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PREFACE

Energy has always been a decisive factor in the economic and social
development of humanity. Today, the globally increasing population,
accelerated industrialization, and rapid urbanization have heightened
the demand for energy more than ever before, compelling countries to
pursue sustainable, reliable, and environmentally sound energy
sources. In an era when energy supply security is directly linked to
economic independence, the effective utilization of domestic and

renewable energy resources has become a strategic imperative.

Tirkiye, with its geopolitical position, climatic diversity, and rich
natural resource potential, offers significant opportunities in the field
of renewable energy. Nevertheless, the country’s energy demand
varies considerably across regions; geographical, socioeconomic, and
industrial dynamics play a decisive role in shaping regional energy
needs. For this reason, adopting a holistic and data-driven approach in
Tiirkiye’s sustainable energy planning is essential not only for
enhancing energy efficiency but also for optimizing the strategic use

of available resources.

This book aims to analyze Tiirkiye’s regional energy potential using
the powerful tools of modern data science. Through machine
learning—based clustering approaches, the provinces of Tiirkiye are
grouped according to their similar characteristics, and for each cluster,
the most suitable renewable energy alternatives are identified. This

enables not only a comprehensive understanding of the current energy

il



landscape but also an interpretation of regional needs and potentials

from an integrated perspective.

The book first provides a conceptual framework for energy resources
and an overview of Tiirkiye’s current energy profile, followed by a
detailed presentation of the findings obtained through machine
learning methods. This approach seeks to offer policymakers and
practitioners a scientific guide for determining regional priorities,
designing investment strategies, and developing sustainable energy

policies.

It is our hope that this study contributes to Tiirkiye’s renewable energy
transition and strengthens strategic perspectives regarding the nation’s

energy future.

With a firm belief in the importance of progressing toward a

sustainable energy future under the guidance of science...
02.12.2025
Dr. Selen AVCI AZKESKIN

Prof. Dr. Zerrin ALADAG
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SHAPING THE FUTURE OF ENERGY: A MACHINE
LEARNING-BASED ANALYSIS OF TURKIYE’S REGIONAL
RENEWABLE ENERGY POTENTIAL

Dr. Selen AVCI AZKESKIN
Prof. Dr. Zerrin ALADAG

INTRODUCTION

Energy is regarded as one of the fundamental drivers of the economic,
technological, and social development of modern societies, as it is
extensively used not only for meeting daily needs such as heating,
lighting, and transportation but also for supporting a wide range of
industrial and agricultural activities. The rapidly growing global
population, coupled with accelerated industrialization and
urbanization, continues to increase the demand for energy; how this
demand is met directly influences the economic independence of
nations as well as their sustainable development goals. Consequently,
countries are increasingly seeking new, reliable, and sustainable

energy sources to address their rising energy needs.

Energy resources are generally classified into two main categories:
“non-renewable” and “renewable.” Non-renewable resources are those
that cannot be replenished within a short period or require long
geological processes for their regeneration. Crude oil, coal, and
natural gas are considered “primary energy resources,” as they are

extracted directly from nature. The derivatives produced through the



transformation of these primary resources—such as electricity and
refined fuels—are referred to as “secondary energy resources.” In
contrast, renewable energy resources (RES), including solar, wind,
hydroelectric, geothermal, wave, and biomass energy, are naturally
replenished on a continuous basis. Although increasing the use of RES
is essential for reducing environmental impacts and strengthening
energy supply security, the share of renewables in total energy

consumption remains below desired levels.

Tilrkiye is a country that meets a significant portion of its energy
demand through imports and maintains an energy portfolio dominated
by fossil fuels. However, Tirkiye possesses substantial opportunities
for expanding the use of renewable energy due to its high solar
irradiance, strong wind potential, diverse geothermal fields, and
considerable biomass capacity. The country also exhibits pronounced
regional diversity in terms of geological features, climate zones,
vegetation, and socioeconomic characteristics. While Turkiye is
administratively divided into seven geographical regions, significant
differences in energy demand and renewable potential exist even
within the same region. Furthermore, densely populated provinces
such as Istanbul, Ankara, and Izmir, as well as industrially strategic
provinces like Kocaeli, possess energy profiles that must be evaluated
independently  from their broader regional characteristics.
Accordingly, both energy demand and the most suitable renewable
energy alternative can vary considerably across different parts of the

country.



The main purpose of this book is to cluster Tiirkiye’s provinces based
on their geographical characteristics, renewable energy potential, and
socioeconomic structure using machine learning—based methods, and

to interpret the most suitable renewable energy source for each cluster.

In the first chapter, a general framework on energy resources is
presented, followed by an examination of Tiirkiye’s current energy
profile. The second chapter provides a detailed explanation of the
clustering and classification methods used in the methodological
framework. In the third chapter, the methodology is introduced and
the empirical findings are presented. The final chapter discusses the
contributions that the proposed approach may offer to policymakers
and practitioners, along with recommendations for future research.
This book was developed by expanding a section of Selen AVCI
AZKESKIN’s doctoral dissertation, numbered 970827.

1. ENERGY RESOURCES AND AN OVERVIEW OF
TURKIYE’S ENERGY LANDSCAPE

Energy sources used in power generation are classified into two main
groups based on their availability in nature and their renewability
characteristics: non-renewable energy sources and renewable energy
sources (RES). Today, the increasing global energy demand and rising
concerns regarding energy supply security make the diversification of
energy resources a necessity. In this context, reducing dependence on
non-renewable energy sources is critically important for preventing
economic external dependence and minimizing environmental

impacts.



1.1. Non-Renewable Energy Resources

Non-renewable energy resources are formed through geological
processes that take millions of years and cannot be replenished at a
rate comparable to their consumption. Since their depletion rate
exceeds their natural regeneration rate, these resources are finite in
nature. The major non-renewable energy sources are briefly described

below.

Coal: Coal is one of the oldest and most widely used energy resources
worldwide. Although it has a high energy density, its combustion
releases significant amounts of carbon dioxide, contributing to air
pollution and global warming. Due to its relatively low cost, coal
continues to be extensively used, particularly in developing countries.
In recent years, efforts have been directed toward reducing its
environmental impacts through clean coal technologies and carbon

capture systems.

Petroleum: Petroleum is a major fossil fuel with high economic value,
widely used in the transportation and industrial sectors. However, its
vulnerability to price fluctuations and the potential threat to supply
security arising from geopolitical tensions increase its strategic risks.
Additionally, the combustion of petroleum releases greenhouse gases,

accelerating global climate change.

Natural Gas: Natural gas is transported in compressed or liquefied
form and has a wide range of applications across various sectors.

Owing to its relatively lower carbon emissions, it is considered a



cleaner fossil fuel. Nevertheless, because it contains methane, its
leakage into the atmosphere produces a potent greenhouse gas effect,

thereby contributing to global warming.

Nuclear Energy: Nuclear energy is produced through the fission of
radioactive elements such as uranium and thorium. It offers
advantages such as the absence of carbon emissions during electricity
generation and high energy efficiency. However, issues related to
radioactive waste management and the potential risks of nuclear

accidents keep nuclear energy at the center of ongoing global debates.

1.2. Sustainable Energy and Renewable Energy Resources

Sustainable energy refers to energy production and consumption
systems that meet the needs of the present generation without
compromising the ability of future generations to meet their own
needs. This approach emphasizes minimizing environmental impacts
in energy production, ensuring economic feasibility, and adopting
socially acceptable solutions. Therefore, sustainable energy is a
multidimensional concept encompassing not only clean energy
generation but also energy efficiency, energy conservation, the
integration of technological innovations, and equitable access to
energy. Within this framework, RES constitute one of the fundamental
components of sustainable energy systems. These resources, which are
naturally replenished through ecological cycles and do not carry the
risk of depletion, include solar, wind, hydroelectric, geothermal, and
biomass energy. Compared with fossil fuels, RES generate

significantly lower greenhouse gas emissions, offering a major

5



advantage in terms of environmental sustainability. Additionally, since
most renewable resources are domestically available, they enhance
energy supply security and contribute to economic sustainability by
reducing external dependence. The increasing environmental
awareness in society and the growing social acceptance of renewable
technologies further strengthen the position of RES within sustainable
energy strategies. The main renewable energy resources are briefly

described below:

Solar energy: Solar energy is obtained by converting sunlight into
electrical or thermal energy through photovoltaic panels or solar
collectors. The advantages and disadvantages of solar energy can be

summarized as follows:

e It does not require complex technology.
e Operation and maintenance costs are low.
e [t can be used in areas without electricity transmission lines.

e Since it does not require grid connection, it does not pose

transmission-related constraints.

e As a weather-dependent resource, energy production

significantly decreases during winter months and at night.

e Energy storage is difficult and overall efficiency is relatively

low.

Wind energy: Wind energy is produced by converting the kinetic

energy of moving air into mechanical energy through rotor blades



mounted on a shaft. Wind power plants (WPPs) typically operate
efficiently for about 20 years, with a total system lifespan of
approximately 30 years. WPPs begin generating electricity when wind
speed reaches 3 m/s and continue operating until wind speeds reach
approximately 25 m/s. Thanks to technological advancements and
accurate feasibility studies, the cost of energy derived from wind has
steadily decreased. The advantages and disadvantages of wind energy

include:

e Investment costs have decreased due to technological

improvements.

e Wind turbines are relatively easy to install, transport, and
assemble; the risk of accidents during construction is minimal,

and maintenance is straightforward.
e Large turbines require extensive land areas.
e Turbine height may pose risks to birds.

e Overall efficiency is generally lower compared to some other

energy sources.
e There is a risk of turbine collapse or fire.

e Noise generated by turbines may disturb nearby residents
(Erdogan, 2020; Selguklu et al., 2022; Movlyanov and Selcuklu,
2025).

Hydroelectric energy: Hydroelectric energy is produced by converting

the potential energy difference between two points in a water source



into kinetic energy through a hydroelectric power plant. Hydroelectric
power plants (HPPs) must be located at or near the source of water,
meaning they cannot always be installed where energy demand exists.
The advantages and disadvantages of hydroelectric energy are as

follows:

e HPPs do not require fuel and experience minimal energy

losses.

e Their efficiency is continuous, and the unit cost of energy is

low.

e Maintenance costs are relatively low.

e HPP structures are simple and durable.

e Energy storage and transmission are relatively easy.

e HPPs can quickly respond to high energy demand when
needed and can also be rapidly shut down in dangerous

situations.

e Construction periods are long and initial investment costs are

high.

e Dam construction may lead to submergence of land,
displacement of local populations, and challenges during natural

disasters.

e Energy production is dependent on precipitation levels.



e Water retention behind dams may cause reductions in
agricultural productivity and result in microclimatic changes in

the surrounding region.

e Water intake structures may disrupt river ecology, affect

aquatic species' migration routes, and harm river ecosystems.

Geothermal energy: Geothermal energy is obtained from underground
hot water sources with temperatures consistently above 20°C and with
higher mineral and salt content than surrounding groundwater. The

advantages and disadvantages of geothermal energy include:

e Geothermal power plants have shorter commissioning

periods compared with other types of power plants.
e Continuous energy production is possible.

e The cost of electricity produced in geothermal plants is

competitive with coal and natural gas power plants.
e Geothermal energy is not affected by climatic variations.
e Preparation and drilling costs are high.

e FEnergy transmission from geothermal sites is relatively

inefficient.

e Some geothermal reservoirs contain potentially harmful

chemical compounds, requiring reinjection techniques.

e The regeneration period of geothermal reservoirs is long once

the resource is depleted.



Biomass energy: Biomass energy is produced by converting organic
waste into energy through biochemical or thermochemical processes.
Agricultural and forestry residues are among the key resources used in
biomass energy production. The advantages and disadvantages of

biomass energy are as follows (Erdogan, 2020):

e Biomass crops can be grown in many different regions.

e Production and conversion technologies are well established.
e Low levels of sunlight are sufficient for biomass cultivation.
e Biomass is easy to store.

e Suitable temperatures for biomass production range between

5-35°C.

e Efficiency levels are generally lower compared with other

energy sources.
¢ Biomass production may compete with agricultural land use.
¢ Significant water resources are required.

Marine current and ocean energy: Marine and ocean energies include
wave energy, tidal energy, current energy, and ocean thermal energy
conversion (OTEC). Wave energy is generated from the oscillatory
motion of ocean waves and the pressure they create. Tidal energy is
produced by converting the kinetic energy resulting from the
movement of water masses caused by tides into electricity through
turbines. For this purpose, water inlets suitable for tidal activity are

blocked by constructing a barrage, and electricity is generated using
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the height difference that occurs as water flows in and out. Current
energy captures the kinetic energy of continuous water movement in
seas and oceans using turbines installed on the seabed. Ocean thermal
energy conversion utilizes the temperature difference between warm
surface waters and cold deep ocean waters in tropical regions to
generate electricity through a thermodynamic cycle. For the system to
be effective, the temperature difference between the ocean surface and

its depths must be at least 20°C (Soylu, 2019).

1.3. An Overview of Tiirkiye’s Energy Profile

Tiirkiye’s energy supply is predominantly based on fossil fuels;
however, the transition toward RES has accelerated significantly in
recent years. As of 2022, fossil fuels continue to dominate primary
energy consumption, with natural gas and coal holding the largest
shares in total demand. This dependence increases energy imports,
thereby constituting one of the main factors deepening Tiirkiye’s

foreign trade deficit.

According to Figure 1, Tiirkiye’s total primary energy supply reached
157.7 million tons of oil equivalent (Mtoe). As shown in Figure 1,
petroleum accounted for the largest share of energy sources with 45.11
Mtoe, representing 28.6% of total supply. Petroleum was followed by
natural gas with 43.54 Mtoe (27.6%) and coal with 42.02 Mtoe
(26.8%). Within the RES category, geothermal energy provided the
highest contribution at 11.51 Mtoe (7.3%). Hydropower accounted for
5.75 Mtoe (3.6%), biofuels for 4.51 Mtoe (2.9%), wind energy for

11



3.01 Mtoe (1.9%), and solar energy for 2.32 Mtoe (1.5%) (Republic of
Tiirkiye Ministry of Energy and Natural Resources, 2023).

2323

5745 31533005 1360 =

u Petrolaum Matural gas g Hard coal, Coke m  Lignite
B Geothermal B Hydramlic = Modem hofusls Wind
B Solar B Traditional bicfusl ® Asphaltite

Figure 1: Quantities of Primary Energy Supply in Turkiye (Million
TOE, 2022)
Reference: Republic of Turkiye Ministry of Energy and Natural

Resources, 2023

According to Table 1, Tiirkiye’s total installed electricity generation
capacity reached 107,693 megawatts (MW) by the end of 2023.
Hydropower ranked first with a 29.7% share in the installed capacity
distribution. Natural gas power plants followed with 23.6%, while
coal-based power plants held the third position with 20.3%. Notably,
wind power capacity increased to 11%, surpassing that of lignite-fired
power plants. Similarly, solar power plants reached an 11.5% share of

total installed capacity, exceeding lignite capacity as well.

12



By the end of 2023, fossil fuel-based power plants had a combined
installed capacity of 47,475.2 MW, accounting for 44.1% of total
installed power. In contrast, RES-based power plants reached a total
capacity of 60,217.6 MW, corresponding to 55.9% of total installed
capacity and exceeding fossil fuel capacity (TMMOB Chamber of
Mechanical Engineers, 2024).

Table 1: Installed Power Capacity by Energy Source (2023)

Primary Source Installed Capacity

MW Share (%) Cumulative Share (%)

Imported Coal 10,373.80 9.63

Hard Coal 840.80 0.78

Asphaltite 405.00 0.38

Lignite 10,194.00 9.47 44.08
Liquid Fuel 260.60 0.24

Natural Gas 25,401.00 23.59

Fossil Fuels Total 47,475.20 44.08

Biomass + Waste 2404.00 2.23

Wind 11,803.80 10.96

Solar 12,354.30 11.47

Hydropower 31,964.20 29.68 55.92
Geothermal 1691.30 1.57

Renewables Total 60,217.60 55.92

TOTAL 107,692.80 100.00 100.00

Reference: TMMOB Chamber of Mechanical Engineers, 2024

13



1.4. Renewable Energy in Tiirkiye

Tiirkiye’s geographical location provides it with a remarkably high
solar energy potential. According to the Solar Energy Potential Atlas
(GEPA), Tiirkiye’s annual total sunshine duration is 2,737 hours (7.5
hours/day), while the annual total solar irradiation reaches 1,527
kWh/m? (4.2 kWh/m? per day). Figure 2 presents the map illustrating
Tiirkiye’s total solar radiation. As shown in the map, solar potential
decreases gradually from the southern regions toward the north.
Owing to its geographical characteristics and high number of rainy
days, the Black Sea Region receives the lowest level of solar
irradiation. The Marmara and Aegean Regions receive moderate levels
of irradiation, whereas Central Anatolia, Eastern Anatolia, the
Mediterranean, and Southeastern Anatolia are the regions with high

solar radiation values (Ozgiir, 2020).
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Figure 2: Turkiye Solar Energy Potential Atlas (GEPA)

Reference: Ministry of Energy and Natural Resources, 2024a
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Tlrkiye possesses significant wind energy potential due to being
surrounded by seas on three sides, its widespread mountainous terrain,
and the presence of diverse climatic conditions. Considering annual
average wind speeds, the Aegean and Marmara coastlines stand out as
the most suitable regions for wind energy generation. The Turkiye
Wind Energy Potential Atlas (REPA), presented in Figure 3, analyzes
the country’s wind characteristics and distribution, contributing to the
identification of the most favorable areas for electricity production.
According to calculations, when areas with wind speeds above 7 m/s
at a height of 50 meters are considered, Tiirkiye’s onshore wind
energy potential is estimated to be approximately 48,000 MW (Kaya
& Kaya, 2024).

Figure 3: Tiirkiye Wind Energy Potential Atlas (REPA)

Reference: Ministry of Energy and Natural Resources, 2024b

Tiirkiye’s annual average precipitation is approximately 574 mm,
corresponding to an average of 450 billion m* of water per year. The

country’s gross surface water potential has been identified as 185

15



billion m?, while the groundwater potential is estimated at 18 billion

m?. Figure 4 presents Tiirkiye’s 25 drainage basins (Serdar, 2020).

Figure 4: Map of Tiirkiye’s 25 Drainage Basins
Reference: Serdar, 2020

Tiirkiye, receiving substantial sunlight and possessing extensive
agricultural land, abundant water resources, and diverse climatic
conditions, offers considerable potential for biomass energy
production. Figure 5 illustrates the distribution of biomass potential
across Tiirkiye’s provinces (illez, 2020).

Energy potential (kwh / year)

£.900.000 000 - 10 100 000 000

n
° 700000 000 + 8 500 600,090
2.400.000.000 - 4.790.000.000

G

2706.000.099 - 3.400.000.000
2.300.000.008 - 2.700.000.000
1800200260 - 2.360.000 040
1.600.300.500 - 1.800 100 009
500,000,900 - 1500 000,000

Figure 5: Distribution of Biomass Potential by Province in Tiirkiye

Reference: Illez, 2020
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A significant portion of Tirkiye’s geothermal resources is
concentrated in the Western Anatolia region. Approximately 78% of
areas with geothermal potential are in this region, followed by Central
Anatolia with 9% and the Marmara Region with 7%. The geothermal
potential in Eastern Anatolia is around 5%, while other regions
account for about 1%. Since nearly 90% of existing geothermal
resources have low to medium temperature levels, they are
predominantly used in heating systems, thermal tourism, and certain
industrial applications. The remaining 10% is utilized in indirect

energy applications such as electricity generation.

According to data from the International Energy Agency, Tiirkiye’s
installed geothermal electricity capacity increased from 94 MW in
2010 to 1,283 MW by 2018, while electricity generation rose from
668 GWh to 4,819 GWh over the same period. Most of this
production capacity is concentrated in the Aegean Region. Provinces
such as Aydin, Denizli, Manisa, and Canakkale are among the leading
locations with significant geothermal potential (Giirciin & Petek,

2021).

1.5. Tiirkiye’s Renewable Energy Policies and Future Targets

Tirkiye’s long-term energy strategies aim to reduce carbon emissions
and fulfill its commitments under the Paris Agreement. Within this
framework, the Twelfth Development Plan (2024—2028) prioritizes the
expansion of renewable energy generation capacity, the enhancement

of energy efficiency, and the promotion of investments in this field. To

17



achieve these goals, it is planned to strengthen credit and incentive

mechanisms for energy projects.

The Renewable Energy Resource Areas (YEKA) model is
implemented to promote investments in renewable energy. YEKA
projects offer specific incentives—particularly for large-scale wind
and solar power plants—encouraging the private sector to invest in
renewable energy. Another key mechanism supporting renewable
energy production in Tiirkiye is the Renewable Energy Support
Scheme (YEKDEM). YEKDEM provides financial assurance to the
sector by guaranteeing the purchase of electricity generated from
renewable sources at incentivized tariffs for a specified duration. In
addition, regulatory reforms introduced by the Energy Market
Regulatory Authority (EPDK) have facilitated market liberalization

and supported private sector investments in the electricity market.

Through these initiatives, Tiirkiye aims to increase its renewable
energy capacity by 2035 and raise the share of renewables to 65% of
total electricity generation. Particular emphasis is placed on expanding
wind and solar energy investments, with plans for these sources to
reach a combined capacity of 120,000 MW. Furthermore, the
development of energy storage systems and the modernization of grid
infrastructure are considered critical. Investments in electricity
transmission infrastructure are planned to strengthen the integration of
renewable power plants into the national grid. Increasing green

hydrogen production and promoting its use in industrial processes as a

18



substitute for fossil fuels also stand among Tirkiye’s strategic

objectives.

However, the renewable energy sector in Tiirkiye faces several
significant challenges. The lack of sufficient financing remains one of
the main obstacles to implementing large-scale renewable energy
projects. Sustainable financial models are required to support long-
term investments. Additionally, Tiirkiye continues to depend on
foreign technology for renewable energy systems. A large portion of
critical equipment—such as wind turbines, solar panels, and energy
storage systems—is imported, making it essential to strengthen

domestic manufacturing capacity.

For these strategic goals to be effectively implemented, it is necessary
not only to formulate energy policies at the national level but also to
conduct a detailed analysis of energy potential at the regional level.
Such an approach ensures the efficient use of public resources and
enables the design of targeted incentive mechanisms tailored to the
specific needs of each region. Based on this necessity, this book
clusters Tiirkiye’s provinces according to their sustainable energy
potential using a range of variables and provides an in-depth analysis

of the resulting clusters (Avc1 Azkeskin & Aladag, 2025).

2. MACHINE LEARNING METHODS

In this section, machine learning—based clustering and classification

approaches are examined within a theoretical framework.
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Machine learning is a branch of artificial intelligence that enables
computer systems to learn autonomously by analyzing patterns within
data, rather than relying on predefined rules. Machine learning is
commonly categorized into three main types based on the learning
paradigm: supervised learning, unsupervised learning, and semi-
supervised learning. Each learning type differs depending on the
structure of the data used and the nature of the model’s learning

process.

2.1. Supervised Learning

Supervised learning is a machine learning approach used when each
input instance in the dataset is accompanied by a corresponding
correct output (label). In this method, the model learns to make
accurate predictions on new, unseen data by analyzing patterns within
historical labeled data. The training process involves feeding the
model with a labeled dataset, and the model parameters are optimized
by minimizing the difference (error rate) between the model’s

predictions and the true labels.

Within supervised learning, the dataset is typically divided into
training and test subsets. The training data are used during the learning
phase, allowing the model to discover the relationships between inputs
and outputs. The test data, which the model has not encountered
previously, are used to evaluate the model’s performance and assess
its generalization ability. Supervised learning is broadly categorized
into two main tasks: classification and regression. Classification

involves assigning data points to predefined categories, whereas

20



regression focuses on predicting continuous numerical values

(Kotsiantis, 2007).

The classification methods addressed within the scope of this book are

explained in the following subsections.

2.1.1. Multinomial Logistic Regression (MLR)

Multinomial Logistic Regression (MLR) is a generalized version of
logistic regression designed to analyze dependent variables that
contain more than two categorical outcomes. This approach models
the likelihood of each possible category of the response variable by
relating it to a set of predictor variables. In MLR, these category
probabilities are computed through a linear combination of the
explanatory variables. The mathematical form of the model is given in
Equation (1). In this formulation, P (Y =k |X) denotes the
probability that the response falls into class k; X represents the vector
of predictors; K indicates the total number of outcome categories; and
B 1s the parameter vector associated with class & (Coughenour et al.,

2015).

T

P(Y=KkIX)=—" "~ 1
- RSl W

j=1

2.1.2. K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a straightforward yet powerful
classification approach that predicts the class of an observation by

examining the labels of the closest samples in the training dataset
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(Tahtali, 2020). Essentially, the algorithm assigns a class to a new data
point by considering either the majority category among its k nearest
neighbors in the feature space or a weighted voting process based on
their distances. The choice of the parameter £ plays a key role, as it
directly influences both the model’s predictive accuracy and overall

performance.

2.1.3. Support Vector Machines (SVM)

Support Vector Machines (SVM) operate on the principle of
identifying a hyperplane that can optimally separate two classes
(Sasidharan, 2021). Initially designed for the classification of linearly
separable binary problems, SVMs were later generalized to handle

multiclass and non-linear datasets (Kaba & Kalkan, 2022).
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Figure 6: Support Vector Machines (SVM)
Reference: Kaba & Kalkan, 2022

As illustrated in Figure 6, multiple hyperplanes may be drawn to
separate two classes. However, the primary objective of SVM is to
identify the hyperplane that maximizes the margin—the distance
between the hyperplane and the nearest data points from each class. To

determine the optimal hyperplane, two parallel hyperplanes forming
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the boundaries of the margin must be defined. The data points lying on

these boundary hyperplanes are referred to as support vectors.

SVM determines the optimal separating hyperplane by solving the
optimization problem shown in Equation (2) (Sasidharan, 2021). In
this formulation, w represents the normal vector of the hyperplane; b
denotes the bias term; y; indicates the class label; and x; represents the

training data points.

min = |w]? @)
wb 2

Subject to:

yiwTx; +b) > 1, Vi

The hinge loss function, used as the cost function of SVM, is defined
in Equation (3). Here, y; denotes the true class label of the i data

instance, and f (x;) = wlx; + b represents the predicted value.

L(ys f(x)) = max(0,1 — y; f(x;)) 3)

This function penalizes classification errors by assigning a loss to
instances that lie within the margin or are misclassified. If a data point
is correctly classified and lies outside the margin, the loss becomes
zero. However, if a data point is misclassified or correctly classified
but located within the margin, the function produces a positive
penalty. Thus, SVM simultaneously aims to maximize the margin

while minimizing the risk of misclassification and margin violations.
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The SVM optimization problem can be transformed into its dual form
using Lagrange multipliers. In Equation (4), «; represents the
Lagrange multipliers; C is the regularization (penalty) parameter;
K(xl- . xj) denotes the kernel function; and y; and y; indicate the class

labels.
1
m%{ks N a— 52?:1 Z]N=1 Qi ;yiyj (Xi : Xj) “)

Subject to:

N
0<o< C,Zaiyi =0

i=1
This transformation facilitates the solution of the optimization
problem and enables classification, particularly for datasets that are
not linearly separable, using kernel functions. Kernel functions map
data points into a higher-dimensional feature space, thereby increasing
the likelihood of linear separability. The most used kernel functions
are the Linear, Polynomial, Radial Basis Function (RBF), and Sigmoid
kernels, which are given in Equations (5), (6), (7), and (8),
respectively. In the polynomial kernel, ¢ is a constant and d denotes
the degree of the polynomial. In the RBF kernel, o represents the

kernel parameter. In the sigmoid kernel, a and ¢ are constant

parameters.
(xix;) = x{ - x Q)
K(xix;) = (x] - x; + )’ (6)
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K(xi,x]-) = exp(—olx; — X]-|2) (7

K(xi,%;) = tanh (ox{. x; + c) (8)

The linear kernel is preferred when the data are linearly separable,
offering a simpler and more interpretable model from a computational
perspective. The polynomial kernel provides greater flexibility for
modeling non-linear decision boundaries, with its behavior determined
by the degree of the polynomial. The sigmoid kernel resembles the
activation functions used in artificial neural networks and can be

effective for certain data distributions.

SVM models using the RBF kernel are typically characterized by two
main hyperparameters: C (the regularization parameter) and o (the
kernel width parameter). Compared to other non-linear kernel
functions, the RBF kernel involves fewer hyperparameters and
generally yields higher classification performance (Scholkopf &
Smola, 2002). For these advantages, it was selected for use in this

study.

2.1.4. Random Forest (RF)

Decision trees are among the most used classification algorithms due
to their strong learning capabilities. However, this powerful learning
ability often leads to the disadvantage of overfitting. The Random
Forest (RF) method is a classification approach based on decision
trees. Introduced to the literature by Breiman (2001), the algorithm

randomly selects samples through resampling, constructs multiple
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decision trees based on these samples, aggregates their predictions,
and produces the final output through voting with high accuracy. Since
each tree grows freely without pruning, the method avoids the

overfitting problem (Gtilerytiz, 2022).

To construct an RF model, two main parameters are required: the
number of trees (ntree) and the number of features considered at each

split (mtry) (Andrade et al., 2020).

Decision trees typically split the dataset based on entropy as shown in

Equation (9) or information gain as shown in Equation (10):

H(S) = — Xi=1 pi log, p )

Tyl

IG(T; a) = H(T) - ZVEamH(TV) (10)

In Equation (9), S represents the dataset, ¢ denotes the number of
classes, and p; indicates the probability of the i class. In Equation
(10), T is the root node, a is the feature on which the split is
performed, IG (T, a) denotes the information gain obtained by splitting
on feature a, H(T) is the entropy of the entire set, and Tv represents
the subset of data for which feature a takes the value v. Thus, the
formula calculates the reduction in entropy —i.e., the gain— when a

feature is used for splitting.

2.1.5. Extreme Gradient Boosting (XGBoost)

In recent years, boosting-based methods have gained substantial

popularity in the field of data science. These algorithms rely on the
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sequential combination of multiple weak classifiers to construct highly
accurate (strong) predictive models. The fundamental objective of the
boosting approach is to enhance model performance by focusing
particularly on observations that contribute most to prediction errors.
The process begins with building a single weak learner; subsequently,
each new model is constructed sequentially to minimize the errors
made by the previous model. The final model is produced by
weighting the weak learners based on their performance, giving
greater influence on better-performing models. As a result, a highly

generalizable and powerful ensemble model emerges.

XGBoost is a machine learning method based on Gradient Boosting
Machines (GBM) and decision trees. The GBM algorithm was first
introduced by Friedman (2002), and the XGBoost version, presented
by Chen and Guestrin (2016) in a conference, quickly gained
widespread adoption and became highly popular in the field of
machine learning. XGBoost represents an optimized version of GBM,
enhanced with various regularization techniques. In addition to its
strong predictive power, XGBoost is superior to many traditional
methods due to its ability to prevent overfitting, handle missing data

effectively, and offer high computational efficiency.

The main objective of XGBoost is to minimize a loss function
together with a regularization term, as expressed in Equation (11)

(Chen & Guestrin, 2016):

L(d) = L, 15, vi) + TR, (R (11)
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Here, [ denotes the loss function (e.g., mean squared error — MSE); ¥,
is the predicted value; and Q2(f;) represents the regularization term,
that is, the complexity penalty of the k” weak learner (decision tree).
The regularization term helps prevent overfitting by controlling the

complexity of the model. It is typically defined as in Equation (12):
1
Q) =yT+5x2jT=1wj2 (12)

Here, y represents the fixed penalty coefficient for each leaf, T
denotes the number of leaves, A is the regularization parameter, and w;
indicates the weight of the j leaf. XGBoost improves the model by
adding a new tree at each iteration based on the current predictions.

This process is expressed in Equation (13):

—_—

y? =y 4 f(x) (13)

Here, yl(t) denotes the prediction for observation i at iteration

t; fi(x;), represents the new decision tree trained at iteration ¢t;

and yl(t_l) refers to the prediction from the previous iteration.

XGBoost optimizes the loss function through a second-order Taylor

expansion, as shown in Equation (14):
— L
1O ~ 20 [1(yey ) + gife(x) + 5 hif () | + Q06D (14)

6L(yi,yft'1))

ayl(t—l)

] 2L<yi,yft'1))
(=%
o[

is the second derivative. Each iteration is formulated as in Equation

Here, g; = is the first derivative, and h; =
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(15):
LO = XL, [Gyw + 2 (H; + Mw?] +yT (15)

where  Gj = Yie;; gi and H; = X, hy. The optimal weight of each
leaf is computed using Equation (16):

Gj

B Hj +A (16)

2.1.6. Stacked Ensemble Learning Technique

Stacking is an ensemble strategy that integrates the outputs of several
machine learning algorithms (base learners) by employing an
additional predictive model known as a meta-learner. Unlike boosting,
which sequentially improves a single model, stacking trains multiple
diverse models in parallel and then uses a meta-model to determine
the most effective way to combine their predictions, thereby
improving overall predictive capability. In this framework, the meta-
model receives the base models’ predictions as input features and

learns how to merge them to produce the final prediction.
Stacked ensemble methods are generally implemented in two phases:

Base Models: In the first phase, multiple base learners are fitted using
the same training data. Each algorithm attempts to estimate the target
variable based on its own modeling principles. These models produce
predicted values for each observation, forming the initial layer of

outputs.
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Meta-Model: During the second phase, the outputs generated by the
base models are used as new input variables for the meta-learner. This
model identifies the most effective way to combine these predictions
and generates the final outcome. Meta-learners with lower
complexity—such as linear regression or logistic regression—are
frequently preferred due to their stability and interpretability
(Solomon et al., 2023; Shih et al., 2024, Avct Azkeskin & Aladag,
2025).

In this book, two different stacked ensemble models were utilized:

Ensemble Model 1: Predictions obtained from the RF and XGBoost
algorithms were combined to create a stacked dataset. On this dataset,
MLR, SVM, and KNN were trained as meta-models. The meta-
models were trained using the training portion of the stacked dataset,

and their accuracy values were evaluated on the test set.

Ensemble Model 2 (Majority Voting Model): The predictions from the
RF and XGBoost models were combined using the majority voting

approach.

2.1.7. Evaluation of Classification Performance

Classification performance can be assessed using several evaluation
metrics, such as accuracy, Matthews Correlation Coefficient (MCC),

and Cohen’s Kappa.

Accuracy is one of the fundamental metrics used to evaluate the

performance of classification models. It is calculated as the ratio of
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correctly predicted instances to the total number of instances.
However, accuracy may be misleading when the dataset contains class
imbalance. For example, a model may achieve high accuracy simply
by predicting the majority class consistently, even though it fails to
distinguish between classes effectively. In multiclass models, accuracy
is computed using Equation (17). Here, TP represents true positives,
TN true negatives, FP false positives, and FN false negatives.

i TP;
YK (TP;+TN;+FP;+FN;)

Accuracy =

(17)

MCC is a statistical metric used to evaluate the performance of
classification models and is particularly useful for datasets with class
imbalance, often providing a more reliable assessment than metrics
such as accuracy. In multiclass problems, MCC is calculated using
Equation (18). Here, Cii represents the diagonal elements of the
confusion matrix, while Cij and Cji denote the off-diagonal elements

that represent misclassifications between classes.

Tics 2jeq (CiiGj—Cij-Gji)

(3 ) (355 03)) (B (21 05) (3 €5)

Kappa measures how much the observed classification performance

MCC =

(18)

exceeds the performance expected by random chance. For multiclass
classification, the Kappa statistic is calculated using Equation (19),
where Po is the observed agreement (the proportion of correctly
classified instances), and Pe is the expected agreement under random

classification.
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—y (19)
2.2. Unsupervised Learning

Unsupervised learning refers to a category of machine learning
techniques designed to reveal underlying structures, patterns, and
relationships within data without relying on labeled examples. In this
framework, the model examines only the input variables to detect
similarities or distinctions among observations, as no predefined class
information is supplied. In essence, the algorithm autonomously
identifies which data points resemble one another and groups them

according to the natural organization of the dataset.

Unsupervised learning approaches are primarily used for two tasks:
“clustering” and “dimensionality reduction”. Dimensionality reduction
methods aim to project high-dimensional data into a more compact
form while maintaining its essential characteristics, allowing for more
efficient and interpretable analyses. Clustering methods, on the other
hand, focus on forming meaningful subgroups by gathering

observations that share similar attributes.

Cluster analysis, a widely applied multivariate statistical technique,
partitions datasets into groups based on specified similarity or distance
metrics. This process helps reveal hidden structures, supports data
organization, and contributes to generating more interpretable insights.
The most commonly applied clustering algorithms in the literature are

discussed in the subsequent sections (Zorlutuna & Erilli, 2018).
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2.2.1. K-Means Clustering

The K-Means method is a popular clustering algorithm that aims to
partition a dataset into k predefined, distinct clusters. The algorithm
assigns each data point to the nearest cluster centroid, after which each
centroid is updated based on the data points assigned to that cluster.
This process continues until the cluster assignments stabilize or a
predefined stopping criterion is met. Determining an appropriate value
for k is critical for obtaining successful clustering results (Wu et al.,
2021). The algorithm proceeds through the following steps (Jain,
2010):

1. Initialization: The number of clusters & is selected, and k& initial

cluster centers py, u, .y are chosen randomly.

2. Assignment step: Each data point xiis assigned to the nearest cluster
center ), as shown in Equation (20), where |x; — u;| represents the

distance between xiand ;.

¢ = argmin | x; — ] (20)
j

3. Update step: Each cluster center is updated to the mean of the data
points assigned to it, as formulated in Equation (21). Here, u; denotes
the centroid of the jt” cluster, Cjis the set of points assigned to cluster

j, and |G;] is the number of points in the cluster.

1
u] = |C_j|ZXiECj Xi (21)
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4. Iteration: Steps 2 and 3 are repeated until the cluster centers change
minimally or the stopping criterion is satisfied. The stopping criterion
is typically defined using a threshold based on the degree of change in

centroid locations or data point assignments.

In this study, the distance metrics used for clustering were Euclidean,
Manhattan, and Minkowski distances, shown respectively in

Equations (22), (23), and (24):

d(x,y) = \/Zin=1(xi —yi)? (22)
dx,y) = XL lx — il (23)
d(x,y) = (S0 lx; — yilP)? (24)

As shown in Equation (24), the Minkowski distance can represent
different distance metrics depending on the parameter p. For example,
when p=1, Minkowski distance is equivalent to Manhattan distance;

when p=2, it becomes Euclidean distance.

2.2.2. Hierarchical Clustering

Another widely used clustering method is hierarchical clustering.
Hierarchical clustering algorithms construct clusters by successively
merging or splitting the dataset into nested structures. This approach is
based on two main strategies: agglomerative (bottom-up) and divisive
(top-down). In the agglomerative approach, each data point initially
starts as its own single cluster. At each step, the algorithm merges the
two clusters that are closest to each other. This process continues until

all data points are combined into a single cluster. Conversely, the
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divisive approach begins with all data points grouped into one large
cluster. This cluster is then recursively split into smaller subclusters at
each step, and the process continues until each data point forms its
own individual cluster. Both approaches produce a tree-like
visualization known as a dendrogram. The dendrogram enables the
examination of similarity levels between clusters and allows tracking
of the clustering process visually. Because the dendrogram can be cut
at any desired level to obtain different numbers of clusters,
hierarchical clustering offers a flexible structure. Among hierarchical
clustering techniques, one of the most preferred methods is Ward’s
method. Ward’s method determines cluster merging decisions by
minimizing within-cluster variance, which generally leads to the
formation of balanced and homogeneous clusters. Unlike classical
clustering methods such as K-Means and hierarchical clustering,
which assign each data point to a single cluster absolutely, fuzzy
clustering methods acknowledge that in some cases it may not be
possible to assign observations to a single cluster definitively.
Especially in datasets with ambiguous boundaries between clusters,
fuzzy clustering techniques have been developed. In fuzzy clustering,
an observation can belong to multiple clusters with different
membership degrees ranging between 0 and 1. As in traditional
clustering, distances are computed using distance metrics in fuzzy
clustering as well. The Fuzzy C-Means (FCM) method, which was

used in this study, is explained in the following subsection.
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2.2.3. Fuzzy C-Means (FCM)

The Fuzzy C-Means (FCM) algorithm is one of the most widely used
fuzzy clustering methods. Similar to many other fuzzy clustering
algorithms, it is based on minimizing a specific objective function,
and the algorithm terminates when the improvement in this function
falls below a predetermined threshold (Giileryiiz, 2022). Initially, the
membership matrix U@ = [Wi;] with dimensions nxc is randomly
initialized. Here, uij represents the degree of membership of the it
data point in the j cluster, subject to the conditions 0 <uwi; <1 and

Z]-C=1 uj; = 1. Cluster centers are computed using Equation (25)

(Bezdek, 1981):

n m
Yi=1 Ujj Xi

n m
Yi=1 Ujj

vj = (25)
where vj is the center of the jt" cluster, m is the fuzzifier parameter,
and x: is the i?" data point. Membership degrees are updated using

Equation (26):

ujj = L (26)

x;,v;) \(m—1)
Zﬁ=1<d( 1 ]))

d(xjvi)

where d(x;,v;) denotes the distance between the i data point and the
jt" cluster center. In this study, Euclidean, Manhattan, and Minkowski
distance metrics were used to measure this distance, and the effects of
these metrics on the clustering outcomes were analyzed. Finally, the
stopping criterion shown in Equation (27) checks whether the change

in the membership matrix U falls below a prescribed threshold. If the
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change is smaller than this value, the algorithm terminates; otherwise,
it returns to Equation (25). Here, ¢ is a small positive constant

representing the stopping threshold.

[Uk+D — g®| < ¢ (27)

2.2.4. Evaluation of Clustering Performance

The Silhouette score is one of the most commonly applied measures
for judging the quality of clustering results. It evaluates how well a
data point fits into its assigned cluster while also considering how
different it is from other clusters. The score varies between —1 and +1.
Values approaching +1 indicate that the observation is well matched
to its cluster, whereas scores near 0 suggest that the point is positioned
close to a cluster boundary. The Silhouette value for each observation
is computed using Equation (28), where a(i) represents the average
distance from the it" point to all other points within the same cluster,
and b(i) is the average distance from the it" point to the closest other
cluster. The overall Silhouette score S is calculated by averaging the
individual scores of all observations, as shown in Equation (29)
(Rousseeuw, 1987):

.~ b()-a(i)
s() = max(a(i),b(i)) (28)
S==3N,s() (29)

The Calinski—Harabasz Index (CHI) is another well-established metric

used for assessing clustering effectiveness. This index evaluates the
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clustering structure by jointly considering within-cluster compactness
and between-cluster separation. CHI is defined in Equation (30),
where SSB denotes the between-cluster sum of squares, SSW is the
within-cluster sum of squares, K is the number of clusters, and N is the
total number of observations. The quantities SSB and SSW are
derived from Equations (31) and (32), respectively (Calinski &
Harabasz, 1974):

SSB/(K-1)

CHI = =S (30)
2

SSB= i ny (1) (31)

SSW = X8, Yxec (Ki — 1io)? (32)

In these expressions, ny refers to the number of data points in cluster,
kt" is the centroid of cluster, x is the global mean, x; represents the
data point, and Ci denotes the set of observations that belong to the

kt" cluster. In conclusion, the Silhouette score focuses on how clearly

separated clusters are from one another, whereas the CHI index
provides an evaluation based on both cluster compactness and inter-

cluster distinctiveness.

2.3.  Semi-Supervised Learning

Semi-supervised learning is a machine learning paradigm that
incorporates both labeled and unlabeled data during model training.
Because generating labeled datasets can be labor-intensive and

expensive, this approach seeks to improve learning performance by
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extending the information derived from a limited number of labeled
samples to a substantially larger set of unlabeled observations. The
model leverages the structural patterns recognized from the labeled
portion of the data to make informed predictions about the unlabeled
instances. As a result, semi-supervised techniques are capable of
producing effective models while requiring far fewer labeled

examples than traditional fully supervised methods.

This approach is frequently applied in domains such as healthcare,
text analytics, and image processing—areas characterized by abundant

data availability but limited feasibility for comprehensive labeling.

3. EVALUATION OF TURKIYE’S SUSTAINABLE ENERGY
POTENTIAL USING MACHINE LEARNING METHODS

In this section, the provinces of Tiirkiye are grouped according to their
sustainable energy potentials based on a set of selected indicators. To
this end, a general assessment of the application areas of machine
learning methods will first be presented, supported by examples from
the literature. Subsequently, the analyses conducted within the
proposed methodology will be examined, and the findings will be

presented.

3.1. Related Work

Various studies in the literature have analyzed countries or regions in
terms of their Sustainable Energy Potential (SEP). In some of these
studies, countries or regions were grouped using clustering methods

according to their SEP levels, and different analyses were conducted

39



based on the resulting groups. In others, SEP was treated as a
decision-making problem, and Multi-Criteria Decision-Making
(MCDM) methods were employed to rank alternatives and identify the
most suitable option. Most of these studies either focus on the
selection of a renewable energy source for a specific region (Saraswat
& Digalwar, 2021; Sahin, 2021; Afsordegan et al., 2016; Abdullah &
Najib, 2016; Seddiki & Bennadji, 2019) or aim to contribute to the
development of policies to enhance SEP (Marinakis et al., 2017;

Solangi et al., 2019; Dall’O’ et al., 2013).

A summary of clustering-based studies is presented in Table 2. The
table includes information about the clustering method used in each
study, the application area, the variables considered, and how the
number of clusters was determined or how clustering performance

was evaluated.

Table 2: Summary of the Literature on SEP Assessment

Application Cluster
Author(s) Method pp Variables Number
Area . .
Determination

Economic indicators:
facility/installation
costs, incentive and tax

Assessment of .
policies, energy supply;

Self-Organizing

Trappey et renewable - Root Mean Square
al. (2014) Map (SOM) and energy policies Eneronmental Error (RMSE)
AHP in Taiwan indicators: CO:

emissions, fossil fuel

usage, greenhouse gas

impacts

. Analysis of Installed capacity,
Grigoras & renewable voltage level, renewable
Scarlatache K-Means energy technilo ’ . Silhouette index
(2015) potential in gy type,
Romania geographic location
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Cluster

Application .
Author(s) Method plz)&rea Variables Number
Determination
Number of PhD
Comparison of graduates, scientific
innO\FI)ation and publications, R&D
Pelau & sustainabilit expenditures, patents, Dendrogram
Chinie Ward levels acrosz product/service exports, analysis, Elbow
(2018) European electricity use, waste method
counfries generation, air pollution,
GHG emissions,
recycling rates
Total primary energy
supply, final energy
consumption, installed
TOPSIS and Sustainable electricity capacity,
Tutak et al. Kohonen neural energy energy efficiency, P; values obtained
(2020) network development in  energy taxation, via TOPSIS
EU countries electricity prices, R&D
spending, GHG
emissions, air pollution,
poverty rate
Multidimensional ~ Classification .
goal-oriented of energy Daily enerey.
Liu et al. clustering, investment gznsstmﬁgj(?l’niﬂy solar Calinski—Harabasz
(2020) Gaussian options in tput, Index (CHI)
Mixture Model Brisbane, :zglgeggjﬁg?::%
(GMM) Australia ’
Projection i\;lil;lvig(l)en of Economic development, XB  (Xie—Beni),
Wan & pursuit fuzzy ener environmental pressure, PE (Partition
Yan g(2020) clustering  and sustagi}xllabilit energy conditions, social  Entropy), PC
& accelerated 27 };EU progress,  governance (Partition
genetic algorithm countries and policy dimensions Coefficient)
Renewable
energy usage Share of renewables in
Kacperska et Ward patterns in EU  transport, electricity ~ Dendrogram
al. (2021) ar and Visegrad  generation, and  analysis
Group heating/cooling
countries
Total primary energy
Energy . supply (TPES), energy
K-Means, consumption . . .
. . efficiency Silhouette  index,
Gostkowski DIANA structure in
etal. (2021)  (Hierarchical Visegrad (energy/GDP), _energy  Rand-Jaccard
: Cluctors &t intensity (TPES/GDP), index
ustering) Group
countries sectoral energy
consumption
SDG7
performance
comparison in  Access to energy, energy
Matenea developed production sources,
(2022)g K-Means (USA, China) energy consumption, Elbow method
and developing energy losses, short-term
regions (Sub-  debt, per-capita income
Saharan Africa,
South Asia)
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Cluster

Application .
Author(s) Method plz)&rea Variables Number
Determination
Environmental Environmental
erformance performance scores,
Quatro—si End clean &Y consumption,
K-Medoids GDP per capita, Elbow method
(2022) energy industrial added value
modelling  in ati densit ’
. population ensity,
EU countries urbanization rate
?fsgt;(i)::lla]e Energy  use, labor,
Li et al. Bootstrap DEA devel " capital, R&D stock, SO.  Interpretation  of
(2022) and K-Medoids cvelopmen emissions, GDP, patent bi-cluster graphs

assessment  in
China

counts

Kosowski et
al. (2023)

K-Means

Structure of
primary energy
consumption in
Europe

Solid fossil fuels, crude
oil, natural gas, nuclear
energy, renewables, and
other energy sources

SSwW and
Silhouette index

Table 2 shows that environmental and macroeconomic variables are
frequently used in clustering studies. Unlike many others, Grigoras
and Scarlatache (2015) also included ‘“location” as an analysis
criterion. Additionally, some studies incorporated social indicators
such as the number of PhD graduates, scientific publications, R&D

expenditures, and patent applications.

3.2. Methodology

3.2.1. Dataset

In this study, the provinces of Tiirkiye were clustered based on their
SEP. The criteria affecting SEP were examined under three main
categories: socioeconomic structure, geographical characteristics, and

renewable energy potential (REP).

Within the socioeconomic category, the following variables were
used: land area, population, annual population growth rate (%o), GDP
per capita, total exports (thousand USD), total imports (thousand
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USD), industrial volume (thousand TRY), and invoiced electricity

consumption (MWh). Geographical position was incorporated into the

model using latitude, longitude, northeastern boundary latitude,

northeastern boundary longitude, southwestern boundary latitude, and

southwestern boundary longitude. The REP category—directly related

to sustainable energy planning—was defined more comprehensively.

Numerous criteria associated with solar, wind, biomass, geothermal,

and hydropower potential were included. These criteria are presented

in Table 3.
Table 3: REP Criteria
No REP Criterion No REP Criterion
REP1 Radiation value (kWh/m?-year) REP14  Agricultural land (ha) — 2020
o Total cultivated agricultural land
REP2 Average temperature (°C) REP15 (ha) — 2021
REP3 ?Vce)rage maximum (emperature  pppi6  Arificial areas (ha) — 2020
Average minimum temperature Forests and semi-natural areas
REP4 °C) REP17 (ha) — 2020
REps ~ Average  sunshine duration  pppie \erlands (ha) - 2020
(hours)
REP6 Average wind speed (m/s) REP19  Water surfaces (ha) — 2010-2020
Rgp7 ~ Average wind power density  prpog  prisated land (ha)— 2020
(W/m?)
Average wind capacity factor Forest biomass volume (m?® -—
REP8 %) REP21 2001
REP9 Average number of rainy days REP22 ggéall fertilizer - consumption -
s Crop production value (thousand
REP10  Total precipitation amount REP23 TL)- 2021
Total average streamflow Livestock  production  value
REPII (m?/s) — 2021 REP24 (thousand TL) — 2021
REP12  Elevation REP25 Production of cereals and other
crops (tons) — 2021
Groundwater (hm®/year) - Average PMI10 station values
REP13 2021 REP26 (ug/m?) — 2022
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The dataset used in the study was obtained from publicly accessible
databases in Tiirkiye (Turkish State Meteorological Service, 2024;
Ministry of Energy and Natural Resources, 2024c; Ministry of
Agriculture and Forestry, 2024; Ministry of Environment,
Urbanization and Climate Change, 2024a; 2024b; General Directorate
of State Hydraulic Works, 2024).

The dataset covers all 81 provinces of Tiirkiye. Although the inclusion
of many criteria may raise concerns regarding dimensionality, this
approach is necessary to accurately reflect the multidimensional
structure of SEP. SEP is influenced not only by technical indicators
related to solar, wind, hydropower, geothermal, and biomass resources

but also by environmental, socioeconomic, and geographical factors.

Solar energy potential is largely determined by radiation levels;
regions with higher radiation naturally exhibit stronger solar energy
generation capacity. Average temperature, as well as maximum and
minimum temperatures, affects the technical efficiency and seasonal
performance of photovoltaic systems. Average sunshine duration is a
direct determinant of regional solar potential. In the context of wind
energy, average wind speed is a critical indicator. Furthermore, wind
power density and capacity factor are essential parameters for
assessing the technical and economic feasibility of wind energy in
each region. Hydropower potential depends on factors such as
precipitation levels, river discharge, and elevation. Biomass potential
is influenced by agricultural land availability, crop production values,

livestock activities, forest resources, and water availability—reflecting
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the biophysical and agricultural capacity of a region. Environmental
factors such as air quality (PM10) and forest stock serve as indicators
both of sustainability performance and the need for renewable energy
deployment. Among socioeconomic factors, population and
population growth rate provide important insights into future regional
energy demand. Geographical variables were incorporated into the
model through latitude and longitude, given their direct influence on

climatic conditions.

All variables were normalized to the range [0,1] using the min—max
scaling method to eliminate differences in measurement units. To
avoid redundancy, one variable from each pair with correlation
coefficients above 0.95 was removed from the dataset following a

correlation analysis.

Figure 7 presents the correlation matrix of REP criteria, and the
variable codes shown in the figure correspond to those listed in Table

3.

Figure 8 presents the correlation matrix for the socioeconomic criteria.
Here, SE1, SE2, SE3, SE4, SES, SE6, SE7, and SES8 represent land
area, population, annual population growth rate (%o), GDP per capita,
total exports, total imports, industrial volume, and billed electricity

consumption, respectively.
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3.2.2. FCM Findings

The FCM algorithm was implemented using three primary groups of
criteria. FCM was chosen for the initial clustering phase because it can
accommodate overlapping observations and assign each data point a
degree of membership across clusters. This property is especially
advantageous when working with complex datasets in which cluster
boundaries are not sharply defined. The algorithm’s flexibility made it
suitable for capturing the nuanced relationships among socioeconomic
characteristics, geographical location, and REP. In this context, FCM

served to uncover the multidimensional structure underlying SEP.

The algorithm was executed with three different distance metrics—
Euclidean, Manhattan, and Minkowski—and with several alternative
cluster numbers. Since Tiirkiye is divided into seven geographical
regions, the algorithm was tested using 4, 5, 6, 7, 8, 9, and 10 clusters.
The analysis was carried out in RStudio version 2024.12.1+563, an
integrated development environment that provides extensive support

for statistical programming and visualization in R.

Because FCM is a fuzzy clustering technique, each observation
receives a membership value between O and 1. This enabled the
quantification of each province’s degree of association with each
cluster. The membership values produced by the algorithm were then
consolidated into a single dataset. For instance, when the cluster count
is 4, the resulting dataset contains 12 variables (4 clusters x 3 main
criteria). Likewise, when 10 clusters are used, the dataset includes 30

variables.
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Table 4 illustrates an example of the dataset generated by the FCM

procedure, specifically the output obtained with Euclidean distance for

k=4.

Province

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

Table 4: Dataset for Euclidean Distance and k= 4

Socioeconomic Location REP
C1 C2 C3 C4 C1 C2 C3 C4 C1 Cc2 C3 C4
0.367 0.175 0.346 0.112|0.147 0.161 0.371 0.321|0.609 0.015 0.255 0.120
0.068 0.126 0.041 0.765|0.098 0.340 0.380 0.182 | 0.057 0.002 0.930 0.011
0.113 0.244 0.064 0.579|0.642 0.067 0.109 0.183|0.171 0.005 0.795 0.029
0.099 0.173 0.060 0.668|0.111 0.509 0.220 0.160 | 0.142 0.006 0.820 0.032
0.114 0.201 0.070 0.614|0.134 0.089 0.220 0.557 | 0.047 0.002 0.942 0.009
0.092 0.212 0.050 0.646 | 0.121 0.152 0.405 0.322|0.096 0.004 0.880 0.020
0.359 0.363 0.124 0.155|0.240 0.089 0.176 0.495|0.116 0.022 0.095 0.768
0.252 0.206 0.368 0.174|0.413 0.119 0.189 0.280|0.634 0.011 0.279 0.077
0.064 0.123 0.037 0.776 | 0.118 0.482 0.230 0.170|0.162 0.007 0.794 0.037
0.158 0.093 0.683 0.066 | 0.108 0.506 0.225 0.161|0.128 0.005 0.838 0.028
0.152 0.539 0.072 0.237|0.503 0.113 0.162 0.222 | 0.419 0.008 0.523 0.050
0.166  0.108 0.647 0.079|0.567 0.097 0.140 0.196 | 0.697 0.007 0.247 0.049
0.366 0.379 0.109 0.146 | 0.324 0.120 0.203 0.353 | 0.110 0.004 0.863 0.024
0.080 0.144 0.048 0.728 | 0.082 0.599 0.193 0.127 | 0.046 0.002 0.943 0.009
0.097 0.171 0.059 0.672|0.069 0.641 0.179 0.112|0.163 0.007 0.792 0.038
0.143 0.394 0.073 0.390| 0.794 0.041 0.064 0.102|0.272 0.007 0.679 0.042
0.067 0.125 0.040 0.768|0.030 0.845 0.078 0.048 | 0.141 0.006 0.822 0.032
0.048 0.092 0.028 0.831|0.093 0.567 0.201 0.139 | 0.147 0.006 0.814 0.033
0.249 0.201 0.380 0.169|0.435 0.096 0.164 0.306 | 0.187 0.005 0.775 0.032
0.141 0.537 0.066 0.256 | 0.510 0.097 0.154 0.239 | 0.061 0.002 0.924 0.012
0.195 0.113 0.612 0.079 | 0.677 0.068 0.102 0.152|0.073 0.012 0.060 0.855
0.212 0.113 0.599 0.077 | 0.477 0.125 0.171 0.227|0.220 0.006 0.737 0.037
0.146 0.599 0.065 0.190|0.178 0.098 0.205 0.519 |0.081 0.003 0.900 0.016
0.246 0.543 0.080 0.132|0.132 0.121 0.305 0.442|0.278 0.009 0.659 0.054
0.691 0.154 0.084 0.072|0.538 0.099 0.148 0.215|0.745 0.007 0.197 0.051
0.120 0.219 0.072 0.588 | 0.074 0.611 0.196 0.120|0.228 0.007 0.724 0.041
0.678 0.141 0.107 0.074|0.501 0.090 0.149 0.260 | 0.257 0.007 0.695 0.041
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Province

P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
Pa1
P42
P43
Pa4
P45
P46
P47
P48
P49
P50
P51
P52
P53
P54
P55
P56
P57
P58
P59
P60

Socioeconomic Location REP
C1 C2 C3 C4 C1 C2 C3 C4 C1 Cc2 C3 C4
0.088 0.188 0.050 0.675|0.456 0.131 0.178 0.235|0.045 0.002 0.945 0.009
0.076  0.138 0.046 0.740|0.071 0.566 0.238 0.125|0.071 0.003 0.912 0.014
0.046  0.089 0.027 0.839|0.064 0.630 0.196 0.110|0.108 0.004 0.866 0.023
0.161 0.437 0.081 0.321|0.072 0.650 0.167 0.111|0.097 0.004 0.879 0.021
0.071 0.831 0.029 0.070|0.771 0.043 0.069 0.118 | 0.670 0.011 0.244 0.076
0.086 0.160 0.052 0.703|0.115 0.252 0.414 0.219|0.396 0.028 0.264 0.312
0.697 0.142 0.090 0.071|0.107 0.355 0.341 0.197|0.067 0.002 0.917 0.014
0.189 0.573 0.075 0.164|0.084 0.531 0.241 0.144 | 0.145 0.006 0.817 0.033
0.089 0.159 0.054 0.700|0.126 0.459 0.237 0.177 | 0.153 0.006 0.805 0.035
0.148 0.488 0.072 0.292 | 0.144 0.208 0.378 0.270|0.520 0.014 0.374 0.092
0.093 0.164 0.057 0.686 | 0.127 0.462 0.234 0.177 |0.156 0.006 0.802 0.036
0.132 0.574 0.062 0.232 | 0.495 0.097 0.157 0.250 | 0.034 0.001 0.958 0.007
0.147 0.446 0.072 0.335| 0.567 0.095 0.138 0.200 | 0.007 0.978 0.007 0.008
0.302 0.397 0.123 0.178 | 0.496 0.117 0.165 0.222|0.136 0.028 0.114 0.723
0.177 0.643 0.063 0.117 | 0.102 0.199 0.484 0.215|0.679 0.007 0.270 0.044
0.201 0.113 0.607 0.079|0.293 0.113 0.202 0.391|0.131 0.005 0.837 0.028
0.061 0.124 0.035 0.779 | 0.229 0.127 0.248 0.397 | 0.048 0.002 0.941 0.009
0.090 0.173 0.053 0.684|0.118 0.486 0.227 0.169 | 0.150 0.006 0.809 0.034
0.255 0.223 0.324 0.198 | 0.208 0.126 0.240 0.426 | 0.045 0.002 0.945 0.009
0.081 0.158 0.047 0.714|0.093 0.106 0.480 0.321|0.783 0.007 0.162 0.048
0.096 0.169 0.059 0.677|0.128 0.066 0.146 0.660 | 0.095 0.003 0.884 0.019
0.775 0.097 0.078 0.051|0.473 0.125 0.172 0.230 | 0.361 0.008 0.582 0.049
0.090 0.159 0.055 0.697 | 0.054 0.037 0.097 0.811|0.090 0.003 0.889 0.018
0.095 0.168 0.058 0.679|0.125 0.241 0.400 0.234|0.137 0.006 0.827 0.031
0.109 0.250 0.059 0.582|0.622 0.077 0.118 0.183|0.138 0.027 0.115 0.720
0.243 0.318 0.157 0.282|0.283 0.109 0.207 0.401|0.619 0.014 0.254 0.113
0.259 0.130 0.525 0.087 | 0.900 0.020 0.031 0.050 | 0.296 0.007 0.653 0.044
0.066 0.123 0.039 0.773|0.089 0.359 0.382 0.170|0.159 0.005 0.810 0.027
0.194 0.561 0.080 0.165|0.514 0.112 0.158 0.216 | 0.501 0.022 0.282 0.196
0.081 0.149 0.049 0.721|0.093 0.537 0.224 0.146 | 0.159 0.005 0.809 0.028
0.327 0.188 0.359 0.126|0.174 0.153 0.320 0.353 | 0.644 0.011 0.268 0.077
0.101 0.063 0.790 0.046|0.481 0.117 0.169 0.233|0.311 0.008 0.635 0.046
0.078 0.143 0.047 0.732|0.074 0.645 0.169 0.113|0.140 0.006 0.823 0.031
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Province

P61
P62
P63
P64
P65
P66
P67
P68
P69
P70
P71
P72
P73
P74
P75
P76
P77
P78
P79
P80
P81

Socioeconomic Location REP
C1 C2 C3 C4 C1 C2 C3 C4 C1 Cc2 C3 C4
0.090 0.160 0.055 0.695|0.109 0.094 0.288 0.510|0.112 0.004 0.860 0.024
0.085 0.155 0.051 0.708|0.135 0.117 0.319 0.429 | 0.073 0.003 0.910 0.015
0.512 0.274 0.102 0.112|0.112 0.301 0.373 0.214|0.067 0.002 0.919 0.012
0.120 0.302 0.064 0.515|0.125 0.186 0.427 0.262|0.291 0.009 0.650 0.050
0.175 0.617 0.067 0.141|0.095 0.533 0.223 0.150 | 0.079 0.003 0.902 0.016
0.328 0.445 0.094 0.135|0.622 0.074 0.116 0.189|0.686 0.011 0.225 0.078
0.699 0.140 0.091 0.069|0.133 0.194 0.383 0.290 | 0.434 0.008 0.507 0.051
0.062 0.115 0.037 0.786|0.095 0.555 0.207 0.143|0.140 0.006 0.823 0.031
0.235 0.127 0.552 0.087|0.176 0.171 0.305 0.348 |0.137 0.006 0.827 0.031
0.143  0.533 0.068 0.256 | 0.075 0.158 0.594 0.174|0.087 0.003 0.894 0.017
0.177 0.281 0.112 0.430| 0.106 0.388 0.324 0.183|0.372 0.011 0.551 0.066
0.054 0.105 0.031 0.811|0.110 0.505 0.225 0.161|0.135 0.005 0.831 0.029
0.082 0.160 0.048 0.711|0.512 0.113 0.158 0.217|0.383 0.028 0.264 0.324
0.077 0.827 0.030 0.066 | 0.098 0.165 0.499 0.239 |0.081 0.003 0.899 0.017
0.671 0.162 0.090 0.077|0.096 0.496 0.249 0.159 | 0.116 0.004 0.860 0.021
0.079 0.156 0.045 0.720|0.053 0.693 0.164 0.091|0.162 0.007 0.794 0.037
0.110 0.260 0.059 0.571|0.664 0.069 0.106 0.161|0.156 0.005 0.814 0.027
0.096 0.171 0.059 0.674|0.117 0.491 0.226 0.166|0.127 0.005 0.841 0.027
0.079  0.151 0.046 0.725|0.648 0.074 0.111 0.167 | 0.327 0.008 0.616 0.049
0.115 0.290 0.061 0.535|0.102 0.090 0.265 0.543|0.112 0.004 0.859 0.024
0.615 0.155 0.144 0.086 | 0.382 0.112 0.185 0.322|0.212 0.006 0.745 0.037

The remaining FCM results are not included in the book due to page

limitations.

3.2.3. K-Means Findings

The new datasets obtained from the FCM results were subsequently

subjected to crisp clustering using the K-Means algorithm. This

process ensured that the clustering analysis could represent the

multidimensional structure of the energy system independently of the

number of original variables. In this way, a novel two-stage
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hierarchical clustering approach was proposed by integrating fuzzy

and hard clustering methods.

As an example, the visualizations of the 4-cluster and 10-cluster
solutions generated using the Euclidean distance metric are presented

in Figure 9 and Figure 10, respectively.
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Figure 9: k = 4, Metric = Euclidean
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Figure 10: £ =10, Metric = Euclidean

For the same number of clusters, the clustering results obtained using

the Manhattan metric are presented in Figures 11 and 12, respectively.
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Figure 12: £ =10, Metric = Manhattan

Finally, the clustering results obtained using the Minkowski metric are

presented in Figures 13 and 14, respectively.
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Figure 13: k =4, Metric = Minkowski
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Figure 14: k=10, Metric = Minkowski

All cluster visualizations obtained using the K-Means algorithm are
presented in Appendix A (Figures A.1, A.2, A3, A4, A5, A6, A7,
A8, A9, A.10, A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19,
A.20,and A.21).

3.2.4. Analysis of Clustering Performance
In the second stage of the methodology, the effectiveness of the

clustering results was evaluated to determine the final cluster
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structure. The class labels obtained from the clustering process were
added to the dataset, and the problem was then treated as a
classification task. Using the KNN, SVM, RF, and XGBoost
algorithms, classification errors were computed. Additionally, voting
and stacking ensemble learning techniques were applied to examine
whether classification performance could be improved. The results
were compared with widely used clustering performance metrics—
Silhouette and CHI indices—and the applicability of classification
algorithms as a measure of clustering accuracy was critically assessed.
The cluster configuration with the lowest classification error was
selected as the final clustering solution. Furthermore, the effects of
cluster number and distance metric on clustering performance were
thoroughly analyzed.

The classification algorithms utilized in this study were chosen based
on their distinct strengths. KNN was preferred due to its simplicity
and effectiveness. RF was selected for its strong generalization ability
and robustness against overfitting, despite being based on decision
trees. SVM was employed because of its high performance in cases
where data are not linearly separable and its ability to maximize the
margin between classes. XGBoost was chosen due to its high
predictive accuracy, built-in regularization mechanisms that prevent
overfitting, and computational efficiency.

The CHI and Silhouette scores for all cluster configurations are

presented in Table 5.
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Table 5: CHI ve Silhoutte Scores for all Clusters

Cluster Average Silhouette
Metric Silhouette CHI . CHI Ranking
Number Score Ranking
Score
Euclidean 4 0.32 31.72 1 1
Euclidean 5 0.27 25.05 4 3
Euclidean 6 0.26 19.22 5 8
Euclidean 7 0.17 13.46 20 15
Euclidean 8 0.21 13.25 16 16
Euclidean 9 0.21 11.85 17 20
Euclidean 10 0.14 9.55 21 21
Manhattan 4 0.26 22.64 10 6
Manhattan 5 0.26 24.15 11 4
Manhattan 6 0.26 18.01 7 11
Manhattan 7 0.26 19.57 8 7
Manhattan 8 0.26 19.22 5 8
Manhattan 9 0.23 14.26 13 14
Manhattan 10 0.20 12.36 19 19
Minkowski 4 0.28 23.13 2 5
Minkowski 5 0.25 18.57 12 10
Minkowski 6 0.28 26.18 3 2
Minkowski 7 0.26 17.87 9 12
Minkowski 8 0.22 14.77 15 13
Minkowski 9 0.21 12.58 18 17
Minkowski 10 0.23 12.56 14 18

According to Table 5, the most effective clustering configuration was
achieved when the Euclidean distance metric was used with four
clusters. Nonetheless, some clustering outcomes showed only minor
performance differences. Additionally, discrepancies between the
rankings of the validity indices are noteworthy. For example, while the
Silhouette score identified the Minkowski distance with four clusters
as the second-best solution, the CHI index ranked the Minkowski
metric with six clusters as the second-best alternative. This
inconsistency indicates that relying on a single validity measure may

not provide a sufficiently robust assessment when comparing various
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distance metrics and cluster counts. Therefore, this study incorporates
classification algorithms as an additional approach to more accurately
determine the optimal number of clusters.

For the classification procedures, 75% of the data was used for model
training and the remaining 25% for testing. Stratified sampling
ensured that each cluster (class) was proportionally represented in
both subsets, helping to reduce potential bias. Multiple precautions
were taken to mitigate overfitting during model development. Cross-
validation was employed for hyperparameter tuning across all
classifiers. In the KNN algorithm, the optimal value of £ was selected.
For the SVM model, the regularization parameter C and kernel width
o were optimized using grid search. In XGBoost and other ensemble
techniques, key hyperparameters such as maximum tree depth (dnax)
and learning rate (#) were fine-tuned through cross-validation to strike
a balance between model complexity and generalization ability. An
early-stopping rule was applied to halt the training process once the
validation error stopped decreasing, preventing unnecessary
complication of the model.

Given the relatively limited sample size, ensemble learning methods
were adopted to improve predictive performance. In total, 21
clustering experiments were conducted by combining seven different
cluster numbers with three distance metrics; however, not all cluster

configurations yielded valid outcomes.
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Figure 15: Confusion Matrix for k = 6, Metric = Euclidean

For instance, Figure 15 displays the confusion matrix produced by the
KNN classifier when the Euclidean distance metric was used and the
number of clusters was set to k=6. As illustrated in the figure, the
KNN algorithm identified 5 classes in the dataset, even though the
original clustering specified 6 groups. Classification outputs that
exhibited such inconsistencies were therefore removed from further

evaluation.

The classification errors observed in the analysis were not regarded as
a shortcoming of the methodology. Instead, they were interpreted as
indicators of clustering quality. When classification errors are low, this
suggests that the resulting clusters are clearly separated and readily
distinguishable, which in turn supports the appropriateness of the
chosen clustering settings and distance metrics. Conversely, high
classification error rates may point to overlaps between clusters or

challenges in differentiating the underlying variables. The results
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obtained using the KNN classifier are summarized in Table 6. For
each clustering configuration, cross-validation was performed by

adjusting the number of neighbors & from 1 to 20.

Table 6: Result of KNN

Number of Distance metric MCC Kappa Accuracy Bestk
clusters
k=4 Euclidean 0.86 0.86 0.90 2
k=5 Euclidean 0.94 0.93 0.95 2
k=7 Euclidean 0.58 0.58 0.74 5
k=8 Euclidean 0.70 0.74 0.78 4
k=4 Manhattan 0.76 0.75 0.84 4
k=5 Manhattan 0.86 0.86 0.89 3
k=7 Manhattan 0.73 0.72 0.76 2
k=4 Minkowski 0.87 0.87 0.90 4
k=5 Minkowski 0.87 0.86 0.89 2
k=7 Minkowski 0.69 0.68 0.74 2

The results obtained from the SVM method are shown in Table 7. In
the SVM approach, the RBF kernel was selected because, when
appropriately tuned, it typically yields strong classification
performance. The optimal values of the regularization parameter C
and the kernel width parameter o were identified using a grid search
procedure, while the number of support vectors was determined
automatically by the model. A smaller C value permits more
classification errors and thus reduces the likelihood of overfitting,
whereas a larger C value forces the model to fit the training data more
closely, increasing the risk of overfitting. Similarly, a small ¢ value

produces a more complex and flexible decision boundary (Cassia,

2024).
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Table 7: SVM Results

Number Distance Regularization o Number of MCC Kappa Accuracy
of metric parameter (C) support
clusters vectors
k=4 Euclidean 3.5 0.02 35 0.87 0.87 0.91
k=5 Euclidean 2.5 0.02 44 0.79 0.76 0.81
k=6 Euclidean 1.5 0.02 51 0.80 0.77 0.82
k=4 Manhattan 2.5 0.02 38 0.92 0.93 0.95
k=5 Manbhattan 7 0.01 44 0.68 0.69 0.77
k=6 Manbhattan 2 0.02 48 0.80 0.77 0.82
k=7 Manhattan 1.5 0.02 51 0.84 0.83 0.86
k=4 Minkowski 10 0.02 37 0.88 0.87 0.90
k=5 Minkowski 4.5 0.02 41 0.86 0.82 0.86
k=6 Minkowski 5.5 0.01 47 0.67 0.76 0.81

The results obtained using the RF method are presented in Table 8.

Table 8: RF Results

Number Distance mtry MCC Kappa Accuracy
of metric

clusters

k=4 Euclidean 4 0.94 0.94 0.95
k=5 Euclidean 2 0.94 0.93 0.95
k=6 Euclidean 4 0.74 0.71 0.77
k=4 Manbhattan 3 0.81 0.80 0.86
k=5 Manhattan 4 0.68 0.67 0.77
k=6 Manhattan 2 0.78 0.77 0.82
k=7 Manbhattan 4 0.67 0.78 0.83
k=4 Minkowski 3 0.87 0.87 0.90
k=5 Minkowski 4 0.74 0.71 0.77
k=6 Minkowski 6 0.89 0.89 0.91

In Random Forest, the hyperparameter mtry—which specifies the
number of variables considered at each split—was tuned through
cross-validation. A smaller mfry increases the diversity among trees
and helps mitigate overfitting. Conversely, a larger mfry value can

improve the accuracy of individual trees but also raises the correlation
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between them, potentially diminishing the ensemble’s generalization

capability.

The

configurations are presented in Table 9.

XGBoost results

and the corresponding hyperparameter

Table 9: XGBoost Results

Number Distance MCC Kappa Accuracy Best parameter combination

clu(s)tfers metrie
k4 Buclidean 07559 0.8679 09048 g > Wmn™ LSTLsr=075,y=0.m 7
k=5 Euclidean  0.9366 0.9333  0.9474 S"(‘ff 9 Winin= 1,s = 1,5:=0.5,y =02,
k=7 Euclidean 07284 07224  0.7647 f}“:{f’ min= 1,5 =075, =0.3,y = 0.1,
k=8 Euclidean 07169 07104  0.7500 gfgasxz % Winin=1,s =1, s =1,y=0,n=
k4 Manhatan 09331 09298 09500  Cmax” % W™ L5 =08 s Ly =04
k=6 Manhattan ~ 0.6667  0.7627  0.8095 STX =6 W= Lis = Lse=1,y=0,n=
k=7  Manhattan  0.8281 0.8779  0.8571 g_"iaxz 3 Wnin=1,s =1 sr=1,y=02n=
k=4 Minkowski 09386 09359  0.9545 gf{ax: % Wmin=1Ls =1 sr=1y=01n=
k=5 Minkowski ~ 0.8070  0.8014  0.8421 g"iax % Win= s =1, s =1,y=0,n=
k=6 Minkowski 0.8373  0.8281  0.8636 a0, Wnin= 1,3 =1 5= L 7= 0.m =011

In this framework, dm. specifies the maximum depth of the trees;

increasing this parameter creates more complex models but also

heightens the likelihood of overfitting. The parameter wy;, represents

the minimum total Hessian (second derivative) weight required for a

node to undergo a split. Conceptually, it functions as the model’s

mathematical mechanism for determining whether a split is justified,

thereby regulating tree growth and helping to control overfitting.

Lower values make the model more responsive to variations in the
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data, while higher values tend to enhance its ability to generalize. The
parameter s refers to the fraction of data samples randomly selected
for training each tree, whereas sf indicates the fraction of features
randomly chosen for the same purpose. The parameter y defines the
minimum loss reduction needed to allow a leaf node to split; larger
values require greater improvement in the objective function before a
split is permitted. The learning rate # determines how much each
additional tree contributes to the model’s final prediction. Although
smaller values of # often produce more stable and potentially more
accurate models, they can substantially increase the training duration

(GitHub, 2024; Chen & Guestrin, 2016).

Additionally, within the proposed methodology, the predictions of the
RF and XGBoost algorithms were combined to create a stacked
dataset. Then, MLR, SVM, and KNN models were used as meta-
models, and accuracy values were calculated. The meta-models that
produced the best results in the stacked method and their performance

metrics are presented in Table 10.

Table 10: Results of Ensemble Model 1

Number  Distance metric Best meta-model MCC Kappa Accuracy
of

clusters

k=4 Euclidean MLR-KNN 0.76 0.87 0.90
k=5 Euclidean MLR-KNN-SVM 0.85 0.80 0.86
k=4 Manhattan MLR-KNN-SVM 0.85 0.93 0.95
k=5 Manbhattan MLR-KNN-SVM 0.78 0.80 0.86
k=6 Manbhattan MLR-KNN-SVM 0.67 0.76 0.81
k=7 Manhattan MLR-SVN 0.83 0.88 0.86
k=4 Minkowski MLR-KNN 0.94 0.93 0.95
k=5 Minkowski SVM 0.80 0.79 0.76
k=6 Minkowski MLR-KNN-SVM 0.84 0.81 0.86
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The cross-validation procedures previously applied to the RF,
XGBoost, SVM, and KNN models were repeated, and the optimal
hyperparameters identified through these validations were
incorporated into the final model. However, the detailed cross-
validation outputs were not included in Table 10 due to page layout
constraints. In the final stage, predictions generated by the RF and
XGBoost algorithms were combined using a majority voting ensemble
strategy, and the corresponding results are presented in Table 11. As in
earlier steps, the necessary cross-validation processes for tuning the

RF and XGBoost parameters were also carried out in this part of the

analysis.
Table 11: Results of Ensemble Model 2
Number of Distance metric MCC Kappa Accuracy
clusters

k=4 Euclidean 0.94 0.94 0.95
k=5 Euclidean 0.85 0.93 0.95
k=6 Euclidean 1.00 1.00 1.00
k=7 Euclidean 0.87 0.87 0.89
k=8 Euclidean 0.81 0.80 0.83
k=4 Manhattan 0.78 0.76 0.84
k=5 Manhattan 1.00 1.00 1.00
k=6 Manhattan 1.00 1.00 1.00
k=7 Manhattan 0.88 0.87 0.89
k=8 Manhattan 0.72 0.71 0.75
k=10 Manhattan 0.52 0.50 0.56
k=4 Minkowski 1.00 1.00 1.00
k=5 Minkowski 0.93 0.93 0.95
k=6 Minkowski 1.00 1.00 1.00
k=7 Minkowski 0.43 0.42 0.53

A review of Tables 6 through 11 shows that the KNN, SVM, RF, and
XGBoost models each yielded 10 valid classification results, while

Ensemble Model 1 produced 9 valid classifications and Ensemble
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Model 2 produced 15. With the exception of a single valid outcome
obtained from Ensemble Model 2 (k = 10, Manhattan), none of the
methods generated acceptable classifications for cluster sizes of 9 or
10. Table 12 summarizes the mean MCC, Kappa, and accuracy values

computed for each model.

Table 12: Comparison of Distance Metrics

Method Number of Distance Average Average Average
Predictions Metric MCC Kappa Accuracy
KNN 4 Euclidean 0.77 0.78 0.84
SVM 3 Euclidean 0.82 0.80 0.85
RF 3 Euclidean 0.87 0.86 0.89
XGBoost 4 Euclidean 0.78 0.81 0.84
Ensemble .
Model 1 2 Euclidean 0.80 0.84 0.88
Ensemble .
Model 2 5 Euclidean 0.89 091 0.93

Based on these findings, Ensemble Model 2 was selected as the basis
for determining the optimal number of clusters, as it outperformed the
other approaches. The most successful clustering structures were
identified through the results obtained by this ensemble. Initially,
when the Euclidean distance metric was used, the 6-cluster solution
achieved perfect classification performance, with MCC, Kappa, and
accuracy values all equal to 1.00. Under the Manhattan distance
metric, both the 5-cluster and 6-cluster solutions likewise produced
perfect results across all performance measures. Similarly, the
Minkowski metric yielded two fully accurate solutions, with the 4-
cluster and 6-cluster configurations each reaching MCC, Kappa, and

accuracy values of 1.00.
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Table 13 provides a comparison between the clustering structures

identified as completely successful by Ensemble Model 2 and the

Silhouette and CHI indices reported in Table 5.

Table 13: Evaluation of Ensemble Model 2 in Relation to the

Silhouette and CHI
Cluster Distance Average CHI
R McCC Kappa Accuracy Silhouette .
number metric . ranking
score ranking

k=6 Euclidean 1.00 1.00 1.00 5
k=5 Manhattan 1.00 1.00 1.00 11 4
k=6 Manhattan 1.00 1.00 1.00 7 11
k=4 Minkowski 1.00 1.00 1.00
k=6 Minkowski 1.00 1.00 1.00

As shown in Table 13, the clustering obtained using the Minkowski

distance metric with a cluster count of 6 was selected as the final

solution, as it consistently appears within the top three ranks across all

evaluation criteria.

Table 14: Final Clustering Results

Cluster Province Group
Adana, Antalya, Burdur, Denizli, Gaziantep, Hatay, Isparta, Kahramanmaras,
Cluster a . . .
Kayseri, Mersin, Sanlurfa, Osmaniye
Adiyaman, Agri, Aksaray, Ardahan, Batman, Bayburt, Bing6l, Corum,
Cluster b Diyarbakir, Elazig, Erzincan, Hakkari, Igdir, Karaman, Kars, Kirikkale,
u Kirgehir, Malatya, Mardin, Mus, Nevsehir, Nigde, Tunceli, Van, Sinak, Bitlis,
Siirt
Amasya, Ankara, Artvin, Cankiri, Erzurum, Giimiishane, Karabiik, Konya,
Cluster ¢ . .
Rize, Sivas, Tokat, Yozgat
Clusterd  Bursa, Istanbul, Kocaeli
Cluster e Afyonkarahisar, Aydn, Balikesir, Bilecik, Bolu, Canakkale, Eskisehir, zmir,
Kiitahya, Manisa, Mugla, Usak, Yalova
Bartin, Diizce, Edirne, Giresun, Kastamonu, Kirklareli, Ordu, Sakarya,
Cluster f

Samsun, Sinop, Tekirdag, Trabzon, Zonguldak
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The list of provinces assigned to each cluster is given in Table 14, and
the spatial representation of the clusters on the map of Tiirkiye is

illustrated in Figure 16.
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Figure 16: Visualization of the Final Clustering on the Map of
Tirkiye

Table 15 presents the cluster means for socioeconomic criteria, while

Table 16 reports the cluster means for selected REP criteria.

As presented in Table 15, the average values of the socioeconomic
criteria offer important insights into the economic structures, energy
demand levels, and regional development dynamics of the clusters.
Evaluating each cluster based on indicators such as industrial capacity,
population size, foreign trade volume, per capita income, and

electricity consumption provides a more accurate understanding of
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regional energy demand and supports more effective planning of

sustainable energy investments.

Table 15: Cluster Means for Socioeconomic Criteria

= = 2 2 z =
i L2 =) *& "5 ’5 E ) ‘? g
£ s s % = B e & £ E g =
z = = Ess 8 3 g g 2 £ E
° ¥ 3 3 A
a 12055 1486881 12 63942 2696762 2626115 5132260 4567433
b 8231 454644 3 48849 248297 184956 741051 776142
c 14882 993522 11 63379 1344522 1186612 4107826 2330135
d 6557 7060581 19 130287 47871234 56412045 52091641 20016168
e 9912 1030761 18 83178 1857114 1371351 6502726 3376702
f 5985 631005 9 68489 928029 707197 3399168 1922170

Cluster d clearly distinguishes itself from all other clusters. This
cluster represents the economic and demographic center of Tiirkiye,
characterized by extremely high population density, a very large
industrial capacity, a substantial share of the country's total exports
and imports, and exceptionally high electricity consumption. These
characteristics demonstrate the prevalence of intensive industrial
activities, large-scale production facilities, organized industrial zones,
and high-technology sectors. Consequently, this cluster is critical in
terms of energy supply security and requires both strong electricity
generation and transmission infrastructure. Clusters a and e have
moderate levels of industrial activity but stand out with strong
agricultural production, commercial capacity, and service sector
dynamics. The relatively high electricity consumption observed in

these clusters results from mixed economic structures in which
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industrial and agricultural activities coexist. In these regions,
renewable energy investments may be strengthened through
distributed energy systems and flexible resources such as solar and
wind power, especially to support areas with concentrated demand.
Cluster b exhibits lower values in both population and economic
indicators. Electricity consumption and industrial activities are
relatively limited, which reflects a predominantly rural structure with
low-density economic activity. In such areas, small-scale and locally
targeted renewable energy projects—such as biomass systems, small
hydropower plants, or micro-scale solar installations—are more
feasible. This approach can enhance energy accessibility while
contributing to regional economic development. Clusters ¢ and f
represent regions with moderate economic activity and industrial
capacity, accompanied by a more balanced population structure. These
clusters contain diversified agricultural and industrial elements,
leading to a more balanced overall energy demand profile. As a result,
hybrid systems combining different renewable energy technologies—
such as wind, solar, and biomass—may be particularly suitable for
these areas. Overall, the clustering analysis reveals significant regional
variations in Tiirkiye’s energy demand structure. Industrially intensive
regions require large-scale generation facilities and robust grid
infrastructure, while low-population rural regions benefit more from
flexible, localized, and sustainable energy solutions. Therefore,
shaping energy policies and investment strategies according to these
regional differences is crucial for ensuring both economic efficiency

and long-term sustainability.
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Table 16: Cluster Averages for Selected REP Criteria
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The average values presented in Table 16 reveal the distinct renewable
energy characteristics of each cluster. When temperature, solar
radiation, wind indicators, hydrological parameters, and agricultural
production variables are jointly considered, it becomes evident that the
clusters exhibit significantly different profiles in terms of renewable

energy planning and resource suitability.

Cluster a exhibits relatively high temperatures and long sunshine
durations compared to the other clusters, making it highly suitable for
solar energy investments. The presence of moderate wind speeds and
power density further indicates that certain areas within this cluster
may also support wind energy applications. The moderate levels of
precipitation and river discharge suggest that hydropower potential is

present but not dominant. Additionally, the extensive agricultural land
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and high levels of crop production highlight that biomass energy can
serve as a meaningful option for this cluster. Cluster b displays lower
levels of temperature and sunshine duration, which limits its
suitability for solar energy applications. However, the high altitude
strengthens the hydrological structure of the region, and the relatively
high discharge values suggest considerable hydropower potential. The
cluster’s extensive agricultural land and significant livestock
production also indicate a favorable environment for biomass energy.
Wind speeds are moderate, making wind power feasible in selected
locations. Cluster ¢ presents medium-level temperature and sunshine
duration, indicating balanced potential for both solar and wind energy.
With wind speeds above 4 m/s and reasonable power density, certain
areas are suitable for wind farm development. Furthermore, high
discharge levels coupled with notable elevation differences strengthen
the hydropower potential of this cluster. Large agricultural areas and
substantial crop production also provide a solid foundation for
biomass energy. Overall, Cluster ¢ represents a hybrid renewable
energy profile suitable for integrated energy strategies. Cluster d has
the lowest average sunshine duration among all clusters, limiting its
suitability for solar power. In contrast, its wind speed and power
density are notably high, positioning wind energy as the primary
renewable resource for this region. Although precipitation and
discharge values are relatively high, the low elevation limits
hydropower feasibility. Agricultural and livestock indicators are
moderate, suggesting that biomass potential exists but is not dominant.

Overall, this cluster stands out primarily due to its strong wind energy
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characteristics. Cluster e demonstrates a highly balanced structure
with strong performance across multiple renewable energy indicators.
High sunshine duration, strong wind speeds, and high-power density
make this cluster one of the most favorable regions in Tiirkiye for both
solar and wind energy. Additionally, extensive agricultural land and
exceptionally high crop production values highlight biomass as
another strong alternative. Although hydrological parameters are
moderate, hydropower serves as a complementary rather than primary
source. This cluster is well-suited for diverse and integrated renewable
energy investments. Cluster f exhibits relatively low sunshine duration
but possesses wind speeds and power density values that support wind
energy development in specific areas. High rainfall and particularly
high discharge values suggest that hydropower constitutes the most
promising resource for this cluster. The relatively smaller agricultural
land area and lower crop production values limit biomass potential.
Given its geographical characteristics, hydropower and wind energy

emerge as the dominant renewable resources for this cluster.

Overall, the clusters reveal distinct renewable energy profiles, with
each cluster demonstrating comparative advantages in different energy
sources. Some clusters are dominated by a single resource (e.g., wind
in Cluster d; hydropower in Clusters b and f), while others exhibit
broad multi-resource suitability (e.g., Cluster e). These findings
highlight the necessity of incorporating regional differences into

Tiirkiye’s renewable energy transition strategies and suggest that
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region-specific energy policies may lead to more efficient and

sustainable outcomes.

4. CONCLUSION AND DISCUSSION

Climate change, rising energy demand, and the environmental impacts
of fossil fuels have become the key drivers compelling countries to
develop sustainable energy policies. In this context, the effective
evaluation of renewable energy resources and the integration of
scientific methods into energy planning processes are not only
environmental necessities but also strategic requirements for
enhancing economic competitiveness and ensuring long-term social
welfare. Tiirkiye’s diverse geographical, climatic, and socioeconomic
characteristics make it difficult to conduct energy planning through a
homogeneous structure. Therefore, systematically analyzing regional
differences in energy potential provides decision makers with valuable
insights into which renewable energy source is most suitable for each

region.

This study was designed with this need in mind and aimed to examine
Tiirkiye’s provinces based on their sustainable energy potential
through a comprehensive machine learning—based clustering
framework.  Using  socioeconomic  structure,  geographical
characteristics, and REP as the primary criteria groups, the provinces
were first clustered using the FCM algorithm. FCM was preferred due
to its ability to assign membership degrees to multiple clusters, an
important feature when analyzing multidimensional problems such as

sustainable energy potential, where cluster boundaries are not sharply
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defined. The algorithm was executed using three different distance
metrics (Euclidean, Manhattan, and Minkowski) and seven different
cluster numbers (from 4 to 10). The membership degrees obtained
from each clustering configuration were then combined to form a new
dataset, which was subsequently subjected to a second-stage crisp
clustering process using the K-Means algorithm. In this two-tiered
hierarchical structure, the fuzzy nature of the data was first captured,
and then more explicit cluster structures were derived from this

representation.

To test the reliability of the clustering results, the cluster labels
obtained from K-Means were incorporated into the dataset as response
variables. Subsequently, several classification algorithms including
KNN, SVM, RF, and XGBoost were applied, and cluster validity was
assessed based on classification errors. Furthermore, ensemble
learning strategies—specifically voting and stacking approaches that
combined the predictive outputs of RF and XGBoost—were utilized
to enhance classification performance. Supported by cluster validity
metrics such as Silhouette and CHI indices, the structure with the

lowest classification error was selected as the final clustering solution.

According to these evaluations, the most successful clustering was
achieved when using the Minkowski distance metric with six clusters.
Among the identified clusters, Cluster d—which includes Bursa,
Istanbul, and Kocaeli—stands out as Tiirkiye’s most strategically
significant region in terms of energy demand. This cluster exhibits the

highest population, the largest industrial capacity, and the most
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intensive electricity consumption across the country. These
characteristics are directly linked to the region’s high concentration of
industrial facilities, strong economic activity, and developed urban
infrastructure. As a result, this cluster requires prioritized
consideration in energy supply planning, including the deployment of
large-scale and reliable energy sources to support its substantial and

continuously increasing energy demand.

The findings highlight that Tiirkiye’s sustainable energy potential is
far from uniform and that provinces with similar characteristics tend
to group together in meaningful ways. This reinforces the importance
of adopting region-specific strategies rather than relying on a single,
national-level renewable energy policy. The results also demonstrate
that machine learning—based clustering can provide significant support
to policymakers by revealing regional energy profiles, identifying
critical demand centers, and offering a scientific foundation for

targeted investment planning.

For future research, each cluster’s unique energy profile could be
analyzed more comprehensively using MCDM techniques.
Conducting MCDM analyses separately for each cluster would
provide deeper insights into the most suitable renewable energy
sources at the regional level and would help develop more precise and
actionable energy investment strategies. Additionally, monitoring
changes in cluster structures over time and performing long-term
dynamic analyses would enable researchers to examine how climate

change, demographic shifts, and economic transformations influence
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regional energy potentials. Integrating cost, environmental impacts,
carbon emissions, technical feasibility, and social acceptability
indicators into the regional analyses may also support the
development of more holistic and multidimensional energy planning

models in future studies.
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APPENDIX
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Figure A. 1. K-Means result for k = 4, metric = Euclidean
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Figure A. 2. K-Means result for k =5, metric = Euclidean
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Figure A. 3. K-Means result for k = 6, metric = Euclidean
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Figure A. 4. K-Means result for k = 7, metric = Euclidean
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Figure A. 5. K-Means result for k = 8, metric = Euclidean
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Figure A. 6. K-Means result for k = 9, metric = Euclidean
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Figure A. 7. K-Means result for k = 10, metric = Euclidean
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Figure A. 8. K-Means result for k = 4, metric = Manhattan
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Figure A. 9. K-Means result for k = 5, metric = Manhattan
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Figure A. 10. K-Means result for k = 6, metric = Manhattan
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Figure A. 11. K-Means result for k = 7, metric = Manhattan
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Figure A. 12. K-Means result for k = 8, metric = Manhattan
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Figure A. 13. K-Means result for k = 9, metric = Manhattan
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Figure A. 14. K-Means result for k = 10, metric = Manhattan
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Figure A. 15. K-Means result for k = 4, metric = Minkowski

Cluster plot
Cluster
1
cluster
oy o
3 .1
LR — A2
4 & 3
- g =
. e .
i

Oim1 (26.8%)

Figure A. 16. K-Means result for k = 5, metric = Minkowski
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Figure A. 17. K-Means result for k = 6, metric = Minkowski
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Figure A. 18. K-Means result for k = 7, metric = Minkowski
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Figure A. 19. K-Means result for k = 8, metric = Minkowski
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Figure A. 20. K-Means result for k = 9, metric = Minkowski
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Figure A. 21. K-Means result for k = 10, metric = Minkowski
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