗, 𝛽𝑞 denotes the standard regression 

coefficient, 𝜃𝑞  captures the effect of neighboring units’ covariates, and 

𝜀𝑖 is the error term. 

The matrix notation of the model is: 

 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑊𝑋𝜃 + 𝜀 (3. 36) 

ε ∼ 𝒩(0, 𝜎2I) 

Here, 𝑦 denotes the 𝑛 × 1 vector of the dependent variable, 𝑋 is the 𝑛 ×

𝑄 matrix of independent variables, 𝛽 represents the 𝑄 × 1 vector of 

regression coefficients, 𝑊 is the 𝑛 × 𝑛 spatial weight matrix, 𝜃 is the 

𝑄 × 1 vector of coefficients for the spatially lagged independent 

variables, and 𝜀 is the 𝑛 × 1 vector of error terms. The model can be 

algebraically solved for 𝑦 and expressed in the following reduced form. 

𝑦 = (𝐼 − 𝜌𝑊)−1(𝑋𝛽 + 𝑊𝑋𝜃) + (𝐼 − 𝜌𝑊)−1𝜀 (3. 37) 

While the SAR model incorporates only the dependent variables of 

neighboring regions, the SDM model extends this framework by also 

including spatially lagged versions of the independent variables. This 

extension endows the SDM model with greater flexibility and allows it 

to be interpreted as a general specification that nests both the SAR and 

SEM models as special cases. In this model, the coefficient 𝜌 captures 

the influence of neighboring regions' dependent variable values on the 
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dependent variable of the focal region, whereas the coefficient 𝜃𝑞  

reflects the impact of the independent variables in neighboring regions 

on the dependent variable of the focal unit. A positive 𝜃 coefficient 

indicates that an increase in a variable in neighboring areas leads to an 

increase in the dependent variable in the current region. Conversely, a 

negative 𝜃 implies that an increase in neighboring regions' explanatory 

variables has a negative effect on the dependent variable in the current 

unit. Notably, when 𝜃 = 0, the SDM simplifies to the SAR model, and 

when 𝜌 = 0 with 𝜃 ≠ 0, it becomes equivalent to the Spatially Lagged 

X Model (SLX). 

Like the SAR and SEM models, the SDM cannot be estimated using the 

conventional ordinary least squares method, as the presence of lagged 

dependent and independent variables introduces correlation with the 

error terms. Consequently, parameter estimation is typically conducted 

via the maximum likelihood method, which provides consistent and 

efficient estimates of the parameters 𝜌, 𝛽, and 𝜃. The corresponding 

log-likelihood function for estimation via maximum likelihood is 

formulated as follows (Fischer & Wang, 2011). 

ℒ(𝜌, 𝛽, 𝜃, 𝜎2) = −
𝑛

2
𝑙𝑛(2𝜋) + 𝑙𝑛|𝐼 − 𝜌𝑊| −

1

2𝜎2
𝜀′𝜀 −

𝑛

2
𝑙𝑛𝜎2(3. 38) 

𝜀 = 𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽 − 𝑊𝑋𝜃 (3. 39) 

Since both 𝑋 and 𝑊𝑋 are included in the SDM model, their 

corresponding coefficients are estimated simultaneously. Given a fixed 

value of 𝜌, the coefficients can be obtained using a method analogous 

to classical least squares. The estimator is defined as follows: 
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[
𝛽̂

𝜃
] = (𝑍′𝑍)−1𝑍′(𝑦 − 𝜌𝑊𝑦)  𝑍 = [𝑋 𝑊𝑋] (3. 40) 

These estimates represent the direct and indirect effects of the 

covariates in the deterministic component of the SDM. Based on this, 

the estimated residuals and the error variance can be computed as 

follows: 

𝜀̂ = 𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂ − 𝑊𝑋𝜃 (3. 41) 

𝜎̂2 =
1

𝑛
(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂ − 𝑊𝑋𝜃)′(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂ − 𝑊𝑋𝜃) (3. 42) 

The spatial autoregressive coefficient 𝜌, which reflects the feedback 

structure of spatial dependence in the model, cannot be estimated 

directly. Therefore, a concentrated log-likelihood function is used and 

is given by: 

ℓ𝐶(𝜌) = 𝑙𝑛|𝐼 − 𝜌𝑊| −
𝑛

2
𝑙𝑛[𝜀̂′𝜀̂] (3. 43) 

This function is numerically maximized with respect to 𝜌. To achieve 

this, iterative methods such as grid search or the Newton-Raphson 

algorithm are commonly employed. For estimation using the Newton-

Raphson method, the first and second derivatives of the concentrated 

log-likelihood function with respect to 𝜌 are derived as follows: 

∂ℓ𝐶(𝜌)

∂𝜌
= −tr[(𝐼 − 𝜌𝑊)−1𝑊] +

1

𝜎2
𝜀̂′𝑊𝑦 (3. 44) 

∂2ℓ𝐶(𝜌)

∂𝜌2
= tr[𝑊(𝐼 − 𝜌𝑊)−1𝑊(𝐼 − 𝜌𝑊)−1] +

2

𝜎2
(𝑊𝑦)′(𝑊𝑦)(3. 45) 
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With these expressions, the Newton-Raphson steps can be implemented 

to obtain the estimate of the spatial autoregressive coefficient 𝜌. 

3.4 Spatial Autocorrelation Model (SAC) 

The Spatial Autocorrelation Model (SAC) is an integrated spatial 

regression specification that simultaneously accounts for spatial 

dependence in both the dependent variable and the error terms. In this 

respect, it can be viewed as a combination of the Spatial Lag Model 

(SAR) and the Spatial Error Model (SEM). Accordingly, the SAC 

model incorporates both endogenous and exogenous forms of spatial 

autocorrelation. In the literature, it is also referred to as the SARAR 

model, short for Spatial Autoregressive Model with Autoregressive 

Residuals. 

The primary motivation for this model is to capture more 

comprehensive and realistic spatial interactions by modeling spatial 

dependence not only through the spatially lagged dependent variable 

but also through spatially autocorrelated errors. This approach is 

particularly useful in situations where the influence of neighboring 

observations and the impact of unobserved spatially patterned factors 

must be simultaneously addressed. The SAC model is formally 

expressed as follows (LeSage & Pace, 2009): 

𝑦𝑖 = 𝜌 ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 + ∑ 𝑋𝑖𝑞

𝑄

𝑞=1

𝛽𝑞 + 𝜀𝑖 (3. 46) 

𝜀𝑖 = 𝜆 ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝜀𝑗 + 𝑢𝑖 (3. 47) 
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Here, 𝑦𝑖 denotes the dependent variable for unit 𝑖; 𝜌 is the spatial 

autoregressive coefficient of the dependent variable; 𝑊𝑖𝑗  is the spatial 

weight between units 𝑖 and 𝑗; 𝑋𝑖𝑞  represents the 𝑞th independent 

variable for unit 𝑖; 𝛽𝑞 is the corresponding regression coefficient; 𝜆 is 

the spatial error dependence coefficient; 𝜀𝑖 is the composite error term; 

and 𝑢𝑖 denotes the random error term assumed to be independently and 

identically distributed with constant variance. 

The matrix form of the model is given by: 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀 (3. 48) 

𝜀 = 𝜆𝑊𝜀 + 𝑢,  𝑢 ∼ 𝑁(0, 𝜎2𝐼) (3. 49) 

Combining equations (4.48) and (4.49), the SAC model can be rewritten 

in its reduced form as: 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + (𝐼 − 𝜆𝑊)−1𝑢 (3. 50) 

In this formulation, the parameter 𝜌 captures the effect of spatial 

dependence in the dependent variable and corresponds to the 

autoregressive coefficient in the SAR model. Conversely, 𝜆 quantifies 

the spatial dependence in the error structure, reflecting the spatial error 

coefficient from the SEM specification. Joint estimation of both 

parameters enables simultaneous modeling of direct (through the 

dependent variable) and indirect (through the error term) spatial effects. 

The expectation and variance of 𝑦 in this model are expressed as 

follows: 
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𝐸[𝑦] = (𝐼 − 𝜌𝑊)−1𝑋𝛽 (3. 51) 

Var[𝑦] = 𝜎2(𝐼 − 𝜌𝑊)−1(𝐼 − 𝜆𝑊)−1(𝐼 − 𝜆𝑊)−𝑇(𝐼 − 𝜌𝑊)−𝑇 (3. 52) 

As with other spatial models, ordinary least squares estimation is not 

appropriate for the SAC model, given the endogeneity introduced by 

both the spatially lagged dependent variable and the autocorrelated 

error structure. Maximum likelihood estimation is typically employed, 

allowing for the joint estimation of 𝜌, 𝜆, 𝛽, and 𝜎2. Due to the model's 

complexity, iterative procedures or simulation-based methods such as 

Bayesian MCMC may also be applied. The log-likelihood function for 

the SAC model is defined as: 

ℒ(𝜌, 𝜆, 𝛽, 𝜎2) = −
𝑛

2
𝑙𝑛(2𝜋) + 𝑙𝑛|𝐼 − 𝜌𝑊| + 𝑙𝑛|𝐼 − 𝜆𝑊| −

1

2𝜎2
𝜀′𝜀 −

𝑛

2
𝑙𝑛𝜎2(3. 53) 

𝜀 = (𝐼 − 𝜆𝑊)(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽) (3. 54) 

The regression coefficients 𝛽 represent the direct influence of the 

explanatory variables. Given fixed values for the spatial dependence 

parameters, the coefficients may be estimated using generalized least 

squares as follows: 

𝛽̂ = (𝑋′𝛺−1𝑋)−1𝑋′𝛺−1(𝑦 − 𝜌𝑊𝑦) (3. 55) 

𝛺 = [(𝐼 − 𝜆𝑊)′(𝐼 − 𝜆𝑊)]−1 (3. 56) 

Based on these expressions, the estimated residuals and the 

corresponding error variance are calculated as: 

𝜀̂ = (𝐼 − 𝜆𝑊)[𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂] (3. 57) 

𝜎̂2 =
1

𝑛
𝜀̂′𝜀̂ (3. 58) 
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As in previous spatial models, the spatial parameters 𝜌 and 𝜆 are 

estimated jointly using the concentrated log-likelihood function: 

ℓ𝐶(𝜌, 𝜆) = 𝑙𝑛|𝐼 − 𝜌𝑊| + 𝑙𝑛|𝐼 − 𝜆𝑊| −
𝑛

2
𝑙𝑛(𝜀̂′𝜀̂) (3. 59) 

Since closed-form solutions for 𝜌 and 𝜆 are not available, numerical 

optimization techniques such as Newton-Raphson, grid search, or 

BFGS (Broyden–Fletcher–Goldfarb–Shanno Algorithm) are employed 

to maximize the likelihood function. In the Newton-Raphson 

framework, partial derivatives of the log-likelihood function with 

respect to 𝜌 and 𝜆 must be computed individually. These first 

derivatives are given by: 

𝜕ℓ𝐶

𝜕𝜌
= −tr[(𝐼 − 𝜌𝑊)−1𝑊] +

1

𝜀̂′𝜀̂
⋅ 𝜀̂′(𝐼 − 𝜆𝑊)𝑊𝑦 (3. 60) 

𝜕ℓ𝐶

𝜕𝜆
= −tr[(𝐼 − 𝜆𝑊)−1𝑊] +

1

𝜀̂′𝜀̂
⋅ 𝜀̂′𝑊(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂) (3. 61) 

Computing second-order derivatives of the log-likelihood function in 

the SAC model is highly nontrivial due to the complex matrix 

operations involved, particularly the presence of trace operators and the 

fact that the residuals 𝜀̂ depend on both 𝜌 and 𝜆. As a result, second 

derivatives are often approximated numerically, or substitute structures 

such as the observed Fisher information matrix are used. The Newton-

Raphson update step is given as: 

𝜃(𝑡+1) = 𝜃(𝑡) − [𝐻(𝜃(𝑡))]−1𝛻ℓ𝐶(𝜃(𝑡))     𝜃 = [
𝜌
𝜆

] (3. 62) 
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In this formulation, ∇ℓ(𝜃) denotes the gradient (score function) and 

𝐻(𝜃) is the Hessian matrix. The iterative procedure continues until the 

change between successive parameter estimates falls below a specified 

tolerance level. Upon convergence, the estimates are considered 

maximum likelihood solutions. 

In conclusion, the SAC model provides a comprehensive framework 

that simultaneously accounts for spatial dependence in both the 

dependent variable and the error structure. While the SDM also captures 

complex spatial interactions through lagged explanatory variables, the 

SAC model emphasizes error propagation alongside spatial lag. 

Consequently, model selection should be guided by the data structure 

and the type of spatial effects expected. 

3.5 Spatially Lagged X Model (SLX) 

The Spatially Lagged X (SLX) model is a spatial regression framework 

that incorporates the spatially lagged values of independent variables 

into the regression equation. In this model, the dependent variable is 

influenced not only by the independent variables of the corresponding 

unit, but also by the independent variables of neighboring units. In other 

words, the effects of explanatory variables from neighboring regions 

are explicitly included in the model, while spatial dependence in the 

dependent variable (as in the ρWy term of the SAR model) or in the 

error terms (as in the λWε term of the SEM model) is not considered. 

The main objective of this model is to analyze the impact of explanatory 

variables from neighboring units on the target unit. This structure 



49 

 

allows for the separate estimation of both direct and indirect effects. 

The SLX model is expressed as follows (LeSage & Pace, 2009): 

𝑦𝑖 = ∑ 𝑋𝑖𝑞

𝑄

𝑞=1

𝛽𝑞 + ∑ ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝑄

𝑞=1

𝑋𝑗𝑞𝜃𝑞 + 𝜀𝑖 (3. 63) 

In this model, 𝑦𝑖 denotes the dependent variable for unit 𝑖; 𝑋𝑖𝑞  

represents the 𝑞th independent variable for unit 𝑖; 𝛽𝑞 is the standard 

regression coefficient (direct effect); 𝑊𝑖𝑗  denotes the spatial weight 

between units 𝑖 and 𝑗; 𝑋𝑗𝑞  is the 𝑞th independent variable for 

neighboring unit 𝑗; 𝜃𝑞  is the coefficient associated with the spatial lag 

of the independent variable (indirect effect); and 𝜀𝑖  denotes the error 

term that satisfies the classical regression assumptions. The matrix 

notation of the model is given as: 

𝑦 = 𝑋𝛽 + 𝑊𝑋𝜃 + 𝜀 ve 𝜀 ∼ 𝑁(0, 𝜎2𝐼) (3. 64) 

In this formulation, 𝑦 is an 𝑛 × 1 vector of the dependent variable, 𝑋 is 

an 𝑛 × 𝑄 matrix of independent variables, 𝑊𝑋 is the matrix of spatially 

lagged independent variables, 𝛽 and 𝜃 are 𝑄 × 1 coefficient vectors, 

and 𝜀 is an 𝑛 × 1 vector of error terms. The SLX model serves as a 

simple yet powerful tool in spatial analysis. Since it includes only the 

neighborhood effects of explanatory variables, it avoids the problem of 

structural endogeneity commonly encountered in models such as SAR 

or SEM. As a result, ordinary least squares (OLS) can be used for 

parameter estimation. 
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By combining the 𝑋 and 𝑊𝑋 matrices, the extended design matrix is 

defined as follows: 

𝑍 = [𝑋 𝑊𝑋] (3. 65) 

Accordingly, the parameter vector to be estimated and the OLS 

estimator are expressed as: 

𝛿 = [
𝛽
𝜃

] (3. 66) 

𝛿̂ = (𝑍′𝑍)−1𝑍′𝑦  ⇒   𝛽̂, 𝜃 (3. 67) 

Based on this, the residuals and the error variance are estimated as 

follows: 

𝜀̂ = 𝑦 − 𝑍𝛿̂ = 𝑦 − 𝑋𝛽̂ − 𝑊𝑋𝜃 (3. 68) 

𝜎̂2 =
1

𝑛 − 2𝑄
𝜀̂′𝜀̂ (3. 69) 

In this context, 2𝑄 represents the number of parameters estimated for 

both 𝛽 and 𝜃. The variance-covariance matrix of the estimated 

coefficients is given by: 

Var(𝛿̂) = 𝜎̂2(𝑍′𝑍)−1 (3. 70) 

This matrix facilitates the construction of confidence intervals and the 

execution of statistical significance tests for the estimated parameters. 

3.6 General Nesting Spatial Model (GNS) 

The General Nesting Spatial Model (GNS) is one of the most 

comprehensive models in spatial regression analysis. This model aims 

to represent spatial dependence in a multidimensional manner by 
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simultaneously accounting for the spatial lag of the dependent variable, 

the spatial lag of the independent variables, and the spatial dependence 

in the error terms. In this respect, it can be regarded as a combination 

of the SAR, SEM, and SLX models. The GNS model is expressed as 

follows (Elhorst, 2014). 

𝑦𝑖 = 𝜌 ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 + ∑ 𝑋𝑖𝑞

𝑄

𝑞=1

𝛽𝑞 + ∑ ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝑄

𝑞=1

𝑋𝑗𝑞𝜃𝑞 + 𝜀𝑖 (3. 71) 

𝜀𝑖 = 𝜆 ∑ 𝑊𝑖𝑗

𝑛

𝑗=1

𝜀𝑗 + 𝑢𝑖 (3. 72) 

In this context, 𝑦𝑖 denotes the dependent variable for unit 𝑖, 𝜌 is the 

spatial autoregressive coefficient of the dependent variable (reflecting 

the SAR effect), 𝑊𝑖𝑗  represents the spatial weight between units 𝑖 and 

𝑗, 𝑋𝑖𝑞  is the 𝑞𝑡ℎ explanatory variable for unit 𝑖, 𝛽𝑞 denotes the 

regression coefficient indicating the direct effect of the 𝑞𝑡ℎ explanatory 

variable, 𝑋𝑗𝑞  refers to the 𝑞𝑡ℎ explanatory variable for neighboring unit 

𝑗, 𝜃𝑞  represents the coefficient of the spatially lagged independent 

variables (reflecting the SLX effect), 𝜆 is the spatial dependence 

coefficient among the error terms (reflecting the SEM effect), 𝜀𝑖 

denotes the total error term for unit 𝑖, and 𝑢𝑖 is the independent error 

term that satisfies the classical regression assumptions. Additionally, 

the model can be expressed in matrix notation as follows. 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑊𝑋𝜃 + 𝜀 (3. 73) 

𝜀 = 𝜆𝑊𝜀 + 𝑢,  𝑢 ∼ 𝑁(0, 𝜎2𝐼) (3. 74) 



52 

 

Equations (4.73) and (4.74) can be combined to yield the following 

simplified form of the model: 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑊𝑋𝜃 + (𝐼 − 𝜆𝑊)−1𝑢 (3. 75) 

The coefficient 𝜌 captures the effect of the dependent variable values in 

neighboring regions on the dependent variable of the current unit, as in 

the SAR model. A positive value of 𝜌 indicates spatial clustering of 

similar values, whereas a negative value suggests spatial adjacency of 

dissimilar values. The coefficient 𝜃, analogous to that in the SLX 

model, measures the influence of explanatory variables in neighboring 

units on the dependent variable of the focal unit. A positive 𝜃 suggests 

that increases in explanatory variables in adjacent units elevate the 

dependent variable in the target unit. The parameter 𝜆 reflects the 

degree of spatial dependence in the error terms and captures the 

propagation of unobserved factors through spatial proximity. The 

expected value and variance of the dependent variable are given as 

follows: 

𝐸[𝑦] = (𝐼 − 𝜌𝑊)−1(𝑋𝛽 + 𝑊𝑋𝜃) (3. 76) 

𝑉𝑎𝑟[𝑦] = 𝜎2(𝐼 − 𝜌𝑊)−1(𝐼 − 𝜆𝑊)−1(𝐼 − 𝜆𝑊)−𝑇(𝐼 − 𝜌𝑊)−𝑇 (3. 77) 

This structure allows both direct and indirect spatial effects as well as 

neighborhood interactions to be reflected in the model through both the 

dependent variable and the error structure. Therefore, the General 

Nesting Spatial (GNS) model is considered the most comprehensive 

umbrella model in spatial regression analysis. In the GNS model 

parameter estimation cannot be conducted using the classical Ordinary 
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Least Squares method because spatial lag in the dependent variable and 

spatial dependence in the error terms violate its assumptions. 

Consequently, the most widely used estimation approach is the 

Maximum Likelihood (ML) method. In addition, the Generalized 

Method of Moments (GMM) and Instrumental Variables (IV) methods 

are also employed especially in large samples and complex spatial 

structures. Furthermore, due to the large number of parameters and the 

complexity of the error structure Bayesian estimation approaches and 

Markov Chain Monte Carlo (MCMC) techniques are sometimes 

preferred. 

Assuming the error terms are normally distributed the log-likelihood 

function is expressed as follows: 

ℒ(𝜌, 𝜆, 𝛽, 𝜃, 𝜎2) = ln|𝐼 − 𝜌𝑊| + ln|𝐼 − 𝜆𝑊| −
𝑛

2
ln(2𝜋) −

𝑛

2
ln𝜎2 −

1

2𝜎2
𝜀′𝜀 (3.78) 

𝜀 = (𝐼 − 𝜆𝑊)(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽 − 𝑊𝑋𝜃) (3. 79) 

The GNS model, due to its structure involving many parameters, gives 

rise to a complex likelihood function. Consequently, estimating all 

parameters simultaneously is mathematically demanding both in terms 

of computational intensity and complexity. To address this problem 

more efficiently, some of the parameters that can be directly estimated 

are calculated beforehand. For the remaining key parameters, a 

simplified log likelihood function, known as the concentrated 

likelihood method, is used as in other methods. The parameters β, θ, 

and σ² in the model can be estimated under the assumption that the 

spatial dependence coefficients ρ and λ are held constant. Since these 
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coefficients appear in a linear structure within the model, they can be 

directly computed within the classical regression framework. However, 

because the error term includes spatial dependence through the λ 

parameter, the classical ordinary least squares method is not 

appropriate. Instead, the generalized least squares method is applied. 

This method takes into account the covariance structure of the error 

term and yields the best linear unbiased estimators. The estimators for 

these parameters are expressed as follows. 

𝑍 = [𝑋 𝑊𝑋],  𝛿 = [
𝛽
𝜃

] (3. 80) 

𝛿̂ = (𝑍′𝛺−1𝑍)−1𝑍′𝛺−1(𝑦 − 𝜌𝑊𝑦) (3. 81) 

The matrix Ω = [(I − λW)' (I − λW)]⁻¹ represents the covariance 

structure of the error terms. Based on this formulation, the residuals and 

the corresponding estimate of the error variance are computed as 

follows. 

𝜀̂ = (𝐼 − 𝜆𝑊)(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂ − 𝑊𝑋𝜃) (3. 82) 

𝜎̂2 =
1

𝑛
𝜀̂′𝜀̂ (3. 83) 

Once the estimates of β̂, θ̂, and 𝜎̂2 are obtained, the concentrated log-

likelihood function for the remaining spatial dependence parameters 𝜌 

and 𝜆 is constructed as follows, upon which numerical optimization 

techniques are applied to obtain their estimates. 

ℓ𝐶(𝜌, 𝜆) = 𝑙𝑛|𝐼 − 𝜌𝑊| + 𝑙𝑛|𝐼 − 𝜆𝑊| −
𝑛

2
𝑙𝑛(𝜀̂′𝜀̂) (3. 84) 
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As in other models, the widely used Newton-Raphson algorithm will be 

employed as the numerical method. Accordingly, the first derivatives 

of the concentrated log-likelihood function are obtained as follows: 

𝜕ℓ𝐶

𝜕𝜌
= −tr[(𝐼 − 𝜌𝑊)−1𝑊] +

1

𝜀̂′𝜀̂
⋅ 𝜀̂′(𝐼 − 𝜆𝑊)𝑊𝑦 (3. 85) 

𝜕ℓ𝐶

𝜕𝜆
= −tr[(𝐼 − 𝜆𝑊)−1𝑊] +

1

𝜀̂′𝜀̂
⋅ 𝜀̂′𝑊(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂ −

𝑊𝑋𝜃)         

(3.86) 

The second derivatives, in turn, are computed as follows. 

𝜕2ℓ𝐶

𝜕𝜌2
= tr[(𝐼 − 𝜌𝑊)−1𝑊(𝐼 − 𝜌𝑊)−1𝑊] −

𝜕

𝜕𝜌
(

1

𝜀̂′𝜀̂
⋅ 𝜀̂′(𝐼 − 𝜆𝑊)𝑊𝑦) (3.87) 

∂2ℓ𝐶

∂𝜆2
= tr[(𝐼 − 𝜆𝑊)−1𝑊(𝐼 − 𝜆𝑊)−1𝑊] −

∂

∂𝜆
(

1

𝜀̂′𝜀̂
⋅ 𝜀 ̂′𝑊(𝑦 − 𝜌𝑊𝑦 − 𝑋𝛽̂ − 𝑊𝑋𝜃)) (3.88) 

𝜕2ℓ𝐶

𝜕𝜌𝜕𝜆
=

𝜕

𝜕𝜆
(

𝜕ℓ𝐶

𝜕𝜌
) (3. 89) 

Using this information, new parameter estimates are obtained at each 

iteration as specified below. This iterative process continues until the 

difference between successive estimates falls below a predetermined 

tolerance level, yielding a solution that converges to the maximum 

likelihood estimates. The iterative update equation for the Newton-

Raphson algorithm is given below, where ∇ℓ(𝜃)denotes the first 

derivative of the log-likelihood function (the score function), and 𝐻(𝜃)  

represents the matrix of second derivatives (the Hessian). 

𝜃(𝑡+1) = 𝜃(𝑡) − [𝐻(𝜃(𝑡))]−1𝛻ℓ𝐶(𝜃(𝑡)),  𝜃 = [
𝜌
𝜆

] (3. 90) 
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4. MODEL SPECIFICATION TESTS 

Prior to conducting spatial regression analysis, it is critical to determine 

whether spatial dependence exists in the dataset and, if so, through 

which components this dependence manifests. This step not only 

ensures the appropriate model selection but also reveals whether the 

classical regression assumptions are violated. Therefore, in spatial 

analysis, it is recommended to begin the modeling process by 

performing various diagnostic tests. Identifying spatial autocorrelation 

highlights the necessity of establishing a spatial model, but it also raises 

the question of which type of spatial structure should be integrated. 

Specification tests have been developed to address this question. 

4.1 Testing for Spatial Dependence in Residuals using Moran’s I 

Test   

Moran’s I test constitutes an essential component in the evaluation of 

model specification in spatial regression models. It is primarily used to 

test whether spatial autocorrelation exists in the residual terms. This test 

examines whether the residuals obtained from a classical regression 

model exhibit spatial dependence. If the Moran’s I statistic is found to 

be statistically significant, it implies that the model fails to adequately 

account for spatial dependence and should be re-estimated using a more 

appropriate spatial specification. Moran’s I can be applied to residuals 

post-regression or during the initial data exploration phase to detect the 

presence of spatial dependence. Consequently, it helps assess the 

necessity of employing more advanced spatial models such as SAR, 
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SEM, SDM, or SLX. Detailed explanation of Moran’s I is provided in 

Section 3.1.1. 

4.2 Lagrange Multiplier (LM) Test 

Lagrange Multiplier (LM) tests are employed to examine whether 

spatial dependence exists in the residuals of the classical regression 

model, thus serving as diagnostic tools that justify the use of spatial 

models. These tests aim to determine whether the dependent variable or 

the error term is influenced by neighboring observations. The LM test 

for the SAR model evaluates whether the spatial lag of the dependent 

variable is significant, while the LM test for the SEM model examines 

spatial autocorrelation in the residuals. The test statistics are assessed 

under the null hypothesis using the chi-square (𝜒2) distribution. If the 

test result is statistically significant, it suggests that the classical 

regression model is inadequate and a spatial model (e.g., SAR or SEM) 

should be employed instead. Additionally, in cases where both SAR and 

SEM structures may be present, Robust LM tests are used for clearer 

model selection (Luc Anselin, 1988). 

LM (lag): Tests whether the spatially lagged dependent variable, Wy, 

should be included in the model. 

𝐿𝑀𝑙𝑎𝑔 =
(𝑒′𝑊𝑦)2

𝜎2 ⋅ 𝑡𝑟(𝑊′𝑊 + 𝑊2)
(4. 1) 

𝑒: vector of OLS residuals 

𝑊: spatial weights matrix 

𝑦: dependent variable 
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𝜎2: OLS-based error variance 

Robust LM (lag): Tests the significance of the SAR component 

controlling for the SEM effect. 

𝑅𝐿𝑀𝑙𝑎𝑔 = 𝐿𝑀𝑙𝑎𝑔 −
Cov(𝐿𝑀𝑙𝑎𝑔 , 𝐿𝑀𝑒𝑟𝑟𝑜𝑟)

Var(𝐿𝑀𝑒𝑟𝑟𝑜𝑟)
(4. 2) 

LM (error): Tests for spatial dependence in the residuals. 

𝐿𝑀𝑒𝑟𝑟𝑜𝑟 =
(𝑒′𝑊𝑒)2

𝜎2 ⋅ 𝑡𝑟(𝑊𝑊 + 𝑊2)
(4. 3) 

Robust LM (error): Tests for residual dependence controlling for the 

SAR effect. 

𝑅𝐿𝑀𝑒𝑟𝑟𝑜𝑟 = 𝐿𝑀𝑒𝑟𝑟𝑜𝑟 −
Cov(𝐿𝑀𝑙𝑎𝑔, 𝐿𝑀𝑒𝑟𝑟𝑜𝑟)

Var(𝐿𝑀𝑙𝑎𝑔)
(4. 4) 

LM SARMA: Tests for simultaneous spatial dependence in both the 

dependent variable and the residuals. 

𝑀𝑆𝐴𝑅𝑀𝐴 = 𝐿𝑀𝑙𝑎𝑔 + 𝐿𝑀𝑒𝑟𝑟𝑜𝑟 (4. 5) 

If this test is statistically significant, it indicates the presence of spatial 

dependence in both components. A significant result from these tests 

reveals misspecification in the classical model, warranting the use of a 

more suitable spatial model. For instance, if both LM (lag) and LM 

(error) are significant, it would be more appropriate to consider mixed 

models such as SAC or SDM. 
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4.3 Other Specification Tests 

Anselin–Kelejian Test: Developed by Anselin and Kelejian (1997), 

this test allows for the detection of spatial dependence in the residuals 

under conditions of non-constant variance; heteroskedasticity  It is 

considered as a robust alternative in situations where the traditional 

Moran’s I test loses power (L. Anselin & Kelejian, 1997). 

Ramsey Regression Specification Error Test (RESET): The RESET 

test was developed by Ramsey in 1969 with the purpose of evaluating 

the correctness of a model’s functional form and testing for the presence 

of omitted variables or potential nonlinear relationships (Ramsey, 

1969). It helps to identify whether the regression equation suffers from 

specification errors due to missing variables or neglected nonlinear 

effects. In the context of spatial analysis, it contributes to the decision-

making process regarding whether certain transformations of the 

dependent variable should be incorporated into the model. 

Heteroskedasticity Tests: In spatial models, the assumption that error 

terms possess constant variance often does not hold. To test this 

assumption, the Breusch–Pagan and Koenker–Bassett tests are 

commonly employed. A statistically significant result from these tests 

indicates the necessity of adopting estimation methods that are robust 

to heteroskedasticity. The Breusch–Pagan test was developed to assess 

whether the error terms in a regression model exhibit constant variance 

(Breusch & Pagan, 1979). In contrast, the Koenker–Bassett test is a 

more flexible alternative that does not rely on the assumption of 

normality, making it suitable for detecting heteroskedasticity in a 
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broader range of cases. It is regarded as a more robust version of the 

Breusch–Pagan test (Koenker & Bassett, 1982). 

In conclusion, selecting the appropriate model in spatial data analysis 

depends not only on theoretical understanding, but also on the careful 

interpretation of diagnostic tests. Once the existence of spatial 

dependence is established through Moran’s I, the structure of this 

dependence can be further explored using LM and other specification 

tests. An extensive evaluation of these tests not only enhances the 

accuracy of the selected model but also strengthens the reliability and 

interpretability of the results. 

5. APPLICATION 

The primary objective of this section is to clarify the concept of spatial 

regression models explained previous chapters, by an empirical study 

with demonstrating how spatial statistics can be employed through a 

practical application. Specifically, it will provide a step-by-step 

analysis of how spatial dependence affects classical regression models, 

how this dependence can be addressed using spatial models, and how 

model outcomes change accordingly. Spatial regression models enable 

the incorporation of similarities observed among geographically 

proximate observations into statistical modeling. Neglecting such 

dependencies may lead to biased and unreliable estimates. In order to 

establish a clear analytical flow in readers minds, a widely known data 

set including socioeconomic and environmental variables is selected. 

Boston Housing Data, related to housing in various neighborhoods of 

Boston, Massachusetts contains geographic coordinates (latitude and 
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longitude) for each observation. The dependent variable determined for 

the analysis is the median value of owner-occupied homes in a 

neighborhood (CMEDV), and the explanatory variables are crime rate 

(CRIM), proportion of residential land zoned for large lots (ZN), 

proportion of non-retail business acres (INDUS), a binary variable 

indicating proximity to the Charles River (CHAS), nitrogen oxide 

concentration as a measure of air pollution (NOX), average number of 

rooms per dwelling (RM), and proportion of old buildings (AGE). 

Firstly, a classical Ordinary Least Squares (OLS) regression model will 

be estimated, and the residuals will be tested for spatial dependence 

using Moran’s I test. Subsequently, Lagrange Multiplier tests (both lag 

and error types, as well as their robust versions) will be conducted to 

determine whether spatial interaction operates through the dependent 

variable or the error terms. These preliminary tests will guide for the 

decision of selecting the appropriate spatial model. Following this, 

spatial regression models such as the Spatial Lag Model (SAR), Spatial 

Error Model (SEM), Spatial Durbin Model (SDM), and, if necessary, 

the Spatial Durbin Error Model (SDEM) will be estimated. 

The results of each model will be compared in terms of the significance 

of explanatory variables and spatial parameters, as well as model fit 

criteria such as the Log-Likelihood and Akaike Information Criterion 

(AIC). This process will facilitate understanding of the nature of spatial 

dependence and provide a methodological framework for selecting 

appropriate spatial models. Finally, by comparing model performances, 



62 

 

the contribution of accounting for spatial interaction to the accuracy and 

robustness of the analysis will be clearly demonstrated. 

Installing Required Packages: To implement spatial regression 

models in R, several specialized packages are required. These can be 

installed and loaded into the working environment using the following 

commands: 

library(spdep)    
library(sf)           
library(spatialreg)   
library(ggplot2)      
library(dplyr)        

The spdep package provides essential tools for the estimation of spatial 

regression models, the construction of spatial weight matrices, and the 

implementation of spatial dependence tests such as Moran’s I. The sf 

package has been employed for reading, writing, transforming, and 

performing geometric operations on spatial data in accordance with the 

Simple Features standard, thereby ensuring that the data are converted 

into a spatial format suitable for the analysis process. The spatialreg 

package enables the parametric estimation of spatial econometric 

models such as SAR, SEM, SDM, SAC, SLX, and GNS, facilitating the 

modeling of various forms of spatial dependence structures. ggplot2 

has been chosen for the high-quality visual presentation of spatial and 

statistical results, particularly for creating maps, scatter plots, and other 

visualizations supporting model outputs. Finally, the dplyr package 

streamlines data manipulation tasks, including filtering, transforming, 

and summarizing data frames, thereby contributing to the efficient 

execution of data preparation steps within the analysis process. 
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Loading and Preparing the Dataset: the Boston Housing dataset  

utilized for the application is included in the spdep package. However, 

to perform spatial analysis, the coordinate information and variables 

within the dataset must be appropriately structured as follows: 

data(boston) 
# Dependent variable (median housing value) 
y <- boston.c[, "CMEDV" ] 
# Independent variables 
x <- boston.c[, c("CRIM", "ZN", "INDUS", "CHAS", "NOX", 
"RM", "AGE")] 
 
# Coordinates 
coords <- boston.c[, c("LON", "LAT")]   
                                                                                 
# Creation of the sf object 
boston_sf <- st_as_sf(data.frame(x, y, coords), coords = 
c("LON", "LAT"), crs = 4326) 

Defining the Neighborhood Structure and Creating the Spatial 

Weights Matrix: One of the core components of spatial regression 

models is the neighborhood structure, which describes spatial 

relationships between observations, and the corresponding spatial 

weights matrix. In the Boston Housing dataset, observations are defined 

by point coordinates. Therefore, a distance-based neighborhood 

approach is employed. The goal is to ensure that each observation has 

at least one neighbor. To achieve this, the distance to each observation’s 

nearest neighbor is calculated, and this maximum distance is then used 

as the threshold to define the neighborhood. The following R code 

block implements these steps: 

# Coordinates 
coords <- st_coordinates(boston_sf) 
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# Determination of the minimum distance that ensures eac
h observation has at least one neighbor 
dmax <- max(unlist(nbdists(knn2nb(knearneigh(coords, k = 
1)), coords))) 
                           
# Distance-based neighborhood structure 
nb_dist <- dnearneigh(coords, d1 = 0, d2 = dmax, longlat 
= FALSE) 
 
# Weight matrix: Row-standardized 
listw_dist <- nb2listw(nb_dist, style = "W") 
 
# Inspect the neighborhood structure 
summary(nb_dist) 

## Neighbour list object:   

## Number of regions: 506  

## Number of nonzero links: 45746  

## Percentage nonzero weights: 17.86702  

## Average number of links: 90.40711  

## Link number distribution: 

The st_coordinates() function extracts the coordinates from the 

object in simple feature (sf) format. Using the knearneigh() and 

nbdists() functions, a distance threshold (dmax) is calculated to 

ensure that each observation has at least one neighbor. The 

dnearneigh() function defines distance-based neighborhood 

relationships based on this threshold. The nb2listw() function 

constructs a row standardized spatial weights matrix based on the 

defined neighborhood structure. In this matrix, the influence of each 

observation on its neighbors is normalized to sum to one.  

# Visualization of neighborhoods 
plot(nb_dist, coords = coords, pch = 20, col = "steelblu
e", cex = 0.8) 
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Figure 5.1 Visualization of the neighborhood structure 

In the application, a distance-based neighborhood structure is employed 

due to the point-based spatial format of the dataset. Since each 

observation in point data is represented by geographic coordinates, 

neighborhood relationships are typically defined based on Euclidean 

distance or within a specified radius. In this case, ensuring that each 

point has at least one neighbor, a distance-based neighborhood matrix 

is constructed using the dnearneigh() function. On the other hand, 

when the data structure is polygon-based, such as in the case of spatial 

units with defined boundaries like neighborhoods, districts, or regions, 

neighborhood relationships are established based on shared borders 

(rook contiguity) or corners (queen contiguity). In such cases, methods 

like queen or rook contiguity become appropriate. Therefore, the 

selection of the neighborhood structure to be used in spatial analysis 

should be directly based on the type of data and the geometric nature of 

the spatial entities. 
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Examining Spatial Autocorrelation in Independent Variables: 

Before conducting spatial regression analysis, it is crucial to assess how 

the variables in the dataset are distributed across the spatial structure, 

as this plays a significant role in model selection. In this context, it is 

necessary to test for spatial autocorrelation not only in the dependent 

variable but also in the independent variables. The presence of spatial 

dependence in some independent variables may lead to biased and 

inconsistent estimates when using classical regression models. This 

issue becomes particularly important when deciding whether to include 

spatially lagged independent variables, as in models like SLX or SDM. 

For this purpose, Moran’s I test is applied to the continuous variables 

used in the model. Moran’s I evaluates whether a given variable 

exhibits spatial autocorrelation. A statistically significant Moran’s I 

value indicates that the corresponding variable displays similar values 

in neighboring regions (positive autocorrelation) or dissimilar values 

(negative autocorrelation). 

The Moran's I statistics and corresponding p-values calculated for the 

independent variables are reported below. The results of the analysis 

indicate that most of these variables exhibit statistically significant 

spatial patterns. Therefore, it is deemed appropriate to incorporate the 

spatially lagged versions of the independent variables into the spatial 

regression models. The R code used to conduct these analyses is 

provided below. 

# Moran’s I test  
vars <- c("CRIM", "ZN", "INDUS", "NOX", "RM", "AGE") 
moran_results <- lapply(vars, function(var) {moran.test(
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boston.c[[var]], listw = listw_dist) }) 
 
# Converting Moran's I results into a table 
moran_table <- lapply(vars, function(var) { 
  test <- moran.test(boston.c[[var]], listw = listw_dist
) 
  data.frame( 
    Variable = var, 
    Morans_I = test$estimate[["Moran I statistic"]], 
    p_value = test$p.value 
  ) 
}) %>% bind_rows() 
 
# Presentation of results 
print(moran_table) 

##   Variable  Morans_I       p_value 
## 1     CRIM 0.2309408 1.724062e-100 
## 2       ZN 0.5248370  0.000000e+00 
## 3    INDUS 0.5430339  0.000000e+00 
## 4      NOX 0.6680633  0.000000e+00 
## 5       RM 0.1663515  6.308489e-50 
## 6      AGE 0.6172407  0.000000e+00 

Moran's I Test for Residuals and Lagrange Multiplier Tests: In this 

section, the presence of spatial autocorrelation in the residuals of the 

OLS model will be tested to assess the adequacy of the classical model. 

Furthermore, in order to determine which spatial regression model 

(SAR, SEM, or SARMA) is most appropriate, Lagrange Multiplier 

(LM) and Robust LM tests will be conducted. The corresponding R 

code used for the implementation is provided below. 

# OLS model 
ols_model <- lm(y ~ CRIM + ZN + INDUS + CHAS + NOX + RM 
+ AGE, data = boston_sf) 
summary(ols_model) 
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##  
## Call: 
## lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NOX + RM 
+ AGE, data = boston_sf) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -21.447  -3.209  -0.701   2.089  39.882  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -18.12992    3.20092  -5.664 2.50e-08 *** 
## CRIM         -0.17301    0.03449  -5.016 7.34e-07 *** 
## ZN            0.01365    0.01445   0.945   0.3453     
## INDUS        -0.12929    0.06406  -2.018   0.0441 *   
## CHAS1         4.84977    1.05352   4.603 5.28e-06 *** 
## NOX          -4.60617    4.07140  -1.131   0.2585     
## RM            7.38341    0.41571  17.761  < 2e-16 *** 
## AGE          -0.02353    0.01469  -1.602   0.1099     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 
0.1 ' ' 1 
##  
## Residual standard error: 5.909 on 498 degrees of free
dom 
## Multiple R-squared:  0.5916, Adjusted R-squared:  0.5
859  
## F-statistic: 103.1 on 7 and 498 DF,  p-value: < 2.2e-
16 

In order to establish a benchmark for comparison with spatial models, 

the analysis begins with the estimation of a classical linear regression 

model using Ordinary Least Squares (OLS). In the Boston Housing 

dataset, the dependent variable is defined as "CMEDV" (median value 

of owner-occupied homes), while the explanatory variables include 

crime rate (CRIM), proportion of residential land zoned for large lots 

(ZN), proportion of non-retail business acres per town (INDUS), 
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proximity to the Charles River (CHAS), nitrogen oxide concentration 

as an indicator of air pollution (NOX), average number of rooms per 

dwelling (RM), and proportion of older housing units (AGE). This 

model estimates the linear relationships without incorporating spatial 

effects. However, if spatial dependence is present in the data, the 

resulting estimates may be biased. Therefore, in the following section, 

specification tests are conducted to determine whether spatial 

dependence exists in the model residuals. 

# Moran's I test for residuals 
ols_resid <- residuals(ols_model) 
moran.test(ols_resid, listw_dist) 

##  
##  Moran I test under randomisation 
##  
## data:  ols_resid   
## weights: listw_dist     
##  
## Moran I statistic standard deviate = 6.249, p-value = 
2.065e-10 
## alternative hypothesis: greater 
## sample estimates: 
## Moran I statistic       Expectation          Variance  
##      0.0685786476     -0.0019801980      0.0001274917 

The residuals obtained from the OLS model represent the estimation 

errors for each observation. In the presence of spatial structure, 

residuals from neighboring observations may exhibit similarity or 

correlation. To assess this possibility, the Moran’s I statistic is 

employed. This test evaluates whether spatial autocorrelation exists 

among the residuals. A significantly positive Moran’s I value indicates 

that neighboring residuals are similar, suggesting the presence of spatial 
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dependence. Conversely, a negative value implies an inverse 

relationship among neighboring residuals. A statistically significant 

Moran’s I statistic implies that the classical OLS model fails to account 

for underlying spatial structure, and that a more appropriate spatial 

model should be considered. In the current analysis, the Moran's I value 

was found to be positive and statistically significant (p < 0.01). This 

result indicates a meaningful degree of positive spatial autocorrelation 

in the model residuals, implying that the error terms tend to behave 

similarly across neighboring units. Consequently, it can be concluded 

that the OLS model is insufficient and that spatial dependence must be 

explicitly incorporated into the model specification. 

# Lagrange Multiplier tests 
lm.LMtests(ols_model, listw_dist, test = "all") 

## Please update scripts to use lm.RStests in place of l
m.LMtests 

##  
##  Rao's score (a.k.a Lagrange multiplier) diagnostics 
for spatial 
##  dependence 
##  
## data:   
## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data 
## = boston_sf) 
## test weights: listw 
##  
## RSerr = 34.167, df = 1, p-value = 5.058e-09 
##  
##  
##  Rao's score (a.k.a Lagrange multiplier) diagnostics 
for spatial 
##  dependence 
##  
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## data:   
## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data 
## = boston_sf) 
## test weights: listw 
##  
## RSlag = 21.277, df = 1, p-value = 3.974e-06 
##  
##  
##  Rao's score (a.k.a Lagrange multiplier) diagnostics 
for spatial 
##  dependence 
##  
## data:   
## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data 
## = boston_sf) 
## test weights: listw 
##  
## adjRSerr = 15.315, df = 1, p-value = 9.099e-05 
##  
##  
##  Rao's score (a.k.a Lagrange multiplier) diagnostics 
for spatial 
##  dependence 
##  
## data:   
## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data 
## = boston_sf) 
## test weights: listw 
##  
## adjRSlag = 2.4255, df = 1, p-value = 0.1194 
##  
##  
##  Rao's score (a.k.a Lagrange multiplier) diagnostics 
for spatial 
##  dependence 
##  
## data:   
## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
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X + RM + AGE, data 
## = boston_sf) 
## test weights: listw 
##  
## SARMA = 36.593, df = 2, p-value = 1.133e-08 

Moran’s I test serves to detect the presence of spatial autocorrelation, 

while Lagrange Multiplier (LM) tests offer guidance in selecting the 

most appropriate spatial regression model. These diagnostic tests are 

applied to the residuals obtained from the Ordinary Least Squares 

(OLS) model and help determine which type of spatial structure is more 

suitable for the data. The LM lag test examines whether the inclusion 

of the spatially lagged dependent variable supports the adoption of the 

Spatial Autoregressive (SAR) model. In contrast, the LM error test 

evaluates the presence of spatial dependence within the error terms, thus 

indicating the appropriateness of the Spatial Error Model (SEM). The 

robust versions of these tests control alternative forms of spatial 

dependence to provide more reliable conclusions regarding model 

selection. 

If both LM lag and LM error tests produce statistically significant 

results, but only one of the robust tests is significant, the corresponding 

spatial model is typically preferred. However, if both robust tests are 

statistically significant, this suggests that a more complex model 

structure should be considered. Models such as the Spatial 

Autoregressive Combined (SAC) or the Spatial Durbin Model (SDM), 

which incorporate multiple sources of spatial dependence, may offer a 

more accurate specification. Utilizing these tests ensures that spatial 
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model selection is based on rigorous statistical evidence and enhances 

the robustness of the subsequent analysis. 

Based on the diagnostic results obtained in this study, both the LM error 

and the Robust LM error tests were found to be statistically significant. 

This outcome provides strong evidence of spatial dependence within 

the error structure and indicates that the SEM model may be an 

appropriate choice. Although the LM lag test also yielded a significant 

result, the Robust LM lag test was not significant. This implies that 

when the error-based spatial dependence is taken into account, the 

contribution of the spatial lag of the dependent variable may be 

relatively limited. Furthermore, the LM SARMA test was statistically 

significant, indicating the presence of simultaneous spatial dependence 

in both the dependent variable and the error terms. 

In summary, the SEM model is supported due to the strong spatial 

autocorrelation observed in the residuals. Nonetheless, the significance 

of the SARMA test points to the potential advantages of employing 

more comprehensive spatial specifications, such as SAC or SDM, 

which allow for a more general representation of spatial dependence in 

the data structure. 

Estimation and Comparative Analysis of Spatial Regression 

Models: In this section, multiple spatial regression models—including 

the Spatial Autoregressive Model (SAR), Spatial Error Model (SEM), 

Spatial Durbin Model (SDM), Spatial Lag of X Model (SLX), Spatial 

Autoregressive Combined Model (SAC), and the General Nesting 

Spatial Model (GNS)—are estimated alongside the conventional 
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Ordinary Least Squares (OLS) model using the Boston housing dataset. 

The primary objective is to determine the most appropriate model by 

statistically comparing their performance in capturing the underlying 

structure of spatial dependence. The analysis aims to identify which 

model best reflects the nature of spatial relationships present in the data. 

The corresponding R code implementations and output results are 

presented below. 

sar_model <- lagsarlm(y ~ CRIM + ZN + INDUS + CHAS + NOX 
+ RM + AGE, data = boston_sf, listw = listw_dist) 
summary(sar_model) 

##  
## Call:lagsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS 
+ NOX + RM +  
##     AGE, data = boston_sf, listw = listw_dist) 
##  
## Residuals: 
##       Min        1Q    Median        3Q       Max  
## -19.21804  -3.11530  -0.63815   2.19951  39.82708  
##  
## Type: lag  
## Coefficients: (asymptotic standard errors)  
##                Estimate  Std. Error z value  Pr(>|z|) 
## (Intercept) -25.0338728   3.8882435 -6.4384 1.208e-10 
## CRIM         -0.1642686   0.0337173 -4.8719 1.105e-06 
## ZN            0.0071581   0.0143851  0.4976  0.618765 
## INDUS        -0.1308520   0.0628036 -2.0835  0.037205 
## CHAS1         3.4360398   1.0724773  3.2038  0.001356 
## NOX          -0.4669262   4.1435493 -0.1127  0.910278 
## RM            7.0357636   0.4097395 17.1713 < 2.2e-16 
## AGE          -0.0174085   0.0146149 -1.1911  0.233596 
##  
## Rho: 0.29325, LR test value: 14.377, p-value: 0.00014
959 
## Asymptotic standard error: 0.082058 
##     z-value: 3.5737, p-value: 0.00035198 
## Wald statistic: 12.771, p-value: 0.00035198 
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##  
## Log likelihood: -1605.636 for lag model 
## ML residual variance (sigma squared): 33.299, (sigma: 
5.7705) 
## Number of observations: 506  
## Number of parameters estimated: 10  
## AIC: 3231.3, (AIC for lm: 3243.6) 
## LM test for residual autocorrelation 
## test value: 5.9465, p-value: 0.014746 

The Spatial Autoregressive (SAR) model is one of the regression 

structures that directly accounts for spatial dependence in the dependent 

variable. In this model, the value of the dependent variable for a given 

unit is influenced not only by the explanatory variables associated with 

that unit but also by the values of the dependent variable in neighboring 

units. Hence, spatial dependence is intrinsically incorporated into the 

model structure. This feature allows for more reliable estimates in 

spatial data contexts where the independence assumption of classical 

regression models is violated. 

According to the estimation results, the spatial autoregressive 

coefficient is ρ = 0.293, and this value is statistically significant (p < 

0.001). This positive and significant coefficient indicates the presence 

of spatial spillover effects. In other words, housing values in one region 

are influenced by those in adjacent regions. This confirms a tendency 

toward spatial clustering and aligns with Tobler’s first law of 

geography, which posits that "everything is related to everything else, 

but near things are more related than distant things." 

In terms of model performance, the SAR model demonstrates superior 

fit compared to the classical linear regression model. The Akaike 
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Information Criterion (AIC) value for the SAR model is 3231.3, 

whereas it is 3243.6 for the classical model. Additionally, the log-

likelihood value of -1605.64 suggests a better model fit. These 

differences reveal that incorporating spatial dependence significantly 

enhances the explanatory power of the model and underscores the 

importance of accounting for spatial structure in the analysis. 

Furthermore, the likelihood ratio (LR) test confirms that the SAR model 

provides a statistically significant improvement over the classical 

model (p < 0.001). However, the results of the Lagrange Multiplier 

(LM) test indicate that spatial autocorrelation remains present in the 

residuals at a statistically significant level (p = 0.0147 < 0.05). This 

suggests that the SAR model may not fully capture all aspects of spatial 

dependence, and a more comprehensive model such as the Spatial 

Durbin Model (SDM) might be more appropriate. 

In conclusion, the SAR model successfully identifies spatial 

dependencies in the data and provides a notable improvement over the 

classical model. Based on the model assumptions and output, it can be 

inferred that housing values are determined not only by local 

characteristics but also by the broader spatial environment. 

sem_model <- errorsarlm(y ~ CRIM + ZN + INDUS + CHAS + N
OX + RM + AGE, data = boston_sf, listw = listw_dist) 
summary(sem_model) 

##  
## Call:errorsarlm(formula = y ~ CRIM + ZN + INDUS + CHA
S + NOX + RM +  
##     AGE, data = boston_sf, listw = listw_dist) 
##  
## Residuals: 
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##      Min       1Q   Median       3Q      Max  
## -17.1010  -3.1115  -0.7162   1.7524  39.2296  
##  
## Type: error  
## Coefficients: (asymptotic standard errors)  
##              Estimate Std. Error z value  Pr(>|z|) 
## (Intercept) -7.677553   3.721690 -2.0629 0.0391201 
## CRIM        -0.169448   0.033376 -5.0769 3.837e-07 
## ZN           0.032935   0.016828  1.9571 0.0503338 
## INDUS       -0.228422   0.064560 -3.5382 0.0004029 
## CHAS1        3.156952   1.052567  2.9993 0.0027061 
## NOX         -8.580410   4.304592 -1.9933 0.0462269 
## RM           6.388227   0.415361 15.3799 < 2.2e-16 
## AGE         -0.055712   0.015608 -3.5694 0.0003578 
##  
## Lambda: 0.78728, LR test value: 37.971, p-value: 7.18
07e-10 
## Asymptotic standard error: 0.064145 
##     z-value: 12.273, p-value: < 2.22e-16 
## Wald statistic: 150.64, p-value: < 2.22e-16 
##  
## Log likelihood: -1593.84 for error model 
## ML residual variance (sigma squared): 30.918, (sigma: 
5.5604) 
## Number of observations: 506  
## Number of parameters estimated: 10  
## AIC: 3207.7, (AIC for lm: 3243.6) 

The estimation results of the Spatial Error Model (SEM) indicate that 

spatial dependence is not transmitted directly through the dependent 

variable but rather through spatially structured unobserved effects, 

which are incorporated into the model via the error term. In this context, 

the SEM model aims to account for the influence of residuals that are 

systematically structured in space but are not captured by the included 

explanatory variables. This approach effectively addresses spatial 

autocorrelation arising from omitted or unmeasurable spatial factors. 
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According to the estimation results, the spatial error dependence 

coefficient is λ = 0.787, which is highly positive and statistically 

significant (z = 12.27, p < 0.001). This outcome reveals the significant 

influence of unobserved factors that follow a spatial pattern. In other 

words, although certain common factors affecting housing prices in 

neighboring regions are not explicitly included in the model, their 

effects are indirectly captured through the error structure. This 

underscores both the rationale for employing the SEM model and its 

analytical advantage. 

The overall model fit indicators further support the robustness of the 

SEM model. The AIC value is 3207.7, which indicates a substantial 

improvement compared to the classical model (AIC = 3243.6). The log-

likelihood value of -1593.84 also signals a better fit than that of the SAR 

model. Furthermore, the likelihood ratio (LR) test result (LR = 37.97, p 

< 0.001) strongly confirms that the SEM model significantly 

outperforms the classical linear model. 

The regression coefficients obtained from the SEM estimation are both 

statistically significant and interpretable. Notably, variables such as 

CRIM, INDUS, and AGE exhibit a significant negative influence on 

housing values, while RM and CHAS1 demonstrate a positive 

association. These findings suggest that by incorporating the spatial 

error structure, the model successfully disentangles both structural and 

spatially unaccounted effects. 

In conclusion, the SEM model provides more accurate and valid results 

in the presence of spatially structured but unobserved influences. The 
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model demonstrates high predictive power and effectively captures 

spatial error dependence. These results affirm that the SEM model 

constitutes a strong alternative in analyses where residual spatial 

autocorrelation is present. 

sdm_model <- lagsarlm(y ~ CRIM + ZN + INDUS + CHAS + NOX 
+ RM + AGE, data = boston_sf, listw = listw_dist, type = 
"mixed") 
summary(sdm_model) 

##  
## Call:lagsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS 
+ NOX + RM +  
##     AGE, data = boston_sf, listw = listw_dist, type = 
"mixed") 
##  
## Residuals: 
##       Min        1Q    Median        3Q       Max  
## -17.86324  -2.83045  -0.29627   1.93063  38.01095  
##  
## Type: mixed  
## Coefficients: (asymptotic standard errors)  
##                Estimate  Std. Error z value  Pr(>|z|) 
## (Intercept) -49.3127399  12.8428330 -3.8397 0.0001232 
## CRIM         -0.1750376   0.0328972 -5.3207 1.033e-07 
## ZN            0.0560098   0.0175457  3.1922 0.0014118 
## INDUS        -0.1577912   0.0661566 -2.3851 0.0170738 
## CHAS1         3.0793660   1.0519052  2.9274 0.0034179 
## NOX          -8.6539197   4.5038577 -1.9214 0.0546755 
## RM            6.3343950   0.4102214 15.4414 < 2.2e-16 
## AGE          -0.0685472   0.0159957 -4.2854 1.824e-05 
## lag.CRIM     -0.6145716   0.2396966 -2.5640 0.0103487 
## lag.ZN        0.0057274   0.0344982  0.1660 0.8681412 
## lag.INDUS     0.5523612   0.2009769  2.7484 0.0059890 
## lag.CHAS1     5.8981766   4.4997219  1.3108 0.1899298 
## lag.NOX       7.3084275  16.4617475  0.4440 0.6570684 
## lag.RM        3.9935452   2.2990382  1.7371 0.0823783 
## lag.AGE       0.1132758   0.0455573  2.4864 0.0129026 
##  
## Rho: 0.066013, LR test value: 0.13591, p-value: 0.712
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38 
## Asymptotic standard error: 0.15251 
##     z-value: 0.43284, p-value: 0.66513 
## Wald statistic: 0.18735, p-value: 0.66513 
##  
## Log likelihood: -1574.238 for mixed model 
## ML residual variance (sigma squared): 29.496, (sigma: 
5.4311) 
## Number of observations: 506  
## Number of parameters estimated: 17  
## AIC: 3182.5, (AIC for lm: 3180.6) 
## LM test for residual autocorrelation 
## test value: 0.14231, p-value: 0.70599 

The Spatial Durbin Model (SDM) extends conventional spatial 

regression frameworks by incorporating spatially lagged values of both 

the dependent and explanatory variables. This structure allows for the 

simultaneous estimation of direct and indirect spatial effects, making it 

possible to analyze both the direction and the source of spatial 

interactions in greater detail. As such, the SDM can be viewed as a 

generalization that encompasses both the SAR and SLX models as 

special cases. 

According to the estimation results, the spatial autoregressive 

coefficient is estimated as ρ = 0.066, which is relatively low and 

statistically insignificant (z = 0.4328, p > 0.05). This finding suggests 

that, within the context of this model, the spatially lagged values of the 

dependent variable do not have a significant influence on the outcome 

variable. However, when considering the effects arising from the spatial 

lags of the explanatory variables, it becomes evident that certain 

variables in neighboring regions exert significant impacts on the 

dependent variable. In particular, the variables lag.CRIM, lag.INDUS, 
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and lag.AGE are found to have statistically significant positive effects 

(p < 0.01), indicating that some socioeconomic characteristics influence 

housing prices not only within a given region but also through their 

presence in adjacent areas. 

The model fit indicators warrant cautious interpretation. The AIC value 

for the SDM is 3182.5, which is marginally higher than that of the 

classical model (AIC = 3180.6). Despite the broader structure and larger 

number of estimated parameters in the SDM, this result indicates a 

limited gain in model fit. The lack of statistical significance for the 

spatial autoregressive coefficient and the non-significant likelihood 

ratio test suggest that the SDM performs less favorably compared to the 

SAR model in this dataset. This could be attributed to the fact that 

spatial dependence in this context is primarily mediated through the 

lagged explanatory variables rather than through the dependent variable 

itself. 

Nonetheless, the residual spatial autocorrelation test returns an 

insignificant result (p = 0.706 > 0.05), indicating that the SDM 

sufficiently captures spatial dependence in the error structure. In other 

words, while direct spatial dependence is weak, the indirect effects are 

effectively modeled within this framework. Thus, the SDM provides 

meaningful insights in cases where spatial spillovers from explanatory 

variables play a dominant role. 

Although the model demonstrates flexibility by allowing the 

decomposition of spatial effects associated with neighboring covariates, 

the lack of support for the spatial lag of the dependent variable, 
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combined with the modest improvement in model performance, 

suggests that the inclusion of ρ may not be essential in this setting. As 

a result, a simpler alternative such as the SLX model, which focuses 

exclusively on the spatial lags of explanatory variables, may offer a 

more parsimonious and interpretable solution. By retaining statistically 

significant spatial spillover variables while avoiding unnecessary 

parametric complexity, the SLX model may deliver advantages in both 

explanatory clarity and estimation efficiency in this context. 

slx_model <- lmSLX(y ~ CRIM + ZN + INDUS + CHAS + NOX + 
RM + AGE, data = boston_sf, listw = listw_dist) 

summary(slx_model) 

##  
## Call: 
## lm(formula = formula(paste("y ~ ", paste(colnames(x)[
-1], collapse = "+"))),  
##     data = as.data.frame(x), weights = weights) 
##  
## Coefficients: 
##              Estimate    Std. Error  t value     Pr(>
|t|)   
## (Intercept)  -5.198e+01   1.180e+01  -4.406e+00   1.2
96e-05 
## CRIM         -1.755e-01   3.338e-02  -5.257e+00   2.1
87e-07 
## ZN            5.630e-02   1.781e-02   3.161e+00   1.6
71e-03 
## INDUS        -1.533e-01   6.697e-02  -2.289e+00   2.2
50e-02 
## CHAS1         3.088e+00   1.067e+00   2.893e+00   3.9
85e-03 
## NOX          -8.578e+00   4.573e+00  -1.876e+00   6.1
26e-02 
## RM            6.344e+00   4.161e-01   1.525e+01   2.9
73e-43 
## AGE          -6.842e-02   1.624e-02  -4.213e+00   3.0
00e-05 
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## lag.CRIM     -6.531e-01   2.364e-01  -2.763e+00   5.9
49e-03 
## lag.ZN        7.850e-03   3.500e-02   2.243e-01   8.2
26e-01 
## lag.INDUS     5.685e-01   1.985e-01   2.865e+00   4.3
55e-03 
## lag.CHAS1     6.650e+00   4.287e+00   1.551e+00   1.2
15e-01 
## lag.NOX       7.123e+00   1.649e+01   4.319e-01   6.6
60e-01 
## lag.RM        4.637e+00   1.722e+00   2.692e+00   7.3
48e-03 
## lag.AGE       1.125e-01   4.625e-02   2.431e+00   1.5
40e-02 

The Spatial Lag of X (SLX) model operates under the assumption that 

the dependent variable is influenced not only by the explanatory 

variables in the local unit but also by the values of these variables in 

neighboring units. In contrast to models that incorporate a spatial lag of 

the dependent variable, the SLX framework does not include an 

endogenous spatial autoregressive component. Instead, it captures 

spatial spillover effects through the inclusion of lagged explanatory 

variables. This structure offers a parsimonious yet powerful approach, 

particularly in empirical contexts where both direct and indirect spatial 

effects are of analytical interest. 

The estimation results obtained from the SLX model indicate that a 

substantial proportion of the spatially lagged explanatory variables 

exert statistically significant effects. Among the local explanatory 

variables, CRIM, ZN, INDUS, CHAS1, RM, and AGE are found to be 

statistically significant. Notably, the variables CRIM and AGE exhibit 

significant negative impacts on housing values, whereas RM, 
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representing the average number of rooms per dwelling, shows a strong 

positive effect. These findings suggest that the SLX model successfully 

reproduces expected and meaningful estimates within a classical 

regression framework. 

More importantly, the spatially lagged explanatory variables, including 

lag.CRIM, lag.INDUS, lag.RM, and lag.AGE, are also statistically 

significant (p < 0.05). This result confirms that housing prices are 

shaped not only by conditions within a given neighborhood but also by 

socioeconomic characteristics of adjacent areas. For instance, a high 

crime rate in neighboring locations (lag.CRIM) may negatively 

influence housing values in the focal area, while a higher average 

number of rooms in nearby dwellings (lag.RM) may exert a positive 

externality. These patterns highlight that spatial diffusion effects are 

driven not only by geographic proximity but also by shared structural 

and social characteristics across regions. 

An important advantage of the SLX model lies in its structural 

simplicity. By excluding the spatial autoregressive coefficient 𝜌, the 

model avoids unnecessary parametric complexity while still capturing 

spatial dependence through lagged covariates. Considering the SDM 

model’s results, in which the spatial autoregressive coefficient was 

found to be statistically insignificant and the likelihood ratio test failed 

to demonstrate superiority over the classical model, the SLX model 

emerges as a more appropriate alternative. It retains the significant 

spillover effects identified in the SDM model but omits the 



85 

 

uninformative spatial autoregressive term, thereby yielding a more 

consistent and interpretable structure. 

In conclusion, the SLX model offers a transparent and analytically 

effective representation of both direct and indirect spatial effects. 

Within the scope of this analysis, it produces statistically significant and 

substantively meaningful results while maintaining a streamlined 

model structure. Compared to more complex alternatives, the SLX 

model stands out for its balance between explanatory power and 

interpretability. 

sac_model <- sacsarlm(y ~ CRIM + ZN + INDUS + CHAS + NOX 
+ RM + AGE, data = boston_sf, listw = listw_dist) 
summary(sac_model) 

##  
## Call:sacsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS 
+ NOX + RM +  
##     AGE, data = boston_sf, listw = listw_dist) 
##  
## Residuals: 
##       Min        1Q    Median        3Q       Max  
## -17.35491  -2.96176  -0.75006   1.80923  38.87902  
##  
## Type: sac  
## Coefficients: (asymptotic standard errors)  
##               Estimate Std. Error z value  Pr(>|z|) 
## (Intercept)  -2.610789   5.692804 -0.4586 0.6465128 
## CRIM         -0.173075   0.033350 -5.1897 2.106e-07 
## ZN            0.033726   0.016865  1.9997 0.0455280 
## INDUS        -0.234234   0.064603 -3.6258 0.0002881 
## CHAS1         3.333625   1.058078  3.1506 0.0016291 
## NOX         -10.162825   4.448201 -2.2847 0.0223302 
## RM            6.353781   0.414818 15.3170 < 2.2e-16 
## AGE          -0.059099   0.015845 -3.7299 0.0001916 
##  
## Rho: -0.17678 
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## Asymptotic standard error: 0.14892 
##     z-value: -1.187, p-value: 0.23522 
## Lambda: 0.82136 
## Asymptotic standard error: 0.067849 
##     z-value: 12.106, p-value: < 2.22e-16 
##  
## LR test value: 39.758, p-value: 2.3259e-09 
##  
## Log likelihood: -1592.946 for sac model 
## ML residual variance (sigma squared): 30.652, (sigma: 
5.5365) 
## Number of observations: 506  
## Number of parameters estimated: 11  
## AIC: 3207.9, (AIC for lm: 3243.6) 

The Spatial Autoregressive Combined (SAC) model provides a 

comprehensive framework for spatial regression analysis by 

simultaneously incorporating the spatial lag of the dependent variable, 

as in the Spatial Autoregressive (SAR) model, and spatial dependence 

in the error terms, as in the Spatial Error Model (SEM). This dual 

structure makes the SAC model particularly suitable for contexts in 

which spatial dependence arises both through observed neighborhood 

interactions and through unobserved or omitted spatially structured 

factors captured in the error term. The SAC model can be viewed as a 

generalization that nests both SAR and SEM models, making it an 

appropriate choice when both types of spatial dependence are jointly 

significant. 

According to the estimation results, the spatial autoregressive 

coefficient 𝜌 is estimated at −0.177 and is not statistically significant (p 

= 0.2352 > 0.05). This indicates that the housing prices in neighboring 

regions do not exert a direct influence on those in the target area. In 
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contrast, the spatial autocorrelation in the error terms, represented by 𝜆, 

is estimated at 0.821 and is strongly statistically significant (p < 0.001). 

This finding suggests that unobserved but spatially correlated factors 

play a substantial role in shaping housing prices, and that the spatial 

dependence is primarily channeled through the error structure rather 

than through the dependent variable itself. 

An evaluation of model fit metrics further supports the SAC model's 

effectiveness. The AIC value of 3207.9 is notably lower than that of the 

classical linear regression model (AIC = 3243.6), indicating superior 

model performance. Similarly, the log-likelihood value of −1592.946 is 

higher than in the benchmark model, reflecting improved overall model 

fit. Moreover, the likelihood ratio (LR) test result (LR = 39.76, p < 

0.001) provides strong statistical evidence that the SAC model offers a 

significantly better fit compared to the standard OLS model. This 

supports the necessity of explicitly incorporating spatial structure into 

the modeling process. 

The estimated coefficients of the explanatory variables are generally 

statistically significant and align with theoretical expectations. 

Variables such as CRIM, INDUS, AGE, and NOX have statistically 

significant negative effects on housing prices, while RM and CHAS1 

display strong and positive influences. These findings confirm the 

model's ability to accurately capture the fundamental structural 

relationships while integrating spatial considerations. 

In conclusion, for the dataset under investigation, although the spatial 

autoregressive component does not appear to be statistically significant, 
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the presence of strong spatial autocorrelation in the error terms 

underscores the importance of accounting for unobserved spatial 

factors. While the insignificance of the 𝜌 coefficient weakens the case 

for employing SAR or SDM models alone, it strengthens the argument 

for using SEM or SAC models as more appropriate alternatives. Given 

that the source of spatial dependence appears to be concentrated in the 

error structure, the SEM model may suffice. However, the SAC model, 

due to its broader scope, offers a more robust and comprehensive 

solution in such contexts. 

gns_model <- sacsarlm(y ~ CRIM + ZN + INDUS + CHAS + NOX 
+ RM + AGE, data = boston_sf, listw =listw_dist, type = 
"sacmixed") 

summary(gns_model) 

##  
## Call:sacsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS 
+ NOX + RM +  
##     AGE, data = boston_sf, listw = listw_dist, type = 
"sacmixed") 
##  
## Residuals: 
##       Min        1Q    Median        3Q       Max  
## -17.89727  -2.83364  -0.28754   1.93271  37.99537  
##  
## Type: sacmixed  
## Coefficients: (asymptotic standard errors)  
##                Estimate  Std. Error z value  Pr(>|z|) 
## (Intercept) -50.1260123  19.4748139 -2.5739  0.010056 
## CRIM         -0.1754590   0.0330326 -5.3117 1.086e-07 
## ZN            0.0559717   0.0175268  3.1935  0.001406 
## INDUS        -0.1582480   0.0675349 -2.3432  0.019119 
## CHAS1         3.0969681   1.0558328  2.9332  0.003355 
## NOX          -8.7317872   4.5071415 -1.9373  0.052706 
## RM            6.3382068   0.4132672 15.3368 < 2.2e-16 
## AGE          -0.0685829   0.0159871 -4.2899 1.788e-05 
## lag.CRIM     -0.6201600   0.2844534 -2.1802  0.029244 
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## lag.ZN        0.0056669   0.0354579  0.1598  0.873022 
## lag.INDUS     0.5673074   0.2396629  2.3671  0.017928 
## lag.CHAS1     6.2388870   6.1820800  1.0092  0.312884 
## lag.NOX       6.3317315  18.3139255  0.3457  0.729543 
## lag.RM        4.2995528   4.7281277  0.9094  0.363162 
## lag.AGE       0.1133200   0.0465859  2.4325  0.014995 
##  
## Rho: 0.034186 
## Asymptotic standard error: 0.43372 
##     z-value: 0.078822, p-value: 0.93717 
## Lambda: 0.052012 
## Asymptotic standard error: 0.46047 
##     z-value: 0.11295, p-value: 0.91007 
##  
## LR test value: 77.215, p-value: 5.7643e-13 
##  
## Log likelihood: -1574.217 for sacmixed model 
## ML residual variance (sigma squared): 29.494, (sigma: 
5.4309) 
## Number of observations: 506  
## Number of parameters estimated: 18  
## AIC: 3184.4, (AIC for lm: 3243.6) 

The General Nesting Spatial (GNS) model represents the most 

comprehensive and flexible structure within the framework of spatial 

regression analysis. In this model, the spatial lag of the dependent 

variable, the spatial autocorrelation in the error terms, and the spatial 

lags of the explanatory variables are all incorporated simultaneously. 

As such, the GNS model encompasses all fundamental spatial models 

including SAR, SEM, SDM, SAC, and SLX, offering the most 

parameter-rich specification. This structure enables the simultaneous 

modeling of both direct and indirect effects as well as unobserved 

spatial interactions. 
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According to the model estimation results, the spatial lag coefficient of 

the dependent variable 𝜌 is estimated at 0.034 and the spatial 

autocorrelation coefficient of the error terms 𝜆 is estimated at 0.052. 

However, both coefficients are statistically insignificant (p > 0.05). 

These findings indicate that, for this specific dataset, direct forms of 

spatial dependence, whether through the dependent variable or through 

the error structure, do not contribute significantly to the model. In other 

words, spatial dependence appears to be transmitted primarily through 

the spatially lagged explanatory variables. 

Indeed, among the spatially lagged covariates, the variables lag.CRIM, 

lag.INDUS, and lag.AGE are found to be statistically significant (p < 

0.05). This supports the view that the relevant spatial dynamics are 

more appropriately captured through the exogenous covariates and their 

spatial spillover effects. 

Regarding overall model performance, the GNS model demonstrates a 

strong fit. Its AIC value is 3184.4, which is substantially lower than that 

of the classical linear regression model (AIC = 3243.6). Additionally, 

the log-likelihood value of −1574.217 indicates a high degree of model 

fit. The likelihood ratio (LR) test further supports this, with an LR 

statistic of 77.215 (p < 0.001), signifying a statistically significant 

improvement over the classical model. However, this improvement 

appears to stem primarily from the SLX component of the model. 

In summary, while the GNS model offers the most extensive parametric 

structure by incorporating all relevant spatial processes, the empirical 

results for this dataset reveal that neither spatial lag dependence in the 
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dependent variable nor spatial autocorrelation in the residuals are 

statistically meaningful. Therefore, although the GNS model includes 

all possible components, it yields a predictive performance comparable 

to that of more parsimonious models. In this specific empirical context, 

a simpler specification such as the SLX model provides similar 

explanatory power and may offer a more efficient and interpretable 

alternative. 

# Pseudo R²  
pseudo_r2_general <- function(y, y_hat) { 
  1 - (sum((y - y_hat)^2) / sum((y - mean(y))^2))} 
 
# Computation of a model-specific R² for the SLX model 
pseudo_r2_slx <- function(model) { 
  y <- model.response(model.frame(model)) 
  y_hat <- fitted(model) 
  pseudo_r2_general(y, y_hat)} 
 
# R² calculation for other models 
pseudo_r2_default <- function(model) { 
  y <- model$y 
  y_hat <- model$fitted.values 
  pseudo_r2_general(y, y_hat)} 
 
# Comprehensive compilation of metrics 
model_metrics <- data.frame( 
  Model = c("SAR", "SEM", "SDM", "SLX", "SAC", "GNS"), 
  AIC = c(AIC(sar_model), AIC(sem_model), AIC(sdm_model)
, AIC(slx_model), AIC(sac_model), AIC(gns_model)), 
  BIC = c(BIC(sar_model), BIC(sem_model), BIC(sdm_model)
, BIC(slx_model), BIC(sac_model), BIC(gns_model)), 
  LogLikelihood = c(logLik(sar_model), logLik(sem_model)
, logLik(sdm_model), logLik(slx_model), logLik(sac_model
), logLik(gns_model)), 

# Pseudo R²  
  Pseudo_R2 = c(pseudo_r2_default(sar_model), pseudo_r2_
default(sem_model), pseudo_r2_default(sdm_model), pseudo
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_r2_slx(slx_model), pseudo_r2_default(sac_model), pseudo
_r2_default(gns_model))) 

 
# Presentation of results in tabular form 
print(model_metrics) 

##   Model      AIC      BIC LogLikelihood Pseudo_R2 
## 1   SAR 3231.273 3273.538     -1605.636 0.6042684 
## 2   SEM 3207.679 3249.944     -1593.840 0.6325613 
## 3   SDM 3182.477 3254.328     -1574.238 0.6494597 
## 4   SLX 3180.613 3248.237     -1574.306 0.6493170 
## 5   SAC 3207.892 3254.384     -1592.946 0.6357223 
## 6   GNS 3184.435 3260.512     -1574.217 0.6494833 

The R codes provided above generate model evaluation metrics 

including information criteria such as AIC and BIC, log-likelihood 

values, and pseudo R² statistics. According to the findings, the models 

with the lowest AIC values are SLX (3180.61), SDM (3182.48), and 

GNS (3184.43). These values indicate that these three models exhibit 

better fit with the data and offer greater parametric efficiency compared 

to alternative specifications. In terms of log-likelihood, the SLX, SDM, 

and GNS models perform similarly, confirming their comparable levels 

of model fit. Furthermore, pseudo R² values are highest in these three 

models, reinforcing their strong explanatory power. 

However, model selection should not be based solely on information 

criteria. Factors such as parametric parsimony, interpretability, and the 

structural characteristics of spatial dependence must also be considered. 

In this regard, both SDM and GNS models involve a relatively large 

number of parameters (SDM: 17, GNS: 18). Yet in both models, the 

spatial lag coefficient rho is statistically insignificant. In particular, the 

simultaneous insignificance of both rho and lambda in the GNS model 
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suggests that direct spatial dependence through the dependent variable 

and the error structure is limited for this dataset. 

Therefore, the model fit achieved by SDM and GNS appears to result 

primarily from the inclusion of spatially lagged explanatory variables. 

This finding implies that the more parsimonious SLX model may 

represent a theoretically and practically preferable alternative. The SLX 

model captures the significant components of SDM and GNS while 

excluding the insignificant spatial autoregressive structure, thereby 

enhancing interpretability without compromising model performance. 

On the other hand, the SEM and SAC models are suitable when spatial 

autocorrelation is primarily present in the error terms. Although the 

SEM model performs strongly in this analysis, its inability to account 

for spillover effects from explanatory variables in neighboring regions 

constitutes a key limitation when compared to SLX and SDM. The SAC 

model incorporates both rho and lambda parameters, yet the 

insignificance of rho indicates that the spatial autoregressive effect is 

not supported in this context. 

In summary, when evaluating model selection based on parametric 

efficiency, interpretability, and model fit collectively, the SLX model 

emerges as the most appropriate specification for the context of this 

analysis. 

6. CONCLUSION 

This book offers a comprehensive examination of the fundamental 

concepts, theoretical foundations, and applied dimensions of spatial 
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statistics with a particular focus on spatial regression models. The main 

objective is to identify issues of spatial dependence that violate the 

assumptions of classical regression analysis, introduce model types 

specifically developed to address these issues, and demonstrate how 

these models can be evaluated through empirical applications. 

The initial chapters cover essential topics such as types of spatial data, 

the structure of spatial autocorrelation, and the construction of spatial 

weight matrices. These are followed by detailed explanations of 

statistical techniques used to measure spatial dependence, including 

Moran’s I, Geary’s C, and LISA. The book also illustrates how spatial 

dependence can be analyzed at both global and local levels, supported 

by visualization techniques. 

Subsequent chapters explain the limitations of classical regression 

analysis when applied to spatial data and introduce spatial regression 

models developed to address these limitations, including SAR, SEM, 

SDM, SLX, SAC, and GNS. Each model is presented systematically, 

covering underlying assumptions, mathematical structure, estimation 

techniques, and methods of interpretation, supported by illustrative 

examples. 

In the applied section of the book, the effects of spatial dependence on 

economic indicators are analyzed using the Boston housing dataset. 

Different spatial regression models are compared in terms of model 

performance, based on information criteria such as AIC, log-likelihood, 

and pseudo R². Moreover, each model is assessed comparatively in 

terms of its ability to capture spatial structure, the significance of 
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estimated parameters, and interpretability. The findings reveal that 

spatial effects are predominantly transmitted through the values of 

explanatory variables in neighboring regions, highlighting the practical 

effectiveness of models such as SLX and SDM. 

In conclusion, this book aims to serve as a comprehensive reference for 

researchers seeking to engage with spatial regression modeling, 

offering both a robust theoretical foundation and practical application 

insights. By demonstrating how spatial relationships can be integrated 

into the statistical modeling process, this work provides valuable 

contributions across a range of disciplines, including the social 

sciences, urban planning, economics, and environmental studies. 
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