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PREFACE

Spatial regression analysis has emerged as a fundamental subfield
within spatial statistics and econometrics, addressing the limitations of
classical regression models in the presence of spatial dependence. The
recognition that spatially proximate observations frequently exhibit
statistical interdependence has necessitated the development of models
and methods capable of capturing such relationships. This monograph
presents a systematic treatment of the theoretical foundations,
methodological frameworks, and applied implementations of spatial

regression techniques.

The work is organized to provide a comprehensive exposition,
beginning with the conceptualization and formalization of spatial
neighborhood structures and spatial weight matrices, which constitute
the basis for any spatial analysis. Subsequently, measures of spatial
autocorrelation, both global and local, are examined in depth, including
their statistical properties, interpretation, and practical considerations.
The core chapters focus on the formulation, estimation, and evaluation
of major spatial regression models, including the Spatial
Autoregressive Model (SAR), the Spatial Error Model (SEM), the
Spatial Durbin Model (SDM), the Spatial Autocorrelation Model
(SAC), the Spatially Lagged X Model (SLX), and the General Nesting
Spatial Model (GNS). Each model is presented with its mathematical
derivation, underlying assumptions, estimation procedures, and

potential advantages and limitations.



The volume also addresses model specification and diagnostic testing,
recognizing that rigorous model selection is essential for valid inference
in spatial econometric applications. The final sections demonstrate the
practical implementation of spatial regression models using an
empirical dataset, thereby bridging theoretical discussion with

empirical practice and providing a reproducible analytical framework.

This book is intended as a reference for researchers, graduate students,
and practitioners across disciplines such as economics, geography,
urban and regional planning, environmental sciences, epidemiology,
and political science, fields in which spatial dependence is an intrinsic
characteristic of the data. It aims to equip the reader with both the
theoretical insights and the applied skills required to model spatial
processes accurately and to interpret the resulting analyses with

methodological rigor.

By integrating theoretical constructs with empirical applications, this
work aspires to contribute to the methodological advancement of spatial
analysis and to facilitate the adoption of spatial regression techniques

in addressing complex, spatially structured phenomena.
24.11.2025

Assist. Prof. Dr. Elif Ozge OZDAMAR
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SPATIAL REGRESSION MODELS

INTRODUCTION

Spatial statistics is becoming increasingly central in modern data
analysis and plays a fundamental role in critical decision-making across
numerous disciplines. The methodology examines spatiality through
topological and geometric characteristics within a dataset alongside
additional variables, is employed across various domains including
urban planning, agriculture, environmental management, logistics, and
public health. Spatial statistics analyses integrate locational data,
cartographic layers, and analytical techniques to identify patterns,
correlations, and trends within the examined areas. One of the most
powerful and comprehensive tools in this field, spatial regression
analysis not only considers spatial structures but also represents an
approach that questions and redefines the fundamental assumptions of
classical regression models. The emergence of spatial regression
analysis began with the recognition of spatial dependence. In 1948,
Patrick A. Moran pioneered the field by developing Moran’s I index,
which defined the concept of spatial autocorrelation. Subsequently,
Charles Geary (1954) proposed the Geary’s C ratio as an alternative to
Moran’s approach. These metrics enabled the mathematical expression

of similarity among spatial units and filled a significant gap in literature.

In the 1970s, Cliff and Ord made significant contributions regarding
spatial weight matrices and spatial relationship structures, thus leading

the institutionalization of spatial statistics. Luc Anselin’s work, Spatial



Econometrics, published in 1988, systematized spatial regression
models and established spatial econometrics as a distinct sub-discipline.
With the development of local statistics by Getis and Ord in the 1990s,
it became possible to analyze spatial clustering not only at the global
but also at the local level.

This evolving literature has led to diversification in spatial regression
models. The SAR (Spatial Autoregressive) model, which incorporates
interactions between the dependent variable and neighboring units into
the model; the SEM (Spatial Error Model), which addresses spatial
dependence in the error structure; the SDM and SLX models, which
include spatial effects of both dependent and independent variables; and
the more comprehensive structures of SAC and GNS models allow for

the representation of spatial analyses with varying structures.

The use of spatial regression analysis is not confined to theoretical
academic discussions but also finds extensive practical application. In
economics, analyses of regional development, income inequality, and
housing prices; in health sciences, analyses of disease clustering, access
to healthcare, and environmental health risks; in urban planning, studies
on population density, land use, and distribution of urban services; in
environmental sciences, research on air and water pollution, land
degradation, and other spatially sensitive indicators; in agriculture and
natural resource management, assessments of crop productivity, soil
quality, and the effects of climate change; and in political analyses,
evaluations of vote distributions, political trend maps, and regional

preference patterns are just a few of the many applications.



This book addresses spatial regression analyses in both theoretical and
applied contexts across these diverse domains. It is structured around
four main themes. The first chapter introduces the concept of spatial
neighborhood, the foundational element of spatial analysis, and
explains the construction of weight matrices with different
neighborhood structures and weighting methods. The second chapter
elaborates on spatial autocorrelation techniques, identifying spatial
patterns through global metrics such as Moran’s I, Geary’s C, and
Getis-Ord G, and local metrics such as LISA, Local Geary, and Gi*
statistics. The third chapter presents the core of the book spatial
regression models. Models such as the Spatial Autoregressive Model
(SAR), which directly incorporates the interaction of the dependent
variable with neighboring units, the Spatial Error Model (SEM), which
considers spatial dependence in the error structure, and advanced
models such as SDM, SLX, SAC, and GNS are discussed in detail,
including their theoretical background, assumptions, advantages,
disadvantages, and estimation techniques. Each of these models offers
different advantages depending on the spatial structure and
characteristics of the dataset. The fourth chapter explains how to select
the most appropriate spatial model for a given dataset using model
specification tests, including Lagrange Multiplier tests and other
diagnostic tools. The fifth and sixth chapters present the analysis of
theoretical information using applied datasets and provide
interpretations of the findings. In conclusion, the book evaluates the
opportunities offered by spatial regression analysis and provides

guidance for future research.



1. SPATIAL NEIGHBORHOOD AND SPATIAL
WEIGHT MATRIX

The foundation of spatial data analysis lies in the neighborhood
structure of observations within the dataset and the weight matrix that
reflects the degree of such neighborhood. Neighborhood refers to the
concept that defines the spatial proximity between observations. In
spatial data analysis (SDA), neighborhood refers to associating
observations that are positioned near or adjacent to a specific area
(point, region, polygon, etc.). It can be defined using criteria such as
two observations being adjacent in space (contiguous) or located within

a specific distance threshold.

A spatial weight matrix for a dataset is represented by a square matrix
of size N X N, denoted by W, where each element expresses whether a
unit (observation or region) has a neighborhood relationship with

another, and to what degree.

Wip Wiz 0 Wiy

W1 Wy =0 Wyy
W=\ . . . :

Wn1 W1 0 Wypy

Given two observations i and j, Wj; expresses the neighborhood between
observation i and observation j. If this value is 1, the observations are
neighbors; if 0, they are not. For polygon-based spatial data,
neighborhood is defined through contiguity; for point data, it is defined
through a distance threshold. Researchers may also employ other types

of neighborhood definitions. In the literature, commonly used



boundary-based neighborhood structures are inspired by chess piece
movements and are named as rook, bishop, and queen contiguities.
Figure 1.1 illustrates these neighborhood structures. On a map grid,
areas that share an edge with the above, below, left, or right neighbors
represent rook contiguity (edge-based); areas that touch diagonally at
the corners represent bishop contiguity (vertex-based); and areas
adjacent in both edge and corner directions form queen contiguity
(combined). Distance-based neighborhood, on the other hand, is
determined by a radius defined by the researcher or through a k-nearest

neighbors algorithm.

1 N N

= AN N

Figure 1.1 Rook, Bishop, and Queen Contiguities

After defining spatial neighborhood, the spatial weight matrix must be
constructed. The weight matrix (W) is used to grade the defined
neighborhood. Determining the weight matrix is a critical step in spatial
analysis, as it can significantly impact the statistical test results derived
from the analysis (Tiefelsdorf et al., 1999).

Since the pioneering studies of Moran (1948), Geary (1954), Cliff and
Ord (1973 and 1981), determining the spatial weight matrix has been
considered a complex and debated issue (A. C. Cliff & Ord, 1973; A.
D. Cliff & Ord, 1981; Geary, 1954; P. A. Moran, 1948). Nevertheless,



a shared understanding from these works is that spatial weights should
reflect accessibility between observations. Furthermore, spatial weights
are expected to decrease as the distance between observations increases
and to increase proportionally as the shared boundary lengths increase
for adjacent units. Although there is consensus on these points, the
literature has not converged on a standardized approach. It is
recommended that researchers construct a spatial weight matrix that
best reflects the spatial characteristics of the dataset being used (A. C.
Cliff & Ord, 1973).

Getis, one of the leading figures in the field, proposed three perspectives
for constructing spatial weight matrices: theoretical, topological, and
empirical (Getis, 2009):

e Theoretical Perspective: Uses one of the general approaches
established in literature. Approaches based on spatial distance
are usually preferred. An example is a function where weight
decreases with increasing distance. The challenge here is that
such weightings may not always be suitable for real-world

conditions.

e Topological Perspective: Arises from the need to realistically
define the physical properties of spatial units within a study
area. In standard weight matrices, all adjacent observations are
weighted equally without regard to topological differences.
Thus, observations with different spatial structures are
represented in the same way. In this approach, topological

features are reflected in the weight matrix. For instance, the ratio



ofthe shared edge length of adjacent regions to their area can be

used.

¢ Empirical Perspective: According to Cliff and Ord, this is the
most consistent approach. They noted that “the researcher can
highlight the spatial features they consider important using a
flexible weighting system” (A. D. Cliff & Ord, 1969). Here, the
researcher builds a weight matrix that best represents the spatial

relationship structure.

Based on a review of the literature, the principal methods for

constructing spatial weight matrices include:
e Contiguity-based weighting
e Distance-based weighting
e Inverse-distance weighting
e K-nearest neighbors weighting
e Shared boundary length weighting

The spatial weight matrix proposed by Getis and Aldstadt, based on the
local Getis-Ord Gi statistics, differs from other approaches. In this
method, not only the neighborhood status but also whether neighbors
exhibit similar characteristics is considered during matrix construction
(Getis & Aldstadt, 2004).

Despite the diversity in the literature, general practice tends toward
using distance-based neighborhoods for point data, boundary contiguity

for polygon data, and rook or queen contiguity for raster (grid) data.



1.1 Contiguity-Based Weighting

The weight matrix constructed based on contiguity is fundamentally
binary in structure, as it solely accounts for the condition of adjacency.
If two observations share a common border, the matrix assigns a value
of 1; otherwise, it assigns a value of 0. The weight matrix based on

contiguity can be expressed as follows:

(1.1)

W = {1, if unit { and j are adjacent
u o, otherwise

The Wij; matrix is symmetric, and the diagonal elements are zero. When
necessary, it can be row-standardized such that the row sums equal 1,
using the following expression:

W. .

Jjec Yij ‘ec
In Equation (1.2), C represents the set of observations that are

contiguous (i.e., neighbors) to observation i.
1.2 Distance-Based Weighting

Distance-based weighting is determined according to the distance
between observations. Observations that fall within a distance threshold
specified by the researcher are considered neighbors. Observations
identified as neighbors are assigned a weight of 1 in the matrix, while

non-neighbors receive a weight of 0. The matrix is defined as follows:

1, dij <6
Wij _{ Y (13)

0, otherwise



Here, d;; is the distance between observations i and j, and & is the
threshold distance defined to determine neighborhood. The choice of
distance metric may vary. This approach is commonly used with point
data. For polygon data, weighting can be applied based on the distance
between centroid points instead of using contiguity. As with the
previous approach, standardization using Equation (1.2) may be applied

when necessary.
1.3 Inverse Distance-Based Weighting

Inverse distance weighting is based on Tobler’s First Law of
Geography, which states that “everything is related to everything else,
but near things are more related than distant things.” When the W
matrix is constructed using this method, the weights decrease as the
distance between observations increases. The weights are calculated

using the following equation:

Here, d;; is the distance between observations i and j, and p is a power
parameter determined by the researcher. Increasing the power
parameter p increases the standardized weights for closer observations

while decreasing those for distant ones.

1.4 K-Nearest Neighbors-Based Weighting

Another binary structure is the k-nearest neighbors weighting matrix.
In this approach, each observation defines as neighbors the k closest

observations to itself. The weighting matrix is obtained as follows:



Wy = {1, if j is among the k nearest neighbors of i (1.5)

o, otherwise
The resulting matrix may not be symmetric. The number of neighbors
k is the sole parameter and must be specified by the researcher. An

advantage of this method is that every observation is guaranteed to have

at least one neighbor, regardless of the dataset structure.
1.5 Shared Boundary Length-Based Weighting

This approach considers the topographical characteristics of the regions
and is a refined version of boundary-based contiguity weighting
matrices. Various methods exist for constructing this type of matrix,
with one of the most used being the generalized weight matrix, which
accounts for both the shared boundary length and the distance between

the centroids of the observations. The matrix is calculated as:

1

= (1.6)
dij Yjeclij

Wij

Here, C represents the set of observations neighboring observation i, [;;
denotes the length of the shared boundary between observations i and j,

and d;; is the distance between their centroids.

2. MEASURES OF SPATIAL AUTOCORRELATION

In natural systems, the random distribution of observations across space
is rarely observed. As Tobler stated, all things are related, but near
things are more related than distant things. Therefore, observations that

are geographically close to each other are expected to exhibit higher

10



similarity compared to those that are far apart. At this point, spatial
autocorrelation emerges as the statistical measure that reveals such
relationship structures among observations. In its simplest form, spatial
autocorrelation refers to the investigation of whether spatially adjacent
(neighboring) observations on a map exhibit similarity in terms of a
given variable. Similar values of nearby observations indicate positive
spatial autocorrelation, whereas different values indicate negative
spatial autocorrelation. In practice, negative spatial autocorrelation is
rarely observed. Figure 2.1 illustrates structures of positive and

negative autocorrelations respectively.

(a)

Figure 2.1: Positive spatial autocorrelation (a), Negative spatial

autocorrelation (b)

The concept of spatial autocorrelation was first introduced in the late
1950s by geographer Michael F. Dacey. His efforts to develop
thisstatistics and received significant support from W. L. Garrison and
Edward Ullman. German economic geographer Walter Christaller's

works was known to have influenced all three of these geographers

11



(Cubukgu, 2015). *Although the term “autocorrelation” did not yet
exist in the literature prior to Dacey studies had already acknowledged
that nearby spatial units tend to be similar and interact strongly, while
distant units exhibit relatively weak interactions (Ravenstein, 1885; von
Thinen, 1826; Zipf, 1949). The development of the concept was later
best summarized by Tobler’s First Law of Geography. Although the
term spatial autocorrelation was first formally introduced by Garrison
in the late 1960s, its theoretical foundation had already been established
in 1948 when Patrick Alfred Pierce Moran published his calculation. In
1954, Robert Charles Geary proposed an alternative approach for
calculating spatial autocorrelation (Geary, 1954). Since the term
autocorrelation had not yet been coined, both researchers referred to
their measures as contiguity ratios. These two approaches are now
widely accepted and frequently used in the literature. Up until 1964, the
concept of spatial autocorrelation was referred to in the literature by
various other names such as spatial dependence, spatial association, or
spatial interaction. More recently, the studies by Getis and Ord have

further popularized the concept (L. Anselin & Getis, 1992).

Spatial autocorrelation is generally analyzed in two ways: global and
local. Global spatial autocorrelation evaluates the structure of spatial
relationships across the entire study area using a single summary
statistic. It is used to provide an overall view and to identify spatial
patterns. Local spatial autocorrelation, on the other hand, calculates a
separate statistic for each observation, revealing localized patterns and

clusters.

12



While global measures determine whether spatial clustering exists,
local methods also identify where such clustering occurs. Several
techniques exist in the literature to measure both global and local spatial

autocorrelation. These measures are detailed in the following sections.
2.1 Global Measures of Spatial Autocorrelation

Global spatial autocorrelation measures determine whether neighboring
observations exhibit similar characteristics. The most well-known
global measures for spatial autocorrelation, are Moran’s I Index and
Geary’s C Ratio, introduced by Austrian statistician Patrick Alfred
Pierce Moran and Irish statistician Robert Charles Geary respectively.
Even though developed in the 1950s, these statistics continue to be
widely accepted by practitioners today. Apart from the statistics
mentioned, there is another global spatial autocorrelation measure that
is named as Getis-Ord General G. Compared to the other two measures,

Getis-Ord General G is used less frequently.
2.1.1 Moran’s I Index

Moran’s I Index was introduced by Moran in 1950, and it is the most
widely used measure of global spatial autocorrelation in the literature.
Moran’s I Index simultaneously considers both the spatial proximity of
observations and the values of the variable under study (P. A. P. Moran,
1950). It is calculated as in Equation (2.1):

n Xy X wii (g — ) (x; — %)

= So Z?:l(xi - f)z (2 1)

In this equation, n represents the number of observations in the sample;

13



x; and x;, the values of the i-th and j-th observations respectively; x,
the overall-mean; w;;, the spatial weight between observations i and j,
representing the degree of spatial proximity, and S, (S, =

fe1 27=1wy;) denotes the sum of all spatial weights in the weight

matrix.

The | Index takes values in the range of -1 to 1. A positive value
indicates positive spatial autocorrelation, meaning spatially adjacent
observations tend to have similar values and generating spatial clusters.
Conversely a negative value indicates negative spatial autocorrelation,
meaning that spatially close observations have dissimilar values, so that

no spatial clustering is present.

The closer the index approaches to 1, the stronger the spatial
relationship becomes. If the I Index is close or equal to 0, it indicates
that the observations are randomly distributed, with a conclusion there
is no spatial clustering. To test whether the spatial autocorrelation is
statistically significant, the normal distribution is used. The z-values of

the calculated | indices are obtained using Equation (2.2).

__1—ED
N7

The expected value and variance of the | Index are calculated as

(2.2)

follows:
E(I)=-1/n—1 and (2.3)

nPl_Plpz

e TG [ 77

—E()? (2.4)

14



In the literature, Equation (2.4) is expressed in various forms. Here, it
has been reformulated and presented in a simplified manner by
decomposing it into the terms P1, P2 and Ps, where they are denoted as

follows respectively:

P, = (n® —3n+ 3)S; — nS, + 352 (2.5)
m

P,=—s (2.6)
m;

P; = (n®2 —n)S; — 2nS, + 652 2.7

Due to simplification, the term S emerges in the equations, and it is
calculated according to whether the weight matrix is symmetric or
asymmetric. In practice, weight matrix w;; is usually taken as
symmetric (w;; = wj;), in order to simplify computation.

n

Sy = ZZWU (2.8)

n
i=1j=1

Sy represents the total sum of all spatial weights in the spatial weight
matrix W, providing a measure of the overall spatial connectivity in the

dataset.

S, =%ii(wij +w) (2.9)

S; shows the symmetry and magnitude of spatial relationships
between observations, indicating bidirectional spatial interactions.

Taking the weight matrix as symmetric, the computation of S;

15



simplifies. It reflects the second-order moment of the spatial

weight matrix

Sy = X (T iy + I wy)” (2.10)
S2 captures the variability in the row and column sums of the weight
matrix, reflecting heterogeneity in spatial connectivity per location.
Under the assumption that the data follow a normal distribution, the
variance of the I Index can also be calculated as below:

n251 - nSZ + 355

v = Se¢(n?—1)

— E()? (2.11)

However, in practice, the variance formula (2.4) is preferred for more

realistic results.
2.1.2 Geary’s C Ratio

Geary’s C Ratio is considered an alternative to Moran’s I Index and is
one of the most frequently used measures in calculating global spatial
autocorrelation. It was introduced by Charles Geary in 1954 (Geary,
1954). Analogous to Moran’s I, the Geary’s C statistics incorporates
both spatial relationships and attribute values and is formally computed

as shown in Equation (2.12).

n—1 =1 Z;l:l Wij(xi - xj)2

C= -
Z?zlz?zlwij ieq (o — x)?

(2.12)

In this equation, n represents the number of observations in the sample;
x; and x;, the values of the i-th and j-th observations respectively; X,

the overall mean; and w;; denotes the spatial weight between the two

16



observations. The C Ratio is always positive and takes a value between
0 and 2. Its interpretation differs from that of Moran’s I Index. While a
higher Moran’s I value indicates positive spatial autocorrelation, this
interpretation does not apply for Geary’s C Ratio. When the calculated
C value is less than 1, it indicates the presence of positive spatial
autocorrelation, whereas a value greater than 1 indicates negative
spatial autocorrelation. In cases where the C value is equal to or
approximately 1, the spatial distribution of observations is random,
implying no spatial clustering. Like as Moran’s I Index, the statistical
significance of the calculated spatial autocorrelation is tested under the
assumption of normal distribution. The expected value and variance of

Geary’s C Ratio are calculated as follows:
E(C)=1and (2.13)

T,+T,+T3
4n(n — 2)(n —3)S,

V() = (2.14)

In Equation (2.14), the formula is simplified by breaking it down into
parts named as T, T,, and T5. These parts are calculated with the usage
of the terms Py, P> and P3, with referring to the Equations (2.5), (2.6),

and (2.7) respectively, which used in the calculation of Moran’s I Index.
T, =4(n—1)S;[n?—-3n+3 - (n—1)P,] (2.15)
T,=—(n—-1)S,[n>?-3n—6—(Mn?—n+ 1)P,] (2.16)

T; = 45%[n? —3 — (n — 1)2P,] (2.17)

Under the assumption that the data follow a normal distribution, the

variance of the C Ratio can also be calculated as follows:

17



Ve = 2(n + 1)S2

(2.18)

Here, the terms S, S; and S, used here correspond to those defined in
Equations (2.8), (2.9), and (2.10) in the section on Moran’s I Index.
Comparing their usage in the literature, Geary’s C Ratio is employed

less frequently than Moran’s I Index.

Among the global spatial autocorrelation measures, the Getis-Ord
General G statistic offers a distinct analytical perspective. Unlike
Moran’s I and Geary’s C, the Getis-Ord G specifically targets the
spatial clustering of particularly high or low values. Although it is less
widely utilized in comparison to Moran’s and Geary’s measures, it is
conceptually regarded as an extension of the local Getis-Ord Gi
statistics. By omitting the terms d() and w;;(d) from the local
formulation, the global version is derived as follows (Bivand & Wong,

2018):

nUST
=12j=1 WijXiX; =
G = Vj#i (2.19)
12 1 XiXj J

The expected value and variance of the Getis-Ord General G statistic

are calculated as follows:

_ i1 2j=1Wij So
EG) = (-1 n(n—l)vj # 1 (2.20)
V(G) = E(G?) — E(G)? (2.21)
E(G?) = A%B (2.22)

18



The terms used in these calculations are defined below:

A =D, (Zn: xf)z + D, zn:x{‘ + D, (i xl-)z z": x? (2.23)

i=1 i=1 i=1 i=1
n n n 4
B =D, (Z xl-)Zx? + D, (Z xl-) (2.24)
i=1 i=1 i=1
n 2 n 2
C=nn—-1n-2)(n-3) (in) —inz (2.25)
i=1 i=1
The terms used in the calculations of A, B, and C are as follows:
Dy = (n? — 3n+ 3)S; —nS, + 352 (2.26)
D, = —[n(n — 1)S; — 2nS, + 652] (2.27)
D, = —[2nS; — (n + 3)S, + 652] (2.28)
D; =4(n—1)S; — (n+ 1)S, + 852 (2.29)
Dy, =S, —S,+ 5S¢ (2.30)

The values S,, S;, and S, used above were defined in previous
measures. To eliminate the condition Vj # i, the Getis-Ord General G

statistic can be redefined as follows:

_ (Z?=1 Z?=1 Wijxixj) — (C, wyux?)

G =
(Z?=1 Z;‘l=1 xixj) — X, xf

(2.31)

Unlike Moran’s I Index and Geary’s C Ratio, the Getis-Ord General G
statistic is not bounded within a predefined numerical range. Therefore,

to enable meaningful interpretation, a standardization process is

19



required. In general, larger values of the statistic suggest a stronger

degree of spatial association.
2.1.3 Getis-Ord General G

Among the global spatial autocorrelation measures, the Getis-Ord
General G statistic offers a distinct analytical perspective. Unlike
Moran’s I and Geary’s C, the Getis-Ord G specifically targets the
spatial clustering of particularly high or low values. Although it is less
widely utilized in comparison to Moran’s and Geary’s measures, it is
conceptually regarded as an extension of the local Getis-Ord Gi
statistic. By omitting the terms d() and w;;(d) from the local
formulation, the global version is derived as follows (Bivand & Wong,

2018):

TS wxx;
G="0 T Ty (2.32)
i=1 Zj:lxix]'

The expected value and variance of the Getis-Ord General G statistic

are calculated as follows:

_ i1 2j=1Wij S0 C
EG) = n(i— 1D _n(n—l)vjil (2.33)
V(G) = E(G?) — E(G)? (2.34)
E(G?) = # (2.35)

The terms used in these calculations are defined below:

20



xl-)Zixiz (2.36)
B =D, (i xi)zn:xﬁ + D, (i xi)4 (2.37)

C=nn-1mn—-2)n-3) (Z xl-) N g2 (2.38)

i=1

The terms used in the calculations of A, B, and C are as follows:

D, = (n? — 3n + 3)S; — nS, + 3S2 (2.39)
D, = —[n(n — 1)S, — 2nS, + 6SZ] (2.40)
D, = —[2nS;, — (n + 3)S, + 6SZ] (2.41)
D; = 4(n—1)S; — (n + 1)S, + 8S? (2.42)
D,=5S, —S, +S2 (2.43)

The values S,, S;, and S, used above were defined in previous
measures. To eliminate the condition Vj # i, the Getis-Ord General G

statistic can be redefined as follows:

_ (Z?=1 Z}Ll Wijxixj) — (C, wyux?)

G =
(Z?=1 Z;‘l=1 xixj) — X, xf

(2.44)

Unlike Moran’s I Index and Geary’s C Ratio, the Getis-Ord General G
statistic is not bounded within a predefined numerical range. Therefore,

to enable meaningful interpretation, a standardization process is

21



required. In general, larger values of the statistic suggest a stronger

degree of spatial association.
2.2 Local Spatial Autocorrelation Measures

Global spatial autocorrelation measures whether there is an overall
spatial relation within a dataset. Specifically, they determine whether
geographically proximate observations tend to exhibit similar values.
These measures produce a single summary statistic, which allows for
general inferences about the presence of spatial clustering. However,
such global indicators do not provide information about the specific
locations or spatial units involved in the clustering. To address this
limitation, local spatial autocorrelation measures have been developed
to identify the spatial extent and intensity of clustering more precisely.
These measures assign an individual association value to each spatial
unit, thereby enabling the identification of localized clusters. Among
the various techniques introduced in the literature, the most widely used

are Local Moran’s I, Local Geary’s C, and Local Getis-Ord G.

The moments of Local Moran’s I and Local Geary’s C statistics often
violate the assumption of normality. Therefore, standard hypothesis
testing based on p-values, as used in global spatial autocorrelation
analysis, may not be appropriate in this context. As a result, a spatial
unit may appear significantly different from its neighbors purely by
chance, which can lead to statistically unreliable test outcomes. To
overcome this issue, a permutation-based measure is employed to
generate a pseudo p-value. This approach involves repeatedly

permuting the values of neighboring observations for a selected spatial
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unit, where each permutation yields a new test statistic and its
associated p-value. The pseudo p-value is then calculated by comparing
the distribution of the permuted values with the observed value.

_L+1
T M+1

p (2.45)

Here, L denotes the number of permuted statistics that are less than or
equal to the observed statistic, and M represents the total number of
permutations. The pseudo p-value serves as a robust alternative when

the assumption of normality is questionable (Emrehan, 2022).
2.2.1 Local Moran’s I

Local Moran’s I is one of the most extensively utilized statistics for
assessing local spatial autocorrelation. It represents the localized
extension of the global Moran’s I index and was introduced into the
literature by Belgian statistician and economist Luc Anselin in 1995
(Luc Anselin, 1995). It is also commonly referred to as LISA (Local
Indicators of Spatial Association). This statistic not only detects the
spatial locations of clusters in datasets exhibiting spatial dependence,
but it also identifies observations that significantly deviate from their
spatial neighbors. Consequently, it serves as a valuable tool for
detecting spatial outliers (Cubukgu, 2015). It is computed for each

observation in the sample using the following expression:

n
Ii = ZiZWiij (246)
j=1
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In this formulation, n denotes the number of observations in the sample,
w;; represents the spatial weight between observations i and j, and z;
and z; are the standardized values associated with these observations.
Since the [; statistic does not fall within a fixed numerical range, it is
interpreted in a relative manner, rather than absolute. High positive
values of I; indicate that both the observation and its neighbors possess
similarly high values. Conversely, negative values of [;, deviating
significantly from zero, indicate that the observation's value
substantially differs from those of its neighbors, suggesting spatial

dissimilarity or outlier status.

To evaluate the statistical significance of the detected spatial

association, the expected value of I; is calculated as follows:

Wi
E(I) = =D (2.47)

Where w; represents the total spatial weight of the neighbors of

observation i, and is given by:
n
j=1

The variance of the Local Moran’s [ statistic is computed using the

following expression:

Wiy (n —by)  2wigm(2b; —n)  wf

V(Ii) = (n _ 1) (n — 1)(n — 2) (n - 1))2

(2.49)

Where the components are defined as:
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j=1

nyr, z}
b, = —=1° 1 (2.51)
? (Z?=1Zi2 2
n n
2Wikeny = Z(Wikwih) k,h #i (2.52)
k=1 h=1

Based on the resulting standardized z-score, the statistical significance

of spatial association is tested at the predefined confidence level a.
2.2.2 Local Geary's C

The Local Geary’s C statistic constitutes another widely used measure
for evaluating local spatial autocorrelation. Like other approaches, it is
derived from its global counterpart and is employed to determine the
spatial location of clusters (Luc Anselin, 1995). The statistic is

calculated using the following expression:
1 n
Z 2
Ci = — Wij (Zi — Z]) (2 53)
my
]:

In this formulation, n denotes the total number of observations in the
sample, w;; represents the spatial weight between observations i and j,
z; and z; are their standardized values, and m;, corresponds to the
second-order moment. The expected value and variance of the (;

statistic are defined as:

2nw;

n—1
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V(e) = (2=) (W2 +wi) B +b) —EC)*  (2.55)

The terms w;, wy(y), and b, are identical to those introduced in the

section on the Local Moran’s [ statistic. Owing to the lack of a clearly
defined distribution, the Local Geary’s C statistic is considerably less
prevalent in the spatial autocorrelation literature compared to

alternative local measures.
2.2.3 Local Getis-Ord G;

The Local Getis-Ord G; statistic is the most widely used technique for
local spatial autocorrelation. It was developed by geographer Arthur
Getis and statistician J.K. Ord (Getis & Ord, 1992). Similar to other
measures, it assesses whether observations exhibit similar values based
on a given variable, thereby identifying potential clustering. This
statistic is commonly employed in the mapping of hot and cold spots.
Hot spots indicate areas where observations and their neighbors exhibit
similarly high values, while cold spots indicate clusters of similarly low

values.

In their initial work, Getis and Ord calculated local statistics using a
binary spatial weight matrix based on distance. Accordingly, local
statistics for each observation are calculated using the following

formula:

1w (d)x;
et Rttt 1n"( )]iqtj (2.56)

j=1

Gi(d) = .
J
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Here, n denotes the number of observations, w;;(d) represents the
spatial weight between observations i and j based on a threshold
distance d, and x; indicates the observed value for unit j. The parameter
d defines the neighborhood structure within the spatial weight matrix.
When an inverse-distance weighting scheme is used, which is common
in applied studies, the binary neighborhood structure is no longer
preserved. In such cases, the weight of an observation with itself

becomes equal to one.

To allow for analysis with non-binary weight structures, the G; statistic

1s reformulated as follows:

Yieawijx; — X X0 w;
G = Jj=1 707 =17y (2.57)

(n Z? ) (Z 1WU)

n—1

In this equation, x; is the observed value of unit j, w;; is the spatial

weight between units i and j, X denotes the global mean, and S

represents the standard deviation, which is calculated as:

CLd)

n

S = (2.58)

The G| statistic follows the standard normal distribution, and the
resulting values are interpreted as z-scores. High positive values
indicate that an observation and its neighbors exhibit high attribute

values. Conversely, low negative values suggest clustering of low
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attribute values. The statistical significance of the computed G; values

is evaluated at a predefined confidence level a.
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Figure 2.2: Identification of statistically significant hot and cold spots

3. SPATIAL REGRESSION MODELS

Spatial regression analysis has increasingly become one of the most
prominent branches of statistics in recent years. In studies where space
plays a critical role, it has been recognized that classical statistical
methods are inadequate for explaining statistical variation and for
making sound inferences. As a result, spatial statistical methods have
been adopted in place of traditional approaches. These methods include
spatial models that incorporate spatial information and consider the

influence of location on observations.
Data that exhibit spatial relationships do not satisfy one of the
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fundamental assumptions of classical statistics, namely the
independence of observations. In spatial datasets, the presence of spatial
dependence or spatial autocorrelation causes classical statistical
methods to produce biased or inconsistent results. Therefore,
specialized methods and techniques have been developed for analyzing
spatially dependent data. Spatial regression models are among the most
important of these methods, as they provide more reliable results by
accounting for spatial relationships among observations.

Spatial regression models are generally based on the classical linear
regression model. The classical linear regression model is a statistical
framework that describes the linear relationship between a dependent
variable and one or more independent variables, and it is expressed as

follows:

Q
Vi :ZXl-q’Bq +€l' B i = 1,2,...,71 (31)
q=1

In this equation, y; represents the value of the dependent variable for
the ith observation, X;, represents the value of the gth explanatory
variable for the ith observation, f3, is the regression coefficient for the
qth variable, and &; denotes the error term for the ith observation. In
classical regression, error terms are assumed to have a mean of zero
E[g;] = 0, constant variance Var[g;] = 0%, and to be mutually
uncorrelated E[g;, €j] = E[g;]E[g;] = 0. The matrix form of the model
Is:

y=XB+e¢ (3.2)
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Here, y denotes an n x 1 vector of the dependent variable, X is an n X
Q matrix of independent variables, 5 is a Q x 1 vector of regression
coefficients, and € is an n X 1 vector of error terms. The assumption of
independent observations simplifies the model significantly. However,
this assumption is generally not valid in spatial data analysis. If the
explanatory variables, the residuals, or the dependent variable exhibit
spatial dependence, the model becomes misspecified and the resulting
estimators may be biased or inconsistent (Fischer & Wang, 2011).

Spatial dependence refers to the situation in which observations located
near each other in space are interconnected. Based on this assumption,
three main approaches have been proposed for incorporating spatial
dependence into regression models. The first approach is known as
endogenous spatial interaction models. These models examine and
include in the model the relationship between the dependent variable
and the values of the dependent variable in neighboring areas. This type
of model is commonly referred to in the literature as the Spatial
Autoregressive Model (SAR).

The second approach is exogenous spatial interaction models. These
models investigate how independent variables in neighboring areas
influence the dependent variable of a given unit. This structure is
referred to as the Spatial Lag of X Model (SLX) or the Cross-

Regressive Model in the literature.

The third approach is spatial error interaction models. In these models,
spatial dependence is not introduced through the dependent variable but

rather through unobserved influences captured in the error terms. In
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other words, spatial relationships arise when error terms display similar
patterns across neighboring units. This approach is known as the Spatial
Error Model (SEM) in the literature.

3.1 Spatial Autoregressive Models (SAR)

The SAR model is used to capture situations in which the dependent
variable is directly influenced by the values of the dependent variable
in neighboring regions. This type of interaction represents an
endogenous form of spatial autocorrelation. By incorporating the
spatial relationship directly through the dependent variable, the model
aims to produce more accurate and consistent results in contexts where
classical regression methods are inadequate. In the literature, it is also
referred to as the Spatial Lag Model. The SAR model is expressed as

follows:

n Q
yi = Pz Wiy + Z XigBq + & (3.3)
Jj=1 q=1

In this model, y; denotes the dependent variable for the ith unit; p is the

spatial autoregressive coefficient; w;; represents the spatial weight
between units i and j; y; is the dependent variable for unit j; x;, is the
gth independent variable for unit i; f, is the regression coefficient

corresponding to the gth variable; and ¢; is the error term for unit i. The
weight matrix is row-standardized such that each row sums to one. The

matrix form of the model is given as:

y=pWy+XB+c¢ (3.4)
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In this formulation, y is the n X 1 vector of the dependent variable, X
is the n X Q matrix of independent variables, £ is the Q X 1 vector of
regression coefficients, W is the n X n spatial weights matrix, p is the
spatial autoregressive coefficient, and € is the n X 1 vector of error

terms. Solving the SAR model for y yields the following expression:
y=U—-pW)T'XB+ U —pW) e (3.5)
The expected value and variance of y are then computed as follows:

Elyl = (- pW)™'XB (3.6)
Varly] = a*(I — pW)7 [ — pW)~ 1" (3.7)

The matrix (I —pW)™! is referred to as the spatial multiplier,

emphasizing that the expected value of each observation y; depends on

a linear combination of X values from neighboring observations
(Fischer & Wang, 2011). The spatial autoregressive coefficient p is one
of the most critical parameters in the SAR model, indicating the extent
to which the dependent variable of a given observation is influenced by
the dependent variables of its neighbors. This coefficient typically
ranges between -1 and 1. A positive value of p suggests that
neighboring observations tend to have similar values of the dependent
variable. In other words, a high value in one observation exerts an
upward influence on surrounding observations. Conversely, a negative
value of p indicates a negative relationship among neighboring
observations, implying that spatially proximate observations exhibit
dissimilar values. A value of p close to zero implies that the spatial

relationship is negligible, in which case classical regression methods
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may be appropriate.

In SAR models, coefficient estimation cannot be performed using the
Ordinary Least Squares (OLS) method, as in classical regression
models. This is because the spatially lagged dependent variable Wy is
correlated with the dependent variable itself, and hence with the error
term. This correlation leads to biased and inconsistent estimates.
Therefore, Maximum Likelihood (ML) estimation is typically used in
SAR models. ML estimation possesses desirable asymptotic properties
such as consistency, efficiency, and asymptotic normality. It is based
on the assumption that the error terms follow a normal distribution.
Accordingly, the reduced form of the SAR model and the corresponding

log-likelihood function are given as follows:

y=U—-pW)'XB+ (I —-pW) e (3.8)

1
£(p,,0%) =) = =5 In(@m) + Il = pW| = 5 (7 = pWy = X)' (v 59)

— pWy = XB) = 3 In(o?)

Since the transformed model has the structure of a classical linear
regression, a new dependent variable is defined as y* = (I — pW)y. In

this way, the 8 parameter can be estimated using OLS as follows:
B=XX)Xy = X'X)X' (y — pWy) (3.10)

This estimator is conditionally unbiased and consistent for a given value

of p. The estimator for 2 is obtained using the residual term:

§=y—pWy—Xp (3.11)
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1 1 " A
52 =Eg“’é=E(y—pWy—X,8)’(y—pWy—Xﬁ) (3.12)

The final variance estimate is obtained by substituting the optimized
value of p. This procedure is consistent with the concentrated log-
likelihood approach and constitutes an integral part of SAR model
estimation. By substituting the above expressions into the log-
likelihood function, the number of unknowns is reduced, resulting in a
simplified concentrated log-likelihood function that depends only on

the parameter p:

2:(p) = Inll — pW| — gln[(y — pWy —XB(p))' (v — pWy — XB(p))] (3.13)

Because the spatial autoregressive coefficient p cannot be solved
analytically, numerical optimization methods are used to find the value
that maximizes the log-likelihood function. One of the simplest such
methods is grid search. In this approach, a plausible interval for p is
selected, typically between -1 and 1, although a narrower interval may
be chosen based on the eigenvalues of the W matrix to ensure model
stability and invertibility. In particular, the matrix (I — pW) must be
invertible, which requires that pA; <1 for all eigenvalues A;.
Therefore, p is often constrained to be less than 1/A,,.,. Within the
chosen interval, a set of equally spaced grid points is defined and ¢, (p)
is calculated for each. The p value that yields the highest function value
is selected. Although this method is straightforward, it typically has

lower accuracy.

Another method for estimating p is the Newton-Raphson method. This

technique involves taking the first derivative (score function) and the
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second derivative (Hessian) of the concentrated log-likelihood function,

which are expressed as follows (LeSage & Pace, 2009):

d¢:(p) €y'e, —pepey
— = [ — pW) W] + - (3.14)
o =Py W e e (oo — pen)
eo=y—XBo Bo=X'X)X'y (3.15)
e, =Wy—Xp, f=&X)"X'Wy (3.16)

The value of p that maximizes this function is the maximum likelihood
estimate p. However, since an analytical solution does not exist, the
second derivative is also required:

ereL €o'eL — peyeL

o) = ch T e e eyt sen] 317

The first term here represents the second derivative of the log-
determinant (expressed in terms of eigenvalues), while the other two
terms arise from the derivative of the sum of squared errors. The
iterative update formula for p used in the Newton-Raphson method is

given as:

(3.18)

P+ = H(© _ [azfc(l))l [at’c(p)l

Determining when to terminate the iterative process is critical for the
accuracy and efficiency of the algorithm. The literature generally
follows three criteria. The first is the parameter change criterion, which

is the most commonly used:

|p®D — p®| < ¢ (3.19)
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If the difference between consecutive estimates is sufficiently small, the
algorithm is considered to have converged. Another criterion is based

on the score function:

‘MC(‘)) e, (3.20)

dp
A score function value close to zero suggests that the estimate is near
the maximum, at which point the iterations are halted. In the literature,
the threshold is typically chosen as &, = 10™> or smaller. A third
commonly used criterion is based on changes in the log-likelihood
function. If the function no longer increases during iterations, further

updates are deemed unnecessary and the procedure is terminated (Kazar

& Celik, 2012).
3.2 Spatial Error Models (SEM)

Spatial Error Models represent a class of spatial regression models that
account for spatial dependence in the error terms. When the
independent variables included in the regression model fail to fully
capture the spatial variation, spatial autocorrelation may manifest in the
residuals. This form of dependence typically arises from spatially
structured but unobserved factors, the influence of latent variables, or

systematic measurement errors that follow a spatial pattern.

SEM captures such dependence as an exogenous form of spatial
autocorrelation. It is particularly useful when classical regression
models yield biased or inefficient results due to unmodeled spatial

effects. The model is commonly referred to in the literature as the
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Spatial Error Model. The core structure of SEM is defined as follows
(Fischer & Wang, 2011):

n
& =AZWU €j+ul~ (321)
j=1

In this formulation, &; denotes the total error for unit i, A is the spatial
error dependence coefficient, w;; represents the spatial weight between
units i and j, &; is the error term for unit j, and u; is an independently
distributed disturbance term. This equation forms the foundation of the
spatial error model and indicates that the error terms are not
independent from one another but are influenced by the errors of
neighboring units. In other words, the spatial structure is explicitly
modeled within the residual terms. The matrix representation of the

model is expressed as follows:
e=AWe+u (3.22)
u ~ N(0,02I) (3.23)

By substituting this spatial error structure into the regression model, the

SEM formulation becomes:
ce=1-W)1+u (3.24)
y=XB+ ({—-AW) e (3.25)

This model structure clearly demonstrates that the errors do not follow
a random distribution but instead propagate according to spatial
adjacency relationships. It illustrates why classical regression models

can produce misleading results in the presence of spatial error
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dependence. In this context, E[se'] = 021, and the covariance matrix

is given as follows:
Var[ee'] = a2(1 — AW) U — AaW)71]T (3.26)

The variance-covariance matrix further indicates that the error terms are
not independent and that the errors of neighboring units are
interdependent. The spatial error dependence coefficient A in the model
is generally not interpreted as a direct structural effect coefficient.
Rather, it is regarded as a technical component aimed at improving the
model’s estimation accuracy. In the literature, this coefficient is
frequently referred to as a nuisance parameter. In other words, it is
considered an element that falls outside the primary interest of the
analysis but must be accounted for to ensure the structural consistency
of the model. A positive value of the spatial error dependence
coefficient A implies that the unobserved effects in neighboring units
move in similar directions, whereas a negative value indicates that these
effects move in opposite directions. If A is close to zero, it suggests that
spatial error dependence is weak or negligible and that classical

regression models may be sufficient.

In the SEM model, parameter estimation cannot be performed using the
classical Ordinary Least Squares method due to the presence of spatial
dependence among the error terms. This dependence violates the
assumptions required for OLS to yield efficient and reliable estimates.
Therefore, parameter estimation in SEM is typically carried out using
the Maximum Likelihood (ML) method. The ML approach

simultaneously estimates the regression coefficients f3, the spatial error
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dependence coefficient A, and the error variance o® by explicitly
accounting for spatial dependence in the error structure. The log-
likelihood function for the SEM is given as follows:

2 __E —_ _L / _E 2
L(A,B,0%) = 2ln(27r)+ln|1 AW 2Gzee zlna (3.27)

e=U—-W)y—-XB) (3.28)
For a given value of 4, the conditional least squares estimate of S is:
B = X' X)X (y — Wy) (3.29)

Alternatively, the generalized least squares (GLS) estimator may be
employed using the error covariance matrix Q= [(I —AW)'(I —

AW)]~1. The variance of the error term is estimated as:
1 1 A A
G2 () =—e'e=—(y—XB)'(I = AW)'(I = aW)(y = Xp) (3.30)

e=-W)(y—-Xp) (3.31)

As with the SAR model, the spatial error coefficient A is typically
estimated by maximizing the concentrated log-likelihood function with

respect to A:
L. = In|l —AW| — g In[(y = XB)' (I — W) (I —AW)(y —XB)] (3.32)

The maximum of this function is found using numerical techniques
such as grid search or the Newton-Raphson method. The first derivative

of the concentrated log-likelihood with respect to A is:

9. (2 1 5
aci )=tr[W(1—/1W)—1] ——e'W(y - Xp) (3.33)
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Since this derivative cannot be solved analytically, the Newton-
Raphson algorithm is applied. The second derivative of the
concentrated log-likelihood is:

% = tr[W?2( — AW)™?] + %e’WZe (3.34)
Using these expressions, the Newton-Raphson iterations are conducted
until convergence is achieved. While the ML approach is widely
adopted in the literature, alternative methods such as the Generalized
Method of Moments (GMM) can be employed for large samples (Luc
Anselin, 1988).

3.3 Spatial Durbin Model (SDM)

The Spatial Durbin Model (SDM) is an extended spatial regression
framework that incorporates both the spatial lag of the dependent
variable and the spatial lags of the independent variables. It enables the
assessment of both direct effects (on the observation itself) and indirect
effects (from neighboring observations), thereby allowing a more
comprehensive understanding of spatial interactions. The model
accounts for both endogenous and exogenous spatial autocorrelation
simultaneously. Its primary objective is to capture the influence not
only of neighboring regions’ dependent variables but also of their

explanatory variables. The SDM is specified as:

n Q
Vi :PzWij)’j+ZXiq,3q+
=1

q=1

Q
q=1j=1
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In this model, y; is the dependent variable for unit i, p is the spatial
autoregressive coefficient, W;; represents the spatial weight between
units i and j, X;4 is the gth explanatory variable for unit i, X;, is the
same variable for neighboring unit j, B, denotes the standard regression
coefficient, 6, captures the effect of neighboring units’ covariates, and

&; 1s the error term.

The matrix notation of the model is:

y=pWy+XB+WX0 +¢ (3.36)
£ ~ N(0,02D)

Here, y denotes the n x 1 vector of the dependent variable, X is the n X
Q matrix of independent variables, S represents the Q x 1 vector of
regression coefficients, W is the n x n spatial weight matrix, 6 is the
Q x 1 vector of coefficients for the spatially lagged independent
variables, and ¢ is the n x 1 vector of error terms. The model can be

algebraically solved for y and expressed in the following reduced form.
y=U-pW) T (XB+WX0)+ (I — pW) e (3.37)

While the SAR model incorporates only the dependent variables of
neighboring regions, the SDM model extends this framework by also
including spatially lagged versions of the independent variables. This
extension endows the SDM model with greater flexibility and allows it
to be interpreted as a general specification that nests both the SAR and
SEM models as special cases. In this model, the coefficient p captures

the influence of neighboring regions' dependent variable values on the
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dependent variable of the focal region, whereas the coefficient 6,
reflects the impact of the independent variables in neighboring regions
on the dependent variable of the focal unit. A positive 6 coefficient
indicates that an increase in a variable in neighboring areas leads to an
increase in the dependent variable in the current region. Conversely, a
negative 8 implies that an increase in neighboring regions' explanatory
variables has a negative effect on the dependent variable in the current
unit. Notably, when 6 = 0, the SDM simplifies to the SAR model, and
when p = 0 with 8 # 0, it becomes equivalent to the Spatially Lagged
X Model (SLX).

Like the SAR and SEM models, the SDM cannot be estimated using the
conventional ordinary least squares method, as the presence of lagged
dependent and independent variables introduces correlation with the
error terms. Consequently, parameter estimation is typically conducted
via the maximum likelihood method, which provides consistent and
efficient estimates of the parameters p, 8, and 6. The corresponding
log-likelihood function for estimation via maximum likelihood is
formulated as follows (Fischer & Wang, 2011).

n 1 n
2 P —— — — ol 2
L(p,B,0,0%) > In(2m) + In|I — pW| 252 €73 Ino?%(3.38)

e=y—pWy—-XB—WX6 (3.39)
Since both X and WX are included in the SDM model, their
corresponding coefficients are estimated simultaneously. Given a fixed

value of p, the coefficients can be obtained using a method analogous

to classical least squares. The estimator is defined as follows:
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[g] — (2D (y—pWy)  Z=[X WX] (3.40)

These estimates represent the direct and indirect effects of the
covariates in the deterministic component of the SDM. Based on this,
the estimated residuals and the error variance can be computed as
follows:

§=y—pWy—XB—WX0 (3.41)

1 N ~ A ~
672 =E(y—pWy —XB—WX0) (y — pWy — XB —WX8H) (3.42)

The spatial autoregressive coefficient p, which reflects the feedback
structure of spatial dependence in the model, cannot be estimated
directly. Therefore, a concentrated log-likelihood function is used and

is given by:
n
Lc(p) = In|l — pW| — Eln[é'é] (3.43)

This function is numerically maximized with respect to p. To achieve
this, iterative methods such as grid search or the Newton-Raphson
algorithm are commonly employed. For estimation using the Newton-
Raphson method, the first and second derivatives of the concentrated

log-likelihood function with respect to p are derived as follows:

o 1
(%Ep) = —tr[(I — pW) W] + — &'Wy (3.44)
622221)) — W = pW) W = pW) T+ 5 (W) (W) (3.45)
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With these expressions, the Newton-Raphson steps can be implemented

to obtain the estimate of the spatial autoregressive coefficient p.
3.4 Spatial Autocorrelation Model (SAC)

The Spatial Autocorrelation Model (SAC) is an integrated spatial
regression specification that simultaneously accounts for spatial
dependence in both the dependent variable and the error terms. In this
respect, it can be viewed as a combination of the Spatial Lag Model
(SAR) and the Spatial Error Model (SEM). Accordingly, the SAC
model incorporates both endogenous and exogenous forms of spatial
autocorrelation. In the literature, it is also referred to as the SARAR
model, short for Spatial Autoregressive Model with Autoregressive

Residuals.

The primary motivation for this model is to capture more
comprehensive and realistic spatial interactions by modeling spatial
dependence not only through the spatially lagged dependent variable
but also through spatially autocorrelated errors. This approach is
particularly useful in situations where the influence of neighboring
observations and the impact of unobserved spatially patterned factors
must be simultaneously addressed. The SAC model is formally

expressed as follows (LeSage & Pace, 2009):

n Q
}’i:PZVI/inj+ZXiq,3q+€i (3.46)
j=1 q=1
n
=1
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Here, y; denotes the dependent variable for unit i; p is the spatial
autoregressive coefficient of the dependent variable; W;; is the spatial
weight between units i and j; X;, represents the qth independent
variable for unit i; f, is the corresponding regression coefficient; A is
the spatial error dependence coefticient; ¢; is the composite error term;
and u; denotes the random error term assumed to be independently and

identically distributed with constant variance.
The matrix form of the model is given by:
y=pWy+XB+e (3.48)
e=AWe+u u~ N(0,ad?]) (3.49)

Combining equations (4.48) and (4.49), the SAC model can be rewritten

in its reduced form as:
y=pWy+Xp+({— W) 1u (3.50)

In this formulation, the parameter p captures the effect of spatial
dependence in the dependent variable and corresponds to the
autoregressive coefficient in the SAR model. Conversely, A quantifies
the spatial dependence in the error structure, reflecting the spatial error
coefficient from the SEM specification. Joint estimation of both
parameters enables simultaneous modeling of direct (through the
dependent variable) and indirect (through the error term) spatial effects.
The expectation and variance of y in this model are expressed as

follows:
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Ely] = —pW)'XB (3.51)
Var[y] = a2(I — pW) X — AW)XU = W) T — pW)T (3.52)
As with other spatial models, ordinary least squares estimation is not
appropriate for the SAC model, given the endogeneity introduced by
both the spatially lagged dependent variable and the autocorrelated
error structure. Maximum likelihood estimation is typically employed,
allowing for the joint estimation of p, A, 8, and ¢2. Due to the model's
complexity, iterative procedures or simulation-based methods such as

Bayesian MCMC may also be applied. The log-likelihood function for
the SAC model is defined as:

n 1 n
L(p,A,B,0%) = —Eln(Zn) + In|l — pW| + In|l — AW| — ﬁe’e - Elnaz(& 53)

e= (- W)y - pWy — XB) (3.54)

The regression coefficients 8 represent the direct influence of the
explanatory variables. Given fixed values for the spatial dependence
parameters, the coefficients may be estimated using generalized least

squares as follows:
B=X0 X0y - pWy) (3.55)
N=[U-w)d-aw)]? (3.56)

Based on these expressions, the estimated residuals and the

corresponding error variance are calculated as:

= (—-W)|y—pwy — X8| (3.57)

&'¢é (3.58)

SR

62 =
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As in previous spatial models, the spatial parameters p and A are
estimated jointly using the concentrated log-likelihood function:

n
Lc(p,A) = In|l — pW| + In|l — AW | — Eln(s“’s“) (3.59)

Since closed-form solutions for p and A are not available, numerical
optimization techniques such as Newton-Raphson, grid search, or
BFGS (Broyden—Fletcher—Goldfarb—Shanno Algorithm) are employed
to maximize the likelihood function. In the Newton-Raphson
framework, partial derivatives of the log-likelihood function with
respect to p and A must be computed individually. These first

derivatives are given by:

08, 1

- = — -1 AT —

5 (1 = pW) W] + 5z € = AWIWy (3.60)
04, . 1 ,
— = [l = AW) W] + - EW(y — pWy — XB)  (3.61)

oA &'é
Computing second-order derivatives of the log-likelihood function in
the SAC model is highly nontrivial due to the complex matrix
operations involved, particularly the presence of trace operators and the
fact that the residuals & depend on both p and A. As a result, second
derivatives are often approximated numerically, or substitute structures
such as the observed Fisher information matrix are used. The Newton-

Raphson update step is given as:

g+ — g(® _ [H(g(t))]—lvgc(g(t)) 0= [ﬁ] (3.62)
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In this formulation, V£(8) denotes the gradient (score function) and
H(0) is the Hessian matrix. The iterative procedure continues until the
change between successive parameter estimates falls below a specified
tolerance level. Upon convergence, the estimates are considered

maximum likelihood solutions.

In conclusion, the SAC model provides a comprehensive framework
that simultaneously accounts for spatial dependence in both the
dependent variable and the error structure. While the SDM also captures
complex spatial interactions through lagged explanatory variables, the
SAC model emphasizes error propagation alongside spatial lag.
Consequently, model selection should be guided by the data structure

and the type of spatial effects expected.
3.5 Spatially Lagged X Model (SLX)

The Spatially Lagged X (SLX) model is a spatial regression framework
that incorporates the spatially lagged values of independent variables
into the regression equation. In this model, the dependent variable is
influenced not only by the independent variables of the corresponding
unit, but also by the independent variables of neighboring units. In other
words, the effects of explanatory variables from neighboring regions
are explicitly included in the model, while spatial dependence in the
dependent variable (as in the pWy term of the SAR model) or in the
error terms (as in the AWe term of the SEM model) is not considered.
The main objective of this model is to analyze the impact of explanatory

variables from neighboring units on the target unit. This structure
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allows for the separate estimation of both direct and indirect effects.

The SLX model is expressed as follows (LeSage & Pace, 2009):

Q

Q
Yi = ZXiq ﬁq + z VVU qugq + & (363)

n
q=1 q=1j=1

In this model, y; denotes the dependent variable for unit i; X,
represents the qth independent variable for unit i; B, is the standard
regression coefficient (direct effect); W;; denotes the spatial weight
between units i and j, Xj, is the gth independent variable for
neighboring unit j; 8, is the coefficient associated with the spatial lag
of the independent variable (indirect effect); and &; denotes the error

term that satisfies the classical regression assumptions. The matrix

notation of the model is given as:
y=XB+WX0+¢e ve &~ N(0,0%]) (3.64)

In this formulation, y is an n x 1 vector of the dependent variable, X is
an n x Q matrix of independent variables, WX is the matrix of spatially
lagged independent variables, § and 6 are Q X 1 coefficient vectors,
and € is an n x 1 vector of error terms. The SLX model serves as a
simple yet powerful tool in spatial analysis. Since it includes only the
neighborhood effects of explanatory variables, it avoids the problem of
structural endogeneity commonly encountered in models such as SAR
or SEM. As a result, ordinary least squares (OLS) can be used for

parameter estimation.
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By combining the X and WX matrices, the extended design matrix is

defined as follows:
Z=[X WX] (3.65)

Accordingly, the parameter vector to be estimated and the OLS

estimator are expressed as:
_[B
5= [ 9] (3.66)

§=Z'2) 2y = B0 (3.67)
Based on this, the residuals and the error variance are estimated as

follows:

=y—Z5=y—XB-WX0 (3.68)

é (3.69)

In this context, 2Q represents the number of parameters estimated for
both f and 6. The variance-covariance matrix of the estimated
coefficients is given by:

Var(§) = 62(Z2'2)7! (3.70)

This matrix facilitates the construction of confidence intervals and the

execution of statistical significance tests for the estimated parameters.
3.6 General Nesting Spatial Model (GNS)

The General Nesting Spatial Model (GNS) is one of the most
comprehensive models in spatial regression analysis. This model aims

to represent spatial dependence in a multidimensional manner by
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simultaneously accounting for the spatial lag of the dependent variable,
the spatial lag of the independent variables, and the spatial dependence
in the error terms. In this respect, it can be regarded as a combination
of the SAR, SEM, and SLX models. The GNS model is expressed as
follows (Elhorst, 2014).

n Q n
yi=pZWijyj+ZXiq[>’q+Z Wij Xjq0, + & (3.71)
j=1 q=1 q=1j=1
n
j=1

In this context, y; denotes the dependent variable for unit i, p is the
spatial autoregressive coefficient of the dependent variable (reflecting
the SAR effect), W;; represents the spatial weight between units i and
Jj, Xig is the g™ explanatory variable for unit i, B, denotes the
regression coefficient indicating the direct effect of the q*" explanatory
variable, X;, refers to the ¢*" explanatory variable for neighboring unit
J» 84 represents the coefficient of the spatially lagged independent
variables (reflecting the SLX effect), A1 is the spatial dependence
coefficient among the error terms (reflecting the SEM effect), ¢;
denotes the total error term for unit i, and wu; is the independent error
term that satisfies the classical regression assumptions. Additionally,

the model can be expressed in matrix notation as follows.
y=pWy+XB+WXO +¢ (3.73)

e=AWe+u, u~N(,0c%]) (3.74)
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Equations (4.73) and (4.74) can be combined to yield the following

simplified form of the model:
y=pWy+XB+WX0 + (I —AW) u (3.75)

The coefficient p captures the effect of the dependent variable values in
neighboring regions on the dependent variable of the current unit, as in
the SAR model. A positive value of p indicates spatial clustering of
similar values, whereas a negative value suggests spatial adjacency of
dissimilar values. The coefficient 8, analogous to that in the SLX
model, measures the influence of explanatory variables in neighboring
units on the dependent variable of the focal unit. A positive 8 suggests
that increases in explanatory variables in adjacent units elevate the
dependent variable in the target unit. The parameter A reflects the
degree of spatial dependence in the error terms and captures the
propagation of unobserved factors through spatial proximity. The
expected value and variance of the dependent variable are given as

follows:
E[y] = (I — pW)~*(XB + WX8) (3.76)
Var[y] = o?(I — pW)™ X — W) XU — W) T — pW)~T (3.77)

This structure allows both direct and indirect spatial effects as well as
neighborhood interactions to be reflected in the model through both the
dependent variable and the error structure. Therefore, the General
Nesting Spatial (GNS) model is considered the most comprehensive
umbrella model in spatial regression analysis. In the GNS model

parameter estimation cannot be conducted using the classical Ordinary
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Least Squares method because spatial lag in the dependent variable and
spatial dependence in the error terms violate its assumptions.
Consequently, the most widely used estimation approach is the
Maximum Likelihood (ML) method. In addition, the Generalized
Method of Moments (GMM) and Instrumental Variables (1) methods
are also employed especially in large samples and complex spatial
structures. Furthermore, due to the large number of parameters and the
complexity of the error structure Bayesian estimation approaches and
Markov Chain Monte Carlo (MCMC) techniques are sometimes

preferred.

Assuming the error terms are normally distributed the log-likelihood
function is expressed as follows:

n n 1
£(p,2,8,0,0%) = In|l = pW| +In|l = AW| = 5In(2m) — 5 Ino? — - ¢'e (3.78)

e=U—-W)(y—pWy—XB—WX0) (3.79)

The GNS model, due to its structure involving many parameters, gives
rise to a complex likelihood function. Consequently, estimating all
parameters simultaneously is mathematically demanding both in terms
of computational intensity and complexity. To address this problem
more efficiently, some of the parameters that can be directly estimated
are calculated beforehand. For the remaining key parameters, a
simplified log likelihood function, known as the concentrated
likelihood method, is used as in other methods. The parameters f3, 0,
and o® in the model can be estimated under the assumption that the

spatial dependence coefficients p and A are held constant. Since these
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coefficients appear in a linear structure within the model, they can be
directly computed within the classical regression framework. However,
because the error term includes spatial dependence through the A
parameter, the classical ordinary least squares method is not
appropriate. Instead, the generalized least squares method is applied.
This method takes into account the covariance structure of the error
term and yields the best linear unbiased estimators. The estimators for

these parameters are expressed as follows.
Z=[X Wwx], &= [g] (3.80)

§=Z'0' 7)1 7' 0" (y — pWy) (3.81)

The matrix Q = [(I — AW)' (I — AW)]" represents the covariance
structure of the error terms. Based on this formulation, the residuals and
the corresponding estimate of the error variance are computed as

follows.

E=U-W)(y—pWy—XB —WX0) (3.82)

6% =

£'¢é (3.83)

S|

Once the estimates of {8, 8, and 2 are obtained, the concentrated log-
likelihood function for the remaining spatial dependence parameters p
and A is constructed as follows, upon which numerical optimization

techniques are applied to obtain their estimates.

n
Lc(p,A) = In|l — pW| + In|l — AW | — Eln(é’é) (3.84)
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As in other models, the widely used Newton-Raphson algorithm will be
employed as the numerical method. Accordingly, the first derivatives
of the concentrated log-likelihood function are obtained as follows:

otc _ tr[(I — pW)~1W] + ! 21(1 — AW)W (3.85)
afc -1 1 Al A
ZC = e[ — AW IW] + o= EW(y — pWy — X —
9 [ )W+ v —pWy —Xp (3.86)
WXo)

The second derivatives, in turn, are computed as follows.

0%2, _ 1 1 0 /1 .
0 tr[( — pW)™TW (I — pW)™1W] _$<é’é (I - AW)Wy) (3.87)
; T = el W)W W) W) A (W — oWy~ xf ~wx))  (3.88)
0%¢ d (o0¢
= (—C) (3.89)
dpdd 0dA\dp

Using this information, new parameter estimates are obtained at each
iteration as specified below. This iterative process continues until the
difference between successive estimates falls below a predetermined
tolerance level, yielding a solution that converges to the maximum
likelihood estimates. The iterative update equation for the Newton-
Raphson algorithm is given below, where V#(8)denotes the first
derivative of the log-likelihood function (the score function), and H (6)

represents the matrix of second derivatives (the Hessian).
6D = 9 — [H(O®)]'7e.(09), 0 =] (3.90)
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4. MODEL SPECIFICATION TESTS

Prior to conducting spatial regression analysis, it is critical to determine
whether spatial dependence exists in the dataset and, if so, through
which components this dependence manifests. This step not only
ensures the appropriate model selection but also reveals whether the
classical regression assumptions are violated. Therefore, in spatial
analysis, it is recommended to begin the modeling process by
performing various diagnostic tests. Identifying spatial autocorrelation
highlights the necessity of establishing a spatial model, but it also raises
the question of which type of spatial structure should be integrated.

Specification tests have been developed to address this question.

4.1 Testing for Spatial Dependence in Residuals using Moran’s I

Test

Moran’s I test constitutes an essential component in the evaluation of
model specification in spatial regression models. It is primarily used to
test whether spatial autocorrelation exists in the residual terms. This test
examines whether the residuals obtained from a classical regression
model exhibit spatial dependence. If the Moran’s I statistic is found to
be statistically significant, it implies that the model fails to adequately
account for spatial dependence and should be re-estimated using a more
appropriate spatial specification. Moran’s I can be applied to residuals
post-regression or during the initial data exploration phase to detect the
presence of spatial dependence. Consequently, it helps assess the

necessity of employing more advanced spatial models such as SAR,
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SEM, SDM, or SLX. Detailed explanation of Moran’s I is provided in
Section 3.1.1.

4.2 Lagrange Multiplier (LM) Test

Lagrange Multiplier (LM) tests are employed to examine whether
spatial dependence exists in the residuals of the classical regression
model, thus serving as diagnostic tools that justify the use of spatial
models. These tests aim to determine whether the dependent variable or
the error term is influenced by neighboring observations. The LM test
for the SAR model evaluates whether the spatial lag of the dependent
variable is significant, while the LM test for the SEM model examines
spatial autocorrelation in the residuals. The test statistics are assessed
under the null hypothesis using the chi-square (x?) distribution. If the
test result is statistically significant, it suggests that the classical
regression model is inadequate and a spatial model (e.g., SAR or SEM)
should be employed instead. Additionally, in cases where both SAR and
SEM structures may be present, Robust LM tests are used for clearer

model selection (Luc Anselin, 1988).

LM (lag): Tests whether the spatially lagged dependent variable, Wy,

should be included in the model.

(e'Wy)?

LMo, =
T gz tr(W'W + W2)

(4.1)

e: vector of OLS residuals
W spatial weights matrix

y: dependent variable
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02: OLS-based error variance

Robust LM (lag): Tests the significance of the SAR component
controlling for the SEM effect.

COV(LMlag ) LMerror)

RLMyq = LMy, — (4.2)
o A Var(LMrror)
LM (error): Tests for spatial dependence in the residuals.
(e'We)?
LMerror (4' 3)

T o2 tr(WW + W?)

Robust LM (error): Tests for residual dependence controlling for the
SAR effect.

COV(LMlag: LMerror)
Var(LMy,,)

RLMeryor = LMeryor — (4.4)

LM SARMA: Tests for simultaneous spatial dependence in both the

dependent variable and the residuals.

Mgapma = LMlag + LM grror (4- 5)

If this test is statistically significant, it indicates the presence of spatial
dependence in both components. A significant result from these tests
reveals misspecification in the classical model, warranting the use of a
more suitable spatial model. For instance, if both LM (lag) and LM
(error) are significant, it would be more appropriate to consider mixed
models such as SAC or SDM.
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4.3 Other Specification Tests

Anselin—Kelejian Test: Developed by Anselin and Kelejian (1997),
this test allows for the detection of spatial dependence in the residuals
under conditions of non-constant variance; heteroskedasticity It is
considered as a robust alternative in situations where the traditional

Moran’s I test loses power (L. Anselin & Kelejian, 1997).

Ramsey Regression Specification Error Test (RESET): The RESET
test was developed by Ramsey in 1969 with the purpose of evaluating
the correctness of a model’s functional form and testing for the presence
of omitted variables or potential nonlinear relationships (Ramsey,
1969). It helps to identify whether the regression equation suffers from
specification errors due to missing variables or neglected nonlinear
effects. In the context of spatial analysis, it contributes to the decision-
making process regarding whether certain transformations of the

dependent variable should be incorporated into the model.

Heteroskedasticity Tests: In spatial models, the assumption that error
terms possess constant variance often does not hold. To test this
assumption, the Breusch—Pagan and Koenker—Bassett tests are
commonly employed. A statistically significant result from these tests
indicates the necessity of adopting estimation methods that are robust
to heteroskedasticity. The Breusch—Pagan test was developed to assess
whether the error terms in a regression model exhibit constant variance
(Breusch & Pagan, 1979). In contrast, the Koenker—Bassett test is a
more flexible alternative that does not rely on the assumption of

normality, making it suitable for detecting heteroskedasticity in a
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broader range of cases. It is regarded as a more robust version of the
Breusch—Pagan test (Koenker & Bassett, 1982).

In conclusion, selecting the appropriate model in spatial data analysis
depends not only on theoretical understanding, but also on the careful
interpretation of diagnostic tests. Once the existence of spatial
dependence is established through Moran’s 1, the structure of this
dependence can be further explored using LM and other specification
tests. An extensive evaluation of these tests not only enhances the
accuracy of the selected model but also strengthens the reliability and

interpretability of the results.
5. APPLICATION

The primary objective of this section is to clarify the concept of spatial
regression models explained previous chapters, by an empirical study
with demonstrating how spatial statistics can be employed through a
practical application. Specifically, it will provide a step-by-step
analysis of how spatial dependence affects classical regression models,
how this dependence can be addressed using spatial models, and how
model outcomes change accordingly. Spatial regression models enable
the incorporation of similarities observed among geographically
proximate observations into statistical modeling. Neglecting such
dependencies may lead to biased and unreliable estimates. In order to
establish a clear analytical flow in readers minds, a widely known data

set including socioeconomic and environmental variables is selected.

Boston Housing Data, related to housing in various neighborhoods of

Boston, Massachusetts contains geographic coordinates (latitude and
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longitude) for each observation. The dependent variable determined for
the analysis is the median value of owner-occupied homes in a
neighborhood (CMEDV), and the explanatory variables are crime rate
(CRIM), proportion of residential land zoned for large lots (ZN),
proportion of non-retail business acres (INDUS), a binary variable
indicating proximity to the Charles River (CHAS), nitrogen oxide
concentration as a measure of air pollution (NOX), average number of
rooms per dwelling (RM), and proportion of old buildings (AGE).

Firstly, a classical Ordinary Least Squares (OLS) regression model will
be estimated, and the residuals will be tested for spatial dependence
using Moran’s I test. Subsequently, Lagrange Multiplier tests (both lag
and error types, as well as their robust versions) will be conducted to
determine whether spatial interaction operates through the dependent
variable or the error terms. These preliminary tests will guide for the
decision of selecting the appropriate spatial model. Following this,
spatial regression models such as the Spatial Lag Model (SAR), Spatial
Error Model (SEM), Spatial Durbin Model (SDM), and, if necessary,
the Spatial Durbin Error Model (SDEM) will be estimated.

The results of each model will be compared in terms of the significance
of explanatory variables and spatial parameters, as well as model fit
criteria such as the Log-Likelihood and Akaike Information Criterion
(AIC). This process will facilitate understanding of the nature of spatial
dependence and provide a methodological framework for selecting

appropriate spatial models. Finally, by comparing model performances,
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the contribution of accounting for spatial interaction to the accuracy and
robustness of the analysis will be clearly demonstrated.

Installing Required Packages: To implement spatial regression
models in R, several specialized packages are required. These can be
installed and loaded into the working environment using the following

commands:

library(spdep)
library(sf)
library(spatialreg)
library(ggplot2)
library(dplyr)

The spdep package provides essential tools for the estimation of spatial
regression models, the construction of spatial weight matrices, and the
implementation of spatial dependence tests such as Moran’s 1. The sf
package has been employed for reading, writing, transforming, and
performing geometric operations on spatial data in accordance with the
Simple Features standard, thereby ensuring that the data are converted
into a spatial format suitable for the analysis process. The spatialreg
package enables the parametric estimation of spatial econometric
models such as SAR, SEM, SDM, SAC, SLX, and GNS, facilitating the
modeling of various forms of spatial dependence structures. ggplot2
has been chosen for the high-quality visual presentation of spatial and
statistical results, particularly for creating maps, scatter plots, and other
visualizations supporting model outputs. Finally, the dplyr package
streamlines data manipulation tasks, including filtering, transforming,
and summarizing data frames, thereby contributing to the efficient

execution of data preparation steps within the analysis process.
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Loading and Preparing the Dataset: the Boston Housing dataset
utilized for the application is included in the spdep package. However,
to perform spatial analysis, the coordinate information and variables

within the dataset must be appropriately structured as follows:

data(boston)

# Dependent variable (median housing value)

y <- boston.c[, "CMEDV" ]

# Independent variables

X <- boston.c[, c("CRIM", "ZN", "INDUS", "CHAS", "NOX",
"RM", "AGE")]

# Coordinates
coords <- boston.c[, c("LON", "LAT")]

# Creation of the sf object
boston_sf <- st_as_sf(data.frame(x, y, coords), coords =
c("LON", "LAT"), crs = 4326)

Defining the Neighborhood Structure and Creating the Spatial
Weights Matrix: One of the core components of spatial regression
models is the neighborhood structure, which describes spatial
relationships between observations, and the corresponding spatial
weights matrix. In the Boston Housing dataset, observations are defined
by point coordinates. Therefore, a distance-based neighborhood
approach is employed. The goal is to ensure that each observation has
at least one neighbor. To achieve this, the distance to each observation’s
nearest neighbor is calculated, and this maximum distance is then used
as the threshold to define the neighborhood. The following R code

block implements these steps:

# Coordinates
coords <- st_coordinates(boston_sf)
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# Determination of the minimum distance that ensures eac
h observation has at lLeast one neighbor

dmax <- max(unlist(nbdists(knn2nb(knearneigh(coords, k =
1)), coords)))

# Distance-based neighborhood structure
nb_dist <- dnearneigh(coords, dl1 = @, d2 = dmax, longlat
= FALSE)

# Weight matrix: Row-standardized
listw_dist <- nb2listw(nb_dist, style = "W")

# Inspect the neighborhood structure
summary (nb_dist)

## Neighbour list object:

## Number of regions: 506

## Number of nonzero links: 45746

## Percentage nonzero weights: 17.86702
## Average number of links: 90.40711

## Link number distribution:

The st_coordinates() function extracts the coordinates from the
object in simple feature (sf) format. Using the knearneigh() and
nbdists() functions, a distance threshold (dmax) is calculated to
ensure that each observation has at least one neighbor. The
dnearneigh() function defines distance-based neighborhood
relationships based on this threshold. The nb2Listw() function
constructs a row standardized spatial weights matrix based on the
defined neighborhood structure. In this matrix, the influence of each

observation on its neighbors is normalized to sum to one.
# Visualization of neighborhoods

plot(nb_dist, coords = coords, pch = 20, col = "steelblu
e", cex = 0.8)
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Figure 5.1 Visualization of the neighborhood structure

In the application, a distance-based neighborhood structure is employed
due to the point-based spatial format of the dataset. Since each
observation in point data is represented by geographic coordinates,
neighborhood relationships are typically defined based on Euclidean
distance or within a specified radius. In this case, ensuring that each
point has at least one neighbor, a distance-based neighborhood matrix
is constructed using the dnearneigh() function. On the other hand,
when the data structure is polygon-based, such as in the case of spatial
units with defined boundaries like neighborhoods, districts, or regions,
neighborhood relationships are established based on shared borders
(rook contiguity) or corners (queen contiguity). In such cases, methods
like queen or rook contiguity become appropriate. Therefore, the
selection of the neighborhood structure to be used in spatial analysis
should be directly based on the type of data and the geometric nature of

the spatial entities.
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Examining Spatial Autocorrelation in Independent Variables:
Before conducting spatial regression analysis, it is crucial to assess how
the variables in the dataset are distributed across the spatial structure,
as this plays a significant role in model selection. In this context, it is
necessary to test for spatial autocorrelation not only in the dependent
variable but also in the independent variables. The presence of spatial
dependence in some independent variables may lead to biased and
inconsistent estimates when using classical regression models. This
issue becomes particularly important when deciding whether to include
spatially lagged independent variables, as in models like SLX or SDM.
For this purpose, Moran’s I test is applied to the continuous variables
used in the model. Moran’s I evaluates whether a given variable
exhibits spatial autocorrelation. A statistically significant Moran’s I
value indicates that the corresponding variable displays similar values
in neighboring regions (positive autocorrelation) or dissimilar values

(negative autocorrelation).

The Moran's | statistics and corresponding p-values calculated for the
independent variables are reported below. The results of the analysis
indicate that most of these variables exhibit statistically significant
spatial patterns. Therefore, it is deemed appropriate to incorporate the
spatially lagged versions of the independent variables into the spatial
regression models. The R code used to conduct these analyses is

provided below.
# Moran’s I test

vars <- c("CRIM", "ZN", "INDUS", "NOX", "RM", "AGE")
moran_results <- lapply(vars, function(var) {moran.test(
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boston.c[[var]], listw = listw_dist) })

# Converting Moran's I results into a table
moran_table <- lapply(vars, function(var) {

test <- moran.test(boston.c[[var]], listw = listw dist
)

data.frame(
Variable = var,
Morans_I = test$estimate[["Moran I statistic"]],
p_value = test$p.value

)
}) %>% bind_rows()

# Presentation of results
print(moran_table)

## Variable Morans_I p_value
## 1 CRIM 0.2309408 1.724062e-100
## 2 ZN 0.5248370 ©.000000e+00
## 3 INDUS 0.5430339 ©0.000000e+00
##H 4 NOX ©.6680633 ©.000000e+00
## 5 RM 0.1663515 6.308489e-50
## 6 AGE 0.6172407 ©.000000e+00

Moran's | Test for Residuals and Lagrange Multiplier Tests: In this
section, the presence of spatial autocorrelation in the residuals of the
OLS model will be tested to assess the adequacy of the classical model.
Furthermore, in order to determine which spatial regression model
(SAR, SEM, or SARMA) is most appropriate, Lagrange Multiplier
(LM) and Robust LM tests will be conducted. The corresponding R

code used for the implementation is provided below.
# OLS model
ols_model <- Im(y ~ CRIM + ZN + INDUS + CHAS + NOX + RM

+ AGE, data = boston_sf)
summary (ols _model)
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#H#

## Call:

## Im(formula = y ~ CRIM + ZN + INDUS + CHAS + NOX + RM
+ AGE, data = boston_sf)

##

## Residuals:

H## Min 1Q Median 3Q Max

## -21.447 -3.209 -0.701 2.089 39.882

##

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t]|)

## (Intercept) -18.12992 3.20092 -5.664 2.50e-08 ***
## CRIM -0.17301 0.03449 -5.016 7.34e-07 ***
## ZN 0.01365 0.01445 0.945 0.3453

## INDUS -0.12929 0.06406 -2.018 0.0441 *
## CHAS1 4.,84977 1.05352 4.603 5.28e-06 ***
## NOX -4.60617 4.07140 -1.131 0.2585

## RM 7.38341 0.41571 17.761 < 2e-16 ***
## AGE -0.02353 0.01469 -1.602 0.1099

## ---

## Signif. codes: @ '***' 9,001 '**' @9.01 '*' 0.05 '.'
0.1 ' ' 1

H#it

## Residual standard error: 5.909 on 498 degrees of free
dom

## Multiple R-squared: 0.5916, Adjusted R-squared: 0.5
859

## F-statistic: 103.1 on 7 and 498 DF, p-value: < 2.2e-
16

In order to establish a benchmark for comparison with spatial models,
the analysis begins with the estimation of a classical linear regression
model using Ordinary Least Squares (OLS). In the Boston Housing
dataset, the dependent variable is defined as "CMEDV" (median value
of owner-occupied homes), while the explanatory variables include
crime rate (CRIM), proportion of residential land zoned for large lots

(ZN), proportion of non-retail business acres per town (INDUS),
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proximity to the Charles River (CHAS), nitrogen oxide concentration
as an indicator of air pollution (NOX), average number of rooms per
dwelling (RM), and proportion of older housing units (AGE). This
model estimates the linear relationships without incorporating spatial
effects. However, if spatial dependence is present in the data, the
resulting estimates may be biased. Therefore, in the following section,
specification tests are conducted to determine whether spatial
dependence exists in the model residuals.

# Moran's I test for residuals
ols _resid <- residuals(ols_model)
moran.test(ols_resid, listw_dist)

#it

## Moran I test under randomisation

#it

## data: ols_resid

## weights: listw _dist

H#it

## Moran I statistic standard deviate = 6.249, p-value =
2.065e-10

## alternative hypothesis: greater

## sample estimates:

## Moran I statistic Expectation Variance
H#it 0.0685786476 -0.0019801980 0.0001274917

The residuals obtained from the OLS model represent the estimation
errors for each observation. In the presence of spatial structure,
residuals from neighboring observations may exhibit similarity or
correlation. To assess this possibility, the Moran’s I statistic is
employed. This test evaluates whether spatial autocorrelation exists
among the residuals. A significantly positive Moran’s I value indicates

that neighboring residuals are similar, suggesting the presence of spatial
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dependence. Conversely, a negative value implies an inverse
relationship among neighboring residuals. A statistically significant
Moran’s I statistic implies that the classical OLS model fails to account
for underlying spatial structure, and that a more appropriate spatial
model should be considered. In the current analysis, the Moran's | value
was found to be positive and statistically significant (p < 0.01). This
result indicates a meaningful degree of positive spatial autocorrelation
in the model residuals, implying that the error terms tend to behave
similarly across neighboring units. Consequently, it can be concluded
that the OLS model is insufficient and that spatial dependence must be

explicitly incorporated into the model specification.

# Lagrange Multiplier tests
Im.LMtests(ols_model, listw_dist, test = "all")

## Please update scripts to use 1m.RStests in place of 1
m.LMtests

H#it

## Rao's score (a.k.a Lagrange multiplier) diagnostics
for spatial

## dependence

Hit

## data:

## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data

## = boston_sf)

## test weights: listw

Hit

## RSerr = 34.167, df = 1, p-value = 5.058e-09

Hit

Hit

## Rao's score (a.k.a Lagrange multiplier) diagnostics
for spatial

## dependence

it
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## data:

## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data

## = boston_sf)

## test weights: listw

#H#

## RSlag = 21.277, df = 1, p-value = 3.974e-06

#H#

#H#

## Rao's score (a.k.a Lagrange multiplier) diagnostics
for spatial

## dependence

#H#

## data:

## model: 1m(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data

## = boston_sf)

## test weights: listw

#it

## adjRSerr = 15.315, df = 1, p-value = 9.099e-05

#it

#it

## Rao's score (a.k.a Lagrange multiplier) diagnostics
for spatial

## dependence

H#it

## data:

## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
X + RM + AGE, data

## = boston_sf)

## test weights: listw

Hit

## adjRSlag = 2.4255, df = 1, p-value = 0.1194

Hit

Hit

## Rao's score (a.k.a Lagrange multiplier) diagnostics
for spatial

## dependence

it

## data:

## model: lm(formula = y ~ CRIM + ZN + INDUS + CHAS + NO
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X + RM + AGE, data

## = boston_sf)

## test weights: listw

##

## SARMA = 36.593, df = 2, p-value = 1.133e-08

Moran’s I test serves to detect the presence of spatial autocorrelation,
while Lagrange Multiplier (LM) tests offer guidance in selecting the
most appropriate spatial regression model. These diagnostic tests are
applied to the residuals obtained from the Ordinary Least Squares
(OLS) model and help determine which type of spatial structure is more
suitable for the data. The LM lag test examines whether the inclusion
of the spatially lagged dependent variable supports the adoption of the
Spatial Autoregressive (SAR) model. In contrast, the LM error test
evaluates the presence of spatial dependence within the error terms, thus
indicating the appropriateness of the Spatial Error Model (SEM). The
robust versions of these tests control alternative forms of spatial
dependence to provide more reliable conclusions regarding model

selection.

If both LM lag and LM error tests produce statistically significant
results, but only one of the robust tests is significant, the corresponding
spatial model is typically preferred. However, if both robust tests are
statistically significant, this suggests that a more complex model
structure should be considered. Models such as the Spatial
Autoregressive Combined (SAC) or the Spatial Durbin Model (SDM),
which incorporate multiple sources of spatial dependence, may offer a

more accurate specification. Utilizing these tests ensures that spatial
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model selection is based on rigorous statistical evidence and enhances

the robustness of the subsequent analysis.

Based on the diagnostic results obtained in this study, both the LM error
and the Robust LM error tests were found to be statistically significant.
This outcome provides strong evidence of spatial dependence within
the error structure and indicates that the SEM model may be an
appropriate choice. Although the LM lag test also yielded a significant
result, the Robust LM lag test was not significant. This implies that
when the error-based spatial dependence is taken into account, the
contribution of the spatial lag of the dependent variable may be
relatively limited. Furthermore, the LM SARMA test was statistically
significant, indicating the presence of simultaneous spatial dependence

in both the dependent variable and the error terms.

In summary, the SEM model is supported due to the strong spatial
autocorrelation observed in the residuals. Nonetheless, the significance
of the SARMA test points to the potential advantages of employing
more comprehensive spatial specifications, such as SAC or SDM,
which allow for a more general representation of spatial dependence in

the data structure.

Estimation and Comparative Analysis of Spatial Regression
Models: In this section, multiple spatial regression models—including
the Spatial Autoregressive Model (SAR), Spatial Error Model (SEM),
Spatial Durbin Model (SDM), Spatial Lag of X Model (SLX), Spatial
Autoregressive Combined Model (SAC), and the General Nesting

Spatial Model (GNS)—are estimated alongside the conventional
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Ordinary Least Squares (OLS) model using the Boston housing dataset.
The primary objective is to determine the most appropriate model by
statistically comparing their performance in capturing the underlying
structure of spatial dependence. The analysis aims to identify which
model best reflects the nature of spatial relationships present in the data.
The corresponding R code implementations and output results are
presented below.

INDUS + CHAS + NOX
listw_dist)

=

sar_model <- lagsarlm(y ~ CRIM + ZN
+ RM + AGE, data = boston_sf, listw
summary (sar_model)

##
## Call:lagsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS
+ NOX + RM +

it AGE, data = boston_sf, listw = listw _dist)

#H#

## Residuals:

it Min 1Q Median 3Q Max

## -19.21804 -3.11530 -0.63815 2.19951 39.82708
Hit

## Type: lag
## Coefficients: (asymptotic standard errors)
Hit Estimate Std. Error z value Pr(>|z])

## (Intercept) -25.0338728 3.8882435 -6.4384 1.208e-10

## CRIM -0.1642686 ©.0337173 -4.8719 1.105e-06
## ZN 0.0071581 0.0143851 0.4976 0.618765
## INDUS -0.1308520 ©.0628036 -2.0835 0.037205
## CHAS1 3.4360398 1.0724773 3.2038 0.001356
## NOX -0.4669262  4.1435493 -0.1127 0.910278
## RM 7.0357636  0.4097395 17.1713 < 2.2e-16
## AGE -0.0174085 ©0.0146149 -1.1911 0.233596
#Hit

## Rho: 0.29325, LR test value: 14.377, p-value: 0.00014
959

## Asymptotic standard error: 0.082058

H#it z-value: 3.5737, p-value: 0.00035198

## Wald statistic: 12.771, p-value: 0.00035198
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#it

## Log likelihood: -1605.636 for lag model

## ML residual variance (sigma squared): 33.299, (sigma:
5.7705)

## Number of observations: 506

## Number of parameters estimated: 10

## AIC: 3231.3, (AIC for 1lm: 3243.6)

## LM test for residual autocorrelation

## test value: 5.9465, p-value: 0.014746

The Spatial Autoregressive (SAR) model is one of the regression
structures that directly accounts for spatial dependence in the dependent
variable. In this model, the value of the dependent variable for a given
unit is influenced not only by the explanatory variables associated with
that unit but also by the values of the dependent variable in neighboring
units. Hence, spatial dependence is intrinsically incorporated into the
model structure. This feature allows for more reliable estimates in
spatial data contexts where the independence assumption of classical

regression models is violated.

According to the estimation results, the spatial autoregressive
coefficient is p = 0.293, and this value is statistically significant (p <
0.001). This positive and significant coefficient indicates the presence
of spatial spillover effects. In other words, housing values in one region
are influenced by those in adjacent regions. This confirms a tendency
toward spatial clustering and aligns with Tobler’s first law of
geography, which posits that "everything is related to everything else,

but near things are more related than distant things."

In terms of model performance, the SAR model demonstrates superior

fit compared to the classical linear regression model. The Akaike
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Information Criterion (AIC) value for the SAR model is 3231.3,
whereas it is 3243.6 for the classical model. Additionally, the log-
likelihood value of -1605.64 suggests a better model fit. These
differences reveal that incorporating spatial dependence significantly
enhances the explanatory power of the model and underscores the

importance of accounting for spatial structure in the analysis.

Furthermore, the likelihood ratio (LR) test confirms that the SAR model
provides a statistically significant improvement over the classical
model (p < 0.001). However, the results of the Lagrange Multiplier
(LM) test indicate that spatial autocorrelation remains present in the
residuals at a statistically significant level (p = 0.0147 < 0.05). This
suggests that the SAR model may not fully capture all aspects of spatial
dependence, and a more comprehensive model such as the Spatial

Durbin Model (SDM) might be more appropriate.

In conclusion, the SAR model successfully identifies spatial
dependencies in the data and provides a notable improvement over the
classical model. Based on the model assumptions and output, it can be
inferred that housing values are determined not only by local

characteristics but also by the broader spatial environment.

sem_model <- errorsarlm(y ~ CRIM + ZN + INDUS + CHAS + N
OX + RM + AGE, data = boston_sf, listw = listw dist)
summary (sem_model)

Hit

## Call:errorsarlm(formula = y ~ CRIM + ZN + INDUS + CHA
S + NOX + RM +

it AGE, data = boston_sf, listw = listw dist)

it

## Residuals:
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## Min 1Q  Median 3Q Max
## -17.1010 -3.1115 -0.7162 1.7524 39.2296
##

## Type: error

## Coefficients: (asymptotic standard errors)

it Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.677553  3.721690 -2.0629 0.0391201
## CRIM -0.169448 0.033376 -5.0769 3.837e-07
## ZN 0.032935 0.016828 1.9571 0.0503338
## INDUS -0.228422 0.064560 -3.5382 0.0004029
## CHAS1 3.156952 1.052567 2.9993 0.0027061
## NOX -8.580410 4.304592 -1.9933 0.0462269
## RM 6.388227 0.415361 15.3799 < 2.2e-16
## AGE -0.055712 0.015608 -3.5694 0.0003578
##

## Lambda: 0.78728, LR test value: 37.971, p-value: 7.18
07e-10

## Asymptotic standard error: 0.064145

#it z-value: 12.273, p-value: < 2.22e-16

## Wald statistic: 150.64, p-value: < 2.22e-16

#it

## Log likelihood: -1593.84 for error model

## ML residual variance (sigma squared): 30.918, (sigma:
5.5604)

## Number of observations: 506

## Number of parameters estimated: 10

## AIC: 3207.7, (AIC for 1m: 3243.6)

The estimation results of the Spatial Error Model (SEM) indicate that
spatial dependence is not transmitted directly through the dependent
variable but rather through spatially structured unobserved effects,
which are incorporated into the model via the error term. In this context,
the SEM model aims to account for the influence of residuals that are
systematically structured in space but are not captured by the included
explanatory variables. This approach effectively addresses spatial

autocorrelation arising from omitted or unmeasurable spatial factors.
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According to the estimation results, the spatial error dependence
coefficient is A = 0.787, which is highly positive and statistically
significant (z = 12.27, p < 0.001). This outcome reveals the significant
influence of unobserved factors that follow a spatial pattern. In other
words, although certain common factors affecting housing prices in
neighboring regions are not explicitly included in the model, their
effects are indirectly captured through the error structure. This
underscores both the rationale for employing the SEM model and its
analytical advantage.

The overall model fit indicators further support the robustness of the
SEM model. The AIC value is 3207.7, which indicates a substantial
improvement compared to the classical model (AlIC = 3243.6). The log-
likelihood value of -1593.84 also signals a better fit than that of the SAR
model. Furthermore, the likelihood ratio (LR) test result (LR = 37.97, p
< 0.001) strongly confirms that the SEM model significantly

outperforms the classical linear model.

The regression coefficients obtained from the SEM estimation are both
statistically significant and interpretable. Notably, variables such as
CRIM, INDUS, and AGE exhibit a significant negative influence on
housing values, while RM and CHAS1 demonstrate a positive
association. These findings suggest that by incorporating the spatial
error structure, the model successfully disentangles both structural and

spatially unaccounted effects.

In conclusion, the SEM model provides more accurate and valid results

in the presence of spatially structured but unobserved influences. The
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model demonstrates high predictive power and effectively captures

spatial error dependence. These results affirm that the SEM model

constitutes a strong alternative in analyses where residual spatial

autocorrelation is present.

sdm_model <- lagsarlm(y ~ CRIM + ZN

+ INDUS + CHAS + NOX

+ RM + AGE, data = boston_sf, listw = listw_dist, type =
"mixed")
summary (sdm_model)

#H#

## Call:lagsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS

+ NOX + RM +

H#it AGE, data = boston_sf, listw = listw dist, type =
"mixed")

#H#

## Residuals:

it Min 1Q Median 3Q Max

## -17.86324 -2.83045 -0.29627 1.93063 38.01095

#it

## Type: mixed

## Coefficients: (asymptotic standard errors)

Hit Estimate Std. Error z value Pr(>|z]|)
## (Intercept) -49.3127399 12.8428330 -3.8397 0.0001232
## CRIM -0.1750376 ©0.0328972 -5.3207 1.033e-07
## ZN 0.0560098 ©0.0175457 3.1922 0.0014118
## INDUS -0.1577912 0.0661566 -2.3851 0.0170738
## CHAS1 3.0793660 1.0519052 2.9274 0.0034179
## NOX -8.6539197 4.5038577 -1.9214 0.0546755
## RM 6.3343950 0.4102214 15.4414 < 2.2e-16
## AGE -0.0685472  ©0.0159957 -4.2854 1.824e-05
## lag.CRIM -0.6145716 ©0.2396966 -2.5640 0.0103487
## lag.ZN 0.0057274 0.0344982 0.1660 0.8681412
## lag.INDUS 0.5523612 0.2009769 2.7484 0.0059890
## lag.CHAS1 5.8981766  4.4997219 1.3108 0.1899298
## lag.NOX 7.3084275 16.4617475 ©0.4440 0.6570684
## lag.RM 3.9935452  2.2990382 1.7371 0.0823783
## lag.AGE 0.1132758 ©.0455573 2.4864 0.0129026
it

## Rho: 0.066013, LR test value: 0.13591, p-value: 0.712
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## Asymptotic standard error: 0.15251

H#it z-value: 0.43284, p-value: 0.66513

## Wald statistic: 0.18735, p-value: 0.66513
##

## Log likelihood: -1574.238 for mixed model
## ML residual variance (sigma squared): 29.496, (sigma:
5.4311)

## Number of observations: 506

## Number of parameters estimated: 17

## AIC: 3182.5, (AIC for 1lm: 3180.6)

## LM test for residual autocorrelation

## test value: 0.14231, p-value: 0.70599

The Spatial Durbin Model (SDM) extends conventional spatial
regression frameworks by incorporating spatially lagged values of both
the dependent and explanatory variables. This structure allows for the
simultaneous estimation of direct and indirect spatial effects, making it
possible to analyze both the direction and the source of spatial
interactions in greater detail. As such, the SDM can be viewed as a
generalization that encompasses both the SAR and SLX models as

special cases.

According to the estimation results, the spatial autoregressive
coefficient is estimated as p = 0.066, which is relatively low and
statistically insignificant (z = 0.4328, p > 0.05). This finding suggests
that, within the context of this model, the spatially lagged values of the
dependent variable do not have a significant influence on the outcome
variable. However, when considering the effects arising from the spatial
lags of the explanatory variables, it becomes evident that certain
variables in neighboring regions exert significant impacts on the

dependent variable. In particular, the variables lag.CRIM, lag.INDUS,
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and lag.AGE are found to have statistically significant positive effects
(p <0.01), indicating that some socioeconomic characteristics influence
housing prices not only within a given region but also through their

presence in adjacent areas.

The model fit indicators warrant cautious interpretation. The AIC value
for the SDM is 3182.5, which is marginally higher than that of the
classical model (AIC = 3180.6). Despite the broader structure and larger
number of estimated parameters in the SDM, this result indicates a
limited gain in model fit. The lack of statistical significance for the
spatial autoregressive coefficient and the non-significant likelihood
ratio test suggest that the SDM performs less favorably compared to the
SAR model in this dataset. This could be attributed to the fact that
spatial dependence in this context is primarily mediated through the
lagged explanatory variables rather than through the dependent variable
itself.

Nonetheless, the residual spatial autocorrelation test returns an
insignificant result (p = 0.706 > 0.05), indicating that the SDM
sufficiently captures spatial dependence in the error structure. In other
words, while direct spatial dependence is weak, the indirect effects are
effectively modeled within this framework. Thus, the SDM provides
meaningful insights in cases where spatial spillovers from explanatory

variables play a dominant role.

Although the model demonstrates flexibility by allowing the
decomposition of spatial effects associated with neighboring covariates,

the lack of support for the spatial lag of the dependent variable,
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combined with the modest improvement in model performance,
suggests that the inclusion of p may not be essential in this setting. As
a result, a simpler alternative such as the SLX model, which focuses
exclusively on the spatial lags of explanatory variables, may offer a
more parsimonious and interpretable solution. By retaining statistically
significant spatial spillover variables while avoiding unnecessary
parametric complexity, the SLX model may deliver advantages in both
explanatory clarity and estimation efficiency in this context.

slx_model <- 1ImSLX(y ~ CRIM + ZN + INDUS + CHAS + NOX +

RM + AGE, data = boston_sf, listw = listw_dist)
summary (slx_model)

##

## Call:

## Im(formula = formula(paste("y ~
-1], collapse = "+"))),

, paste(colnames(x)][

it data = as.data.frame(x), weights = weights)

##

## Coefficients:

Hit Estimate Std. Error t value Pr(>
It])

## (Intercept) -5.198e+01 1.180e+01 -4.406e+00 1.2
96e-05

## CRIM -1.755e-01 3.338e-02 -5.257e+00 2.1
87e-07
## ZN 5.630e-02 1.781e-02 3.161e+00 1.6
71e-03
## INDUS -1.533e-01 6.697e-02 -2.289%e+00 2.2
50e-02
## CHAS1 3.088e+00 1.067e+00 2.893e+00 3.9
85e-03
## NOX -8.578e+00 4.573e+00 -1.876e+00 6.1
26e-02
## RM 6.344e+00 4.161e-01 1.525e+01 2.9
73e-43
## AGE -6.842e-02 1.624e-02 -4.213e+00 3.0
00e-05
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## lag.CRIM -6.531e-01 2.364e-01 -2.763e+00 5.9
49e-03

## lag.ZN 7.850e-03  3.500e-02  2.243e-01 8.2
26e-01
## lag.INDUS 5.685e-01 1.985e-01 2.865e+00 4.3
55e-03
## lag.CHAS1 6.650e+00 4.287e+00  1.551e+00 1.2
15e-01
## lag.NOX 7.123e+00 1.649e+01 4.319e-01 6.6
60e-01
## lag.RM 4.637e+00 1.722e+00  2.692e+00 7.3
48e-03
## lag.AGE 1.125e-01 4.625e-02  2.431e+00 1.5
40e-02

The Spatial Lag of X (SLX) model operates under the assumption that
the dependent variable is influenced not only by the explanatory
variables in the local unit but also by the values of these variables in
neighboring units. In contrast to models that incorporate a spatial lag of
the dependent variable, the SLX framework does not include an
endogenous spatial autoregressive component. Instead, it captures
spatial spillover effects through the inclusion of lagged explanatory
variables. This structure offers a parsimonious yet powerful approach,
particularly in empirical contexts where both direct and indirect spatial

effects are of analytical interest.

The estimation results obtained from the SLX model indicate that a
substantial proportion of the spatially lagged explanatory variables
exert statistically significant effects. Among the local explanatory
variables, CRIM, ZN, INDUS, CHAS1, RM, and AGE are found to be
statistically significant. Notably, the variables CRIM and AGE exhibit

significant negative impacts on housing values, whereas RM,
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representing the average number of rooms per dwelling, shows a strong
positive effect. These findings suggest that the SLX model successfully
reproduces expected and meaningful estimates within a classical

regression framework.

More importantly, the spatially lagged explanatory variables, including
lag.CRIM, lag.INDUS, lag.RM, and lag.AGE, are also statistically
significant (p < 0.05). This result confirms that housing prices are
shaped not only by conditions within a given neighborhood but also by
socioeconomic characteristics of adjacent areas. For instance, a high
crime rate in neighboring locations (lag.CRIM) may negatively
influence housing values in the focal area, while a higher average
number of rooms in nearby dwellings (lag.RM) may exert a positive
externality. These patterns highlight that spatial diffusion effects are
driven not only by geographic proximity but also by shared structural

and social characteristics across regions.

An important advantage of the SLX model lies in its structural
simplicity. By excluding the spatial autoregressive coefficient p, the
model avoids unnecessary parametric complexity while still capturing
spatial dependence through lagged covariates. Considering the SDM
model’s results, in which the spatial autoregressive coefficient was
found to be statistically insignificant and the likelihood ratio test failed
to demonstrate superiority over the classical model, the SLX model
emerges as a more appropriate alternative. It retains the significant

spillover effects identified in the SDM model but omits the
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uninformative spatial autoregressive term, thereby yielding a more

consistent and interpretable structure.

In conclusion, the SLX model offers a transparent and analytically

effective representation of both direct and indirect spatial effects.

Within the scope of this analysis, it produces statistically significant and

substantively meaningful results while maintaining a streamlined

model structure. Compared to more complex alternatives, the SLX

model stands out for its balance between explanatory power and

interpretability.

sac_model <- sacsarlm(y ~ CRIM + ZN + INDUS + CHAS + NOX
+ RM + AGE, data = boston_sf, listw = listw_dist)
summary (sac_model)

##

## Call:sacsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS
+ NOX + RM +

H#it AGE, data = boston_sf, listw = listw_dist)

##

## Residuals:

H## Min 1Q Median 3Q Max
## -17.35491 -2.96176 -0.75006 1.80923 38.87902
##

## Type: sac

## Coefficients: (asymptotic standard errors)

Hit Estimate Std. Error z value Pr(>|z])
## (Intercept) -2.610789 5.692804 -0.4586 0.6465128
## CRIM -0.173075 0.033350 -5.1897 2.106e-07
## ZN 0.033726 0.016865 1.9997 0.0455280
## INDUS -0.234234 0.064603 -3.6258 0.0002881
## CHAS1 3.333625 1.058078 3.1506 0.0016291
## NOX -10.162825 4.448201 -2.2847 0.0223302
## RM 6.353781 0.414818 15.3170 < 2.2e-16
## AGE -0.059099 0.015845 -3.7299 0.0001916
##

## Rho: -0.17678
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## Asymptotic standard error: 0.14892

#it z-value: -1.187, p-value: 0.23522

## Lambda: 0.82136

## Asymptotic standard error: 0.067849

H#it z-value: 12.106, p-value: < 2.22e-16
#H#

## LR test value: 39.758, p-value: 2.3259e-09
#H#

## Log likelihood: -1592.946 for sac model

## ML residual variance (sigma squared): 30.652, (sigma:
5.5365)

## Number of observations: 506

## Number of parameters estimated: 11

## AIC: 3207.9, (AIC for 1lm: 3243.6)

The Spatial Autoregressive Combined (SAC) model provides a
comprehensive framework for spatial regression analysis by
simultaneously incorporating the spatial lag of the dependent variable,
as in the Spatial Autoregressive (SAR) model, and spatial dependence
in the error terms, as in the Spatial Error Model (SEM). This dual
structure makes the SAC model particularly suitable for contexts in
which spatial dependence arises both through observed neighborhood
interactions and through unobserved or omitted spatially structured
factors captured in the error term. The SAC model can be viewed as a
generalization that nests both SAR and SEM models, making it an
appropriate choice when both types of spatial dependence are jointly

significant.

According to the estimation results, the spatial autoregressive
coefficient p is estimated at —0.177 and is not statistically significant (p
=0.2352 > 0.05). This indicates that the housing prices in neighboring

regions do not exert a direct influence on those in the target area. In
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contrast, the spatial autocorrelation in the error terms, represented by A,
is estimated at 0.821 and is strongly statistically significant (p <0.001).
This finding suggests that unobserved but spatially correlated factors
play a substantial role in shaping housing prices, and that the spatial
dependence is primarily channeled through the error structure rather
than through the dependent variable itself.

An evaluation of model fit metrics further supports the SAC model's
effectiveness. The AIC value of 3207.9 is notably lower than that of the
classical linear regression model (AIC = 3243.6), indicating superior
model performance. Similarly, the log-likelihood value of —1592.946 is
higher than in the benchmark model, reflecting improved overall model
fit. Moreover, the likelihood ratio (LR) test result (LR = 39.76, p <
0.001) provides strong statistical evidence that the SAC model offers a
significantly better fit compared to the standard OLS model. This
supports the necessity of explicitly incorporating spatial structure into

the modeling process.

The estimated coefficients of the explanatory variables are generally
statistically significant and align with theoretical expectations.
Variables such as CRIM, INDUS, AGE, and NOX have statistically
significant negative effects on housing prices, while RM and CHAS1
display strong and positive influences. These findings confirm the
model's ability to accurately capture the fundamental structural

relationships while integrating spatial considerations.

In conclusion, for the dataset under investigation, although the spatial

autoregressive component does not appear to be statistically significant,

&7



the presence of strong spatial autocorrelation in the error terms
underscores the importance of accounting for unobserved spatial
factors. While the insignificance of the p coefficient weakens the case
for employing SAR or SDM models alone, it strengthens the argument
for using SEM or SAC models as more appropriate alternatives. Given
that the source of spatial dependence appears to be concentrated in the
error structure, the SEM model may suffice. However, the SAC model,
due to its broader scope, offers a more robust and comprehensive

solution in such contexts.

gns_model <- sacsarlm(y ~ CRIM + ZN + INDUS + CHAS + NOX
+ RM + AGE, data = boston_sf, listw =listw_dist, type =
"sacmixed")

summary (gns_model)

#it
## Call:sacsarlm(formula = y ~ CRIM + ZN + INDUS + CHAS
+ NOX + RM +

Hit AGE, data = boston_sf, listw = listw_dist, type =
"sacmixed")

H#it

## Residuals:

H## Min 1Q Median 3Q Max

## -17.89727 -2.83364 -0.28754 1.93271 37.99537
##

## Type: sacmixed

## Coefficients: (asymptotic standard errors)

Hit Estimate Std. Error z value Pr(>|z]|)
## (Intercept) -50.1260123 19.4748139 -2.5739 0.010056
## CRIM -0.1754590 0.0330326 -5.3117 1.086e-07
## ZN 0.0559717 0.0175268 3.1935 0.001406
## INDUS -0.1582480 0.0675349 -2.3432 0.019119
## CHAS1 3.0969681 1.0558328 2.9332 0.003355
## NOX -8.7317872 4.5071415 -1.9373 0.052706
## RM 6.3382068 0.4132672 15.3368 < 2.2e-16
## AGE -0.0685829 0.0159871 -4.2899 1.788e-05
## lag.CRIM -0.6201600 0.2844534 -2.1802 0.029244
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## lag.ZN 0.0056669 0.0354579 0.1598 0.873022
## lag.INDUS 0.5673074  0.2396629 2.3671 0.017928
## lag.CHAS1 6.2388870 6.1820800 1.0092 0.312884
## lag.NOX 6.3317315 18.3139255 0.3457 0©.729543
## lag.RM 4.2995528  4.7281277 ©.9094 0.363162
## lag.AGE 0.1133200 0.0465859 2.4325 0.014995
##

## Rho: 0.034186

## Asymptotic standard error: 0.43372

#it z-value: 0.078822, p-value: 0.93717

## Lambda: ©.052012

## Asymptotic standard error: 0.46047

#it z-value: 0.11295, p-value: 0.91007

#H#

## LR test value: 77.215, p-value: 5.7643e-13
#H#

## Log likelihood: -1574.217 for sacmixed model
## ML residual variance (sigma squared): 29.494, (sigma:
5.4309)

## Number of observations: 506

## Number of parameters estimated: 18

## AIC: 3184.4, (AIC for 1lm: 3243.6)

The General Nesting Spatial (GNS) model represents the most
comprehensive and flexible structure within the framework of spatial
regression analysis. In this model, the spatial lag of the dependent
variable, the spatial autocorrelation in the error terms, and the spatial
lags of the explanatory variables are all incorporated simultaneously.
As such, the GNS model encompasses all fundamental spatial models
including SAR, SEM, SDM, SAC, and SLX, offering the most
parameter-rich specification. This structure enables the simultaneous
modeling of both direct and indirect effects as well as unobserved

spatial interactions.
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According to the model estimation results, the spatial lag coefficient of
the dependent variable p is estimated at 0.034 and the spatial
autocorrelation coefficient of the error terms A is estimated at 0.052.
However, both coefficients are statistically insignificant (p > 0.05).
These findings indicate that, for this specific dataset, direct forms of
spatial dependence, whether through the dependent variable or through
the error structure, do not contribute significantly to the model. In other
words, spatial dependence appears to be transmitted primarily through

the spatially lagged explanatory variables.

Indeed, among the spatially lagged covariates, the variables lag.CRIM,
lag.INDUS, and lag.AGE are found to be statistically significant (p <
0.05). This supports the view that the relevant spatial dynamics are
more appropriately captured through the exogenous covariates and their

spatial spillover effects.

Regarding overall model performance, the GNS model demonstrates a
strong fit. Its AIC value is 3184.4, which is substantially lower than that
of the classical linear regression model (AIC = 3243.6). Additionally,
the log-likelihood value of —1574.217 indicates a high degree of model
fit. The likelihood ratio (LR) test further supports this, with an LR
statistic of 77.215 (p < 0.001), signifying a statistically significant
improvement over the classical model. However, this improvement

appears to stem primarily from the SLX component of the model.

In summary, while the GNS model offers the most extensive parametric
structure by incorporating all relevant spatial processes, the empirical

results for this dataset reveal that neither spatial lag dependence in the
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dependent variable nor spatial autocorrelation in the residuals are
statistically meaningful. Therefore, although the GNS model includes
all possible components, it yields a predictive performance comparable
to that of more parsimonious models. In this specific empirical context,
a simpler specification such as the SLX model provides similar
explanatory power and may offer a more efficient and interpretable

alternative.

# Pseudo R?
pseudo_r2_general <- function(y, y hat) {
1 - (sum((y - y_hat)"2) / sum((y - mean(y))"2))}

# Computation of a model-specific R2? for the SLX model
pseudo_r2_slx <- function(model) {

y <- model.response(model.frame(model))

y_hat <- fitted(model)

pseudo_r2_general(y, y hat)}

# R? calculation for other models
pseudo_r2 default <- function(model) {
y <- model$y
y_hat <- model$fitted.values
pseudo_r2_general(y, y hat)}

# Comprehensive compilation of metrics
model metrics <- data.frame(
Model = c("SAR", "SEM", "SDM", "SLX", "SAC", "GNS"),
AIC = c(AIC(sar_model), AIC(sem_model), AIC(sdm model)
, AIC(slx_model), AIC(sac_model), AIC(gns_model)),
BIC = c(BIC(sar_model), BIC(sem_model), BIC(sdm_model)
, BIC(slx _model), BIC(sac_model), BIC(gns_model)),
LoglLikelihood = c(logLik(sar_model), logLik(sem _model)
, logLik(sdm_model), logLik(slx model), loglLik(sac_model
), logLik(gns_model)),

# Pseudo R?
Pseudo R2 = c(pseudo_r2_default(sar _model), pseudo_r2_
default(sem model), pseudo_r2_default(sdm model), pseudo
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_r2_slx(slx_model), pseudo_r2_default(sac_model), pseudo
_r2_default(gns_model)))

# Presentation of results in tabular form
print(model_metrics)

##  Model AIC BIC LoglLikelihood Pseudo_R2
## 1 SAR 3231.273 3273.538 -1605.636 0.6042684
#t 2 SEM 3207.679 3249.944 -1593.840 0.6325613
#H# 3 SDM 3182.477 3254.328 -1574.238 0.6494597
## 4 SLX 3180.613 3248.237 -1574.306 0.6493170
## 5 SAC 3207.892 3254.384 -1592.946 0.6357223
## 6 GNS 3184.435 3260.512 -1574.217 0.6494833

The R codes provided above generate model evaluation metrics
including information criteria such as AIC and BIC, log-likelihood
values, and pseudo R2 statistics. According to the findings, the models
with the lowest AIC values are SLX (3180.61), SDM (3182.48), and
GNS (3184.43). These values indicate that these three models exhibit
better fit with the data and offer greater parametric efficiency compared
to alternative specifications. In terms of log-likelihood, the SLX, SDM,
and GNS models perform similarly, confirming their comparable levels
of model fit. Furthermore, pseudo R2 values are highest in these three

models, reinforcing their strong explanatory power.

However, model selection should not be based solely on information
criteria. Factors such as parametric parsimony, interpretability, and the
structural characteristics of spatial dependence must also be considered.
In this regard, both SDM and GNS models involve a relatively large
number of parameters (SDM: 17, GNS: 18). Yet in both models, the
spatial lag coefficient rho is statistically insignificant. In particular, the

simultaneous insignificance of both rho and lambda in the GNS model
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suggests that direct spatial dependence through the dependent variable

and the error structure is limited for this dataset.

Therefore, the model fit achieved by SDM and GNS appears to result
primarily from the inclusion of spatially lagged explanatory variables.
This finding implies that the more parsimonious SLX model may
represent a theoretically and practically preferable alternative. The SLX
model captures the significant components of SDM and GNS while
excluding the insignificant spatial autoregressive structure, thereby

enhancing interpretability without compromising model performance.

On the other hand, the SEM and SAC models are suitable when spatial
autocorrelation is primarily present in the error terms. Although the
SEM model performs strongly in this analysis, its inability to account
for spillover effects from explanatory variables in neighboring regions
constitutes a key limitation when compared to SLX and SDM. The SAC
model incorporates both rho and lambda parameters, yet the
insignificance of rho indicates that the spatial autoregressive effect is

not supported in this context.

In summary, when evaluating model selection based on parametric
efficiency, interpretability, and model fit collectively, the SLX model
emerges as the most appropriate specification for the context of this

analysis.

6. CONCLUSION

This book offers a comprehensive examination of the fundamental

concepts, theoretical foundations, and applied dimensions of spatial
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statistics with a particular focus on spatial regression models. The main
objective is to identify issues of spatial dependence that violate the
assumptions of classical regression analysis, introduce model types
specifically developed to address these issues, and demonstrate how
these models can be evaluated through empirical applications.

The initial chapters cover essential topics such as types of spatial data,
the structure of spatial autocorrelation, and the construction of spatial
weight matrices. These are followed by detailed explanations of
statistical techniques used to measure spatial dependence, including
Moran’s I, Geary’s C, and LISA. The book also illustrates how spatial
dependence can be analyzed at both global and local levels, supported

by visualization techniques.

Subsequent chapters explain the limitations of classical regression
analysis when applied to spatial data and introduce spatial regression
models developed to address these limitations, including SAR, SEM,
SDM, SLX, SAC, and GNS. Each model is presented systematically,
covering underlying assumptions, mathematical structure, estimation
techniques, and methods of interpretation, supported by illustrative

examples.

In the applied section of the book, the effects of spatial dependence on
economic indicators are analyzed using the Boston housing dataset.
Different spatial regression models are compared in terms of model
performance, based on information criteria such as AIC, log-likelihood,
and pseudo Rz Moreover, each model is assessed comparatively in

terms of its ability to capture spatial structure, the significance of
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estimated parameters, and interpretability. The findings reveal that
spatial effects are predominantly transmitted through the values of
explanatory variables in neighboring regions, highlighting the practical
effectiveness of models such as SLX and SDM.

In conclusion, this book aims to serve as a comprehensive reference for
researchers seeking to engage with spatial regression modeling,
offering both a robust theoretical foundation and practical application
insights. By demonstrating how spatial relationships can be integrated
into the statistical modeling process, this work provides valuable
contributions across a range of disciplines, including the social

sciences, urban planning, economics, and environmental studies.
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