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PREFACE 

Energy has always been a decisive factor in the economic and social 

development of humanity. Today, the globally increasing population, 

accelerated industrialization, and rapid urbanization have heightened 

the demand for energy more than ever before, compelling countries to 

pursue sustainable, reliable, and environmentally sound energy 

sources. In an era when energy supply security is directly linked to 

economic independence, the effective utilization of domestic and 

renewable energy resources has become a strategic imperative. 

Türkiye, with its geopolitical position, climatic diversity, and rich 

natural resource potential, offers significant opportunities in the field 

of renewable energy. Nevertheless, the country’s energy demand 

varies considerably across regions; geographical, socioeconomic, and 

industrial dynamics play a decisive role in shaping regional energy 

needs. For this reason, adopting a holistic and data-driven approach in 

Türkiye’s sustainable energy planning is essential not only for 

enhancing energy efficiency but also for optimizing the strategic use 

of available resources. 

This book aims to analyze Türkiye’s regional energy potential using 

the powerful tools of modern data science. Through machine 

learning–based clustering approaches, the provinces of Türkiye are 

grouped according to their similar characteristics, and for each cluster, 

the most suitable renewable energy alternatives are identified. This 

enables not only a comprehensive understanding of the current energy 
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landscape but also an interpretation of regional needs and potentials 

from an integrated perspective. 

The book first provides a conceptual framework for energy resources 

and an overview of Türkiye’s current energy profile, followed by a 

detailed presentation of the findings obtained through machine 

learning methods. This approach seeks to offer policymakers and 

practitioners a scientific guide for determining regional priorities, 

designing investment strategies, and developing sustainable energy 

policies. 

It is our hope that this study contributes to Türkiye’s renewable energy 

transition and strengthens strategic perspectives regarding the nation’s 

energy future. 

With a firm belief in the importance of progressing toward a 

sustainable energy future under the guidance of science… 

           02.12.2025 

Dr. Selen AVCI AZKESKİN 

Prof. Dr. Zerrin ALADAĞ 
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INTRODUCTION 

Energy is regarded as one of the fundamental drivers of the economic, 

technological, and social development of modern societies, as it is 

extensively used not only for meeting daily needs such as heating, 

lighting, and transportation but also for supporting a wide range of 

industrial and agricultural activities. The rapidly growing global 

population, coupled with accelerated industrialization and 

urbanization, continues to increase the demand for energy; how this 

demand is met directly influences the economic independence of 

nations as well as their sustainable development goals. Consequently, 

countries are increasingly seeking new, reliable, and sustainable 

energy sources to address their rising energy needs. 

Energy resources are generally classified into two main categories: 

“non-renewable” and “renewable.” Non-renewable resources are those 

that cannot be replenished within a short period or require long 

geological processes for their regeneration. Crude oil, coal, and 

natural gas are considered “primary energy resources,” as they are 

extracted directly from nature. The derivatives produced through the 



2 

 

transformation of these primary resources—such as electricity and 

refined fuels—are referred to as “secondary energy resources.” In 

contrast, renewable energy resources (RES), including solar, wind, 

hydroelectric, geothermal, wave, and biomass energy, are naturally 

replenished on a continuous basis. Although increasing the use of RES 

is essential for reducing environmental impacts and strengthening 

energy supply security, the share of renewables in total energy 

consumption remains below desired levels. 

Türkiye is a country that meets a significant portion of its energy 

demand through imports and maintains an energy portfolio dominated 

by fossil fuels. However, Türkiye possesses substantial opportunities 

for expanding the use of renewable energy due to its high solar 

irradiance, strong wind potential, diverse geothermal fields, and 

considerable biomass capacity. The country also exhibits pronounced 

regional diversity in terms of geological features, climate zones, 

vegetation, and socioeconomic characteristics. While Türkiye is 

administratively divided into seven geographical regions, significant 

differences in energy demand and renewable potential exist even 

within the same region. Furthermore, densely populated provinces 

such as Istanbul, Ankara, and İzmir, as well as industrially strategic 

provinces like Kocaeli, possess energy profiles that must be evaluated 

independently from their broader regional characteristics. 

Accordingly, both energy demand and the most suitable renewable 

energy alternative can vary considerably across different parts of the 

country. 
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The main purpose of this book is to cluster Türkiye’s provinces based 

on their geographical characteristics, renewable energy potential, and 

socioeconomic structure using machine learning–based methods, and 

to interpret the most suitable renewable energy source for each cluster. 

In the first chapter, a general framework on energy resources is 

presented, followed by an examination of Türkiye’s current energy 

profile. The second chapter provides a detailed explanation of the 

clustering and classification methods used in the methodological 

framework. In the third chapter, the methodology is introduced and 

the empirical findings are presented. The final chapter discusses the 

contributions that the proposed approach may offer to policymakers 

and practitioners, along with recommendations for future research. 

This book was developed by expanding a section of Selen AVCI 

AZKESKİN’s doctoral dissertation, numbered 970827. 

1. ENERGY RESOURCES AND AN OVERVIEW OF 

TÜRKİYE’S ENERGY LANDSCAPE  

Energy sources used in power generation are classified into two main 

groups based on their availability in nature and their renewability 

characteristics: non-renewable energy sources and renewable energy 

sources (RES). Today, the increasing global energy demand and rising 

concerns regarding energy supply security make the diversification of 

energy resources a necessity. In this context, reducing dependence on 

non-renewable energy sources is critically important for preventing 

economic external dependence and minimizing environmental 

impacts. 
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1.1. Non-Renewable Energy Resources 

Non-renewable energy resources are formed through geological 

processes that take millions of years and cannot be replenished at a 

rate comparable to their consumption. Since their depletion rate 

exceeds their natural regeneration rate, these resources are finite in 

nature. The major non-renewable energy sources are briefly described 

below. 

Coal: Coal is one of the oldest and most widely used energy resources 

worldwide. Although it has a high energy density, its combustion 

releases significant amounts of carbon dioxide, contributing to air 

pollution and global warming. Due to its relatively low cost, coal 

continues to be extensively used, particularly in developing countries. 

In recent years, efforts have been directed toward reducing its 

environmental impacts through clean coal technologies and carbon 

capture systems. 

Petroleum: Petroleum is a major fossil fuel with high economic value, 

widely used in the transportation and industrial sectors. However, its 

vulnerability to price fluctuations and the potential threat to supply 

security arising from geopolitical tensions increase its strategic risks. 

Additionally, the combustion of petroleum releases greenhouse gases, 

accelerating global climate change. 

Natural Gas: Natural gas is transported in compressed or liquefied 

form and has a wide range of applications across various sectors. 

Owing to its relatively lower carbon emissions, it is considered a 
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cleaner fossil fuel. Nevertheless, because it contains methane, its 

leakage into the atmosphere produces a potent greenhouse gas effect, 

thereby contributing to global warming. 

Nuclear Energy: Nuclear energy is produced through the fission of 

radioactive elements such as uranium and thorium. It offers 

advantages such as the absence of carbon emissions during electricity 

generation and high energy efficiency. However, issues related to 

radioactive waste management and the potential risks of nuclear 

accidents keep nuclear energy at the center of ongoing global debates.  

1.2. Sustainable Energy and Renewable Energy Resources 

Sustainable energy refers to energy production and consumption 

systems that meet the needs of the present generation without 

compromising the ability of future generations to meet their own 

needs. This approach emphasizes minimizing environmental impacts 

in energy production, ensuring economic feasibility, and adopting 

socially acceptable solutions. Therefore, sustainable energy is a 

multidimensional concept encompassing not only clean energy 

generation but also energy efficiency, energy conservation, the 

integration of technological innovations, and equitable access to 

energy. Within this framework, RES constitute one of the fundamental 

components of sustainable energy systems. These resources, which are 

naturally replenished through ecological cycles and do not carry the 

risk of depletion, include solar, wind, hydroelectric, geothermal, and 

biomass energy. Compared with fossil fuels, RES generate 

significantly lower greenhouse gas emissions, offering a major 
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advantage in terms of environmental sustainability. Additionally, since 

most renewable resources are domestically available, they enhance 

energy supply security and contribute to economic sustainability by 

reducing external dependence. The increasing environmental 

awareness in society and the growing social acceptance of renewable 

technologies further strengthen the position of RES within sustainable 

energy strategies. The main renewable energy resources are briefly 

described below: 

Solar energy: Solar energy is obtained by converting sunlight into 

electrical or thermal energy through photovoltaic panels or solar 

collectors. The advantages and disadvantages of solar energy can be 

summarized as follows: 

 It does not require complex technology. 

 Operation and maintenance costs are low. 

 It can be used in areas without electricity transmission lines. 

 Since it does not require grid connection, it does not pose 

transmission-related constraints. 

 As a weather-dependent resource, energy production 

significantly decreases during winter months and at night. 

 Energy storage is difficult and overall efficiency is relatively 

low. 

Wind energy: Wind energy is produced by converting the kinetic 

energy of moving air into mechanical energy through rotor blades 
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mounted on a shaft. Wind power plants (WPPs) typically operate 

efficiently for about 20 years, with a total system lifespan of 

approximately 30 years. WPPs begin generating electricity when wind 

speed reaches 3 m/s and continue operating until wind speeds reach 

approximately 25 m/s. Thanks to technological advancements and 

accurate feasibility studies, the cost of energy derived from wind has 

steadily decreased. The advantages and disadvantages of wind energy 

include: 

 Investment costs have decreased due to technological 

improvements. 

 Wind turbines are relatively easy to install, transport, and 

assemble; the risk of accidents during construction is minimal, 

and maintenance is straightforward. 

 Large turbines require extensive land areas. 

 Turbine height may pose risks to birds. 

 Overall efficiency is generally lower compared to some other 

energy sources. 

 There is a risk of turbine collapse or fire. 

 Noise generated by turbines may disturb nearby residents 

(Erdoğan, 2020; Selçuklu et al., 2022; Movlyanov and Selçuklu, 

2025). 

Hydroelectric energy: Hydroelectric energy is produced by converting 

the potential energy difference between two points in a water source 
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into kinetic energy through a hydroelectric power plant. Hydroelectric 

power plants (HPPs) must be located at or near the source of water, 

meaning they cannot always be installed where energy demand exists. 

The advantages and disadvantages of hydroelectric energy are as 

follows: 

 HPPs do not require fuel and experience minimal energy 

losses. 

 Their efficiency is continuous, and the unit cost of energy is 

low. 

 Maintenance costs are relatively low. 

 HPP structures are simple and durable. 

 Energy storage and transmission are relatively easy. 

 HPPs can quickly respond to high energy demand when 

needed and can also be rapidly shut down in dangerous 

situations. 

 Construction periods are long and initial investment costs are 

high. 

 Dam construction may lead to submergence of land, 

displacement of local populations, and challenges during natural 

disasters. 

 Energy production is dependent on precipitation levels. 
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 Water retention behind dams may cause reductions in 

agricultural productivity and result in microclimatic changes in 

the surrounding region. 

 Water intake structures may disrupt river ecology, affect 

aquatic species' migration routes, and harm river ecosystems. 

Geothermal energy: Geothermal energy is obtained from underground 

hot water sources with temperatures consistently above 20°C and with 

higher mineral and salt content than surrounding groundwater. The 

advantages and disadvantages of geothermal energy include: 

 Geothermal power plants have shorter commissioning 

periods compared with other types of power plants. 

 Continuous energy production is possible. 

 The cost of electricity produced in geothermal plants is 

competitive with coal and natural gas power plants. 

 Geothermal energy is not affected by climatic variations. 

 Preparation and drilling costs are high. 

 Energy transmission from geothermal sites is relatively 

inefficient. 

 Some geothermal reservoirs contain potentially harmful 

chemical compounds, requiring reinjection techniques. 

 The regeneration period of geothermal reservoirs is long once 

the resource is depleted. 
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Biomass energy: Biomass energy is produced by converting organic 

waste into energy through biochemical or thermochemical processes. 

Agricultural and forestry residues are among the key resources used in 

biomass energy production. The advantages and disadvantages of 

biomass energy are as follows (Erdoğan, 2020): 

 Biomass crops can be grown in many different regions. 

 Production and conversion technologies are well established. 

 Low levels of sunlight are sufficient for biomass cultivation. 

 Biomass is easy to store. 

 Suitable temperatures for biomass production range between 

5–35°C. 

 Efficiency levels are generally lower compared with other 

energy sources. 

 Biomass production may compete with agricultural land use. 

 Significant water resources are required. 

Marine current and ocean energy: Marine and ocean energies include 

wave energy, tidal energy, current energy, and ocean thermal energy 

conversion (OTEC). Wave energy is generated from the oscillatory 

motion of ocean waves and the pressure they create. Tidal energy is 

produced by converting the kinetic energy resulting from the 

movement of water masses caused by tides into electricity through 

turbines. For this purpose, water inlets suitable for tidal activity are 

blocked by constructing a barrage, and electricity is generated using 
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the height difference that occurs as water flows in and out. Current 

energy captures the kinetic energy of continuous water movement in 

seas and oceans using turbines installed on the seabed. Ocean thermal 

energy conversion utilizes the temperature difference between warm 

surface waters and cold deep ocean waters in tropical regions to 

generate electricity through a thermodynamic cycle. For the system to 

be effective, the temperature difference between the ocean surface and 

its depths must be at least 20°C (Soylu, 2019). 

1.3. An Overview of Türkiye’s Energy Profile 

Türkiye’s energy supply is predominantly based on fossil fuels; 

however, the transition toward RES has accelerated significantly in 

recent years. As of 2022, fossil fuels continue to dominate primary 

energy consumption, with natural gas and coal holding the largest 

shares in total demand. This dependence increases energy imports, 

thereby constituting one of the main factors deepening Türkiye’s 

foreign trade deficit. 

According to Figure 1, Türkiye’s total primary energy supply reached 

157.7 million tons of oil equivalent (Mtoe). As shown in Figure 1, 

petroleum accounted for the largest share of energy sources with 45.11 

Mtoe, representing 28.6% of total supply. Petroleum was followed by 

natural gas with 43.54 Mtoe (27.6%) and coal with 42.02 Mtoe 

(26.8%). Within the RES category, geothermal energy provided the 

highest contribution at 11.51 Mtoe (7.3%). Hydropower accounted for 

5.75 Mtoe (3.6%), biofuels for 4.51 Mtoe (2.9%), wind energy for 
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3.01 Mtoe (1.9%), and solar energy for 2.32 Mtoe (1.5%) (Republic of 

Türkiye Ministry of Energy and Natural Resources, 2023). 

 

Figure 1: Quantities of Primary Energy Supply in Türkiye (Million 

TOE, 2022) 

Reference: Republic of Türkiye Ministry of Energy and Natural 

Resources, 2023 

According to Table 1, Türkiye’s total installed electricity generation 

capacity reached 107,693 megawatts (MW) by the end of 2023. 

Hydropower ranked first with a 29.7% share in the installed capacity 

distribution. Natural gas power plants followed with 23.6%, while 

coal-based power plants held the third position with 20.3%. Notably, 

wind power capacity increased to 11%, surpassing that of lignite-fired 

power plants. Similarly, solar power plants reached an 11.5% share of 

total installed capacity, exceeding lignite capacity as well. 
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By the end of 2023, fossil fuel–based power plants had a combined 

installed capacity of 47,475.2 MW, accounting for 44.1% of total 

installed power. In contrast, RES-based power plants reached a total 

capacity of 60,217.6 MW, corresponding to 55.9% of total installed 

capacity and exceeding fossil fuel capacity (TMMOB Chamber of 

Mechanical Engineers, 2024). 

Table 1: Installed Power Capacity by Energy Source (2023) 

Primary Source Installed Capacity 

MW Share (%) Cumulative Share (%) 

Imported Coal 10,373.80 9.63 

44.08 

Hard Coal 840.80 0.78 

Asphaltite 405.00 0.38 

Lignite 10,194.00 9.47 

Liquid Fuel 260.60 0.24 

Natural Gas 25,401.00 23.59 

Fossil Fuels Total 47,475.20 44.08 

Biomass + Waste 2404.00 2.23 

55.92 

Wind 11,803.80 10.96 

Solar 12,354.30 11.47 

Hydropower 31,964.20 29.68 

Geothermal 1691.30 1.57 

Renewables Total 60,217.60 55.92 

TOTAL 107,692.80 100.00 100.00 

Reference: TMMOB Chamber of Mechanical Engineers, 2024 
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1.4. Renewable Energy in Türkiye 

Türkiye’s geographical location provides it with a remarkably high 

solar energy potential. According to the Solar Energy Potential Atlas 

(GEPA), Türkiye’s annual total sunshine duration is 2,737 hours (7.5 

hours/day), while the annual total solar irradiation reaches 1,527 

kWh/m² (4.2 kWh/m² per day). Figure 2 presents the map illustrating 

Türkiye’s total solar radiation. As shown in the map, solar potential 

decreases gradually from the southern regions toward the north. 

Owing to its geographical characteristics and high number of rainy 

days, the Black Sea Region receives the lowest level of solar 

irradiation. The Marmara and Aegean Regions receive moderate levels 

of irradiation, whereas Central Anatolia, Eastern Anatolia, the 

Mediterranean, and Southeastern Anatolia are the regions with high 

solar radiation values (Özgür, 2020). 

 

Figure 2: Türkiye Solar Energy Potential Atlas (GEPA) 

Reference: Ministry of Energy and Natural Resources, 2024a 
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Türkiye possesses significant wind energy potential due to being 

surrounded by seas on three sides, its widespread mountainous terrain, 

and the presence of diverse climatic conditions. Considering annual 

average wind speeds, the Aegean and Marmara coastlines stand out as 

the most suitable regions for wind energy generation. The Türkiye 

Wind Energy Potential Atlas (REPA), presented in Figure 3, analyzes 

the country’s wind characteristics and distribution, contributing to the 

identification of the most favorable areas for electricity production. 

According to calculations, when areas with wind speeds above 7 m/s 

at a height of 50 meters are considered, Türkiye’s onshore wind 

energy potential is estimated to be approximately 48,000 MW (Kaya 

& Kaya, 2024). 

 

Figure 3: Türkiye Wind Energy Potential Atlas (REPA) 

Reference: Ministry of Energy and Natural Resources, 2024b 

Türkiye’s annual average precipitation is approximately 574 mm, 

corresponding to an average of 450 billion m³ of water per year. The 

country’s gross surface water potential has been identified as 185 
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billion m³, while the groundwater potential is estimated at 18 billion 

m³. Figure 4 presents Türkiye’s 25 drainage basins (Serdar, 2020). 

 

Figure 4: Map of Türkiye’s 25 Drainage Basins 

Reference: Serdar, 2020 

Türkiye, receiving substantial sunlight and possessing extensive 

agricultural land, abundant water resources, and diverse climatic 

conditions, offers considerable potential for biomass energy 

production. Figure 5 illustrates the distribution of biomass potential 

across Türkiye’s provinces (İllez, 2020). 

 

Figure 5: Distribution of Biomass Potential by Province in Türkiye 

Reference: İllez, 2020 
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A significant portion of Türkiye’s geothermal resources is 

concentrated in the Western Anatolia region. Approximately 78% of 

areas with geothermal potential are in this region, followed by Central 

Anatolia with 9% and the Marmara Region with 7%. The geothermal 

potential in Eastern Anatolia is around 5%, while other regions 

account for about 1%. Since nearly 90% of existing geothermal 

resources have low to medium temperature levels, they are 

predominantly used in heating systems, thermal tourism, and certain 

industrial applications. The remaining 10% is utilized in indirect 

energy applications such as electricity generation. 

According to data from the International Energy Agency, Türkiye’s 

installed geothermal electricity capacity increased from 94 MW in 

2010 to 1,283 MW by 2018, while electricity generation rose from 

668 GWh to 4,819 GWh over the same period. Most of this 

production capacity is concentrated in the Aegean Region. Provinces 

such as Aydın, Denizli, Manisa, and Çanakkale are among the leading 

locations with significant geothermal potential (Gürcün & Petek, 

2021). 

1.5. Türkiye’s Renewable Energy Policies and Future Targets 

Türkiye’s long-term energy strategies aim to reduce carbon emissions 

and fulfill its commitments under the Paris Agreement. Within this 

framework, the Twelfth Development Plan (2024–2028) prioritizes the 

expansion of renewable energy generation capacity, the enhancement 

of energy efficiency, and the promotion of investments in this field. To 



18 

 

achieve these goals, it is planned to strengthen credit and incentive 

mechanisms for energy projects. 

The Renewable Energy Resource Areas (YEKA) model is 

implemented to promote investments in renewable energy. YEKA 

projects offer specific incentives—particularly for large-scale wind 

and solar power plants—encouraging the private sector to invest in 

renewable energy. Another key mechanism supporting renewable 

energy production in Türkiye is the Renewable Energy Support 

Scheme (YEKDEM). YEKDEM provides financial assurance to the 

sector by guaranteeing the purchase of electricity generated from 

renewable sources at incentivized tariffs for a specified duration. In 

addition, regulatory reforms introduced by the Energy Market 

Regulatory Authority (EPDK) have facilitated market liberalization 

and supported private sector investments in the electricity market. 

Through these initiatives, Türkiye aims to increase its renewable 

energy capacity by 2035 and raise the share of renewables to 65% of 

total electricity generation. Particular emphasis is placed on expanding 

wind and solar energy investments, with plans for these sources to 

reach a combined capacity of 120,000 MW. Furthermore, the 

development of energy storage systems and the modernization of grid 

infrastructure are considered critical. Investments in electricity 

transmission infrastructure are planned to strengthen the integration of 

renewable power plants into the national grid. Increasing green 

hydrogen production and promoting its use in industrial processes as a 
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substitute for fossil fuels also stand among Türkiye’s strategic 

objectives. 

However, the renewable energy sector in Türkiye faces several 

significant challenges. The lack of sufficient financing remains one of 

the main obstacles to implementing large-scale renewable energy 

projects. Sustainable financial models are required to support long-

term investments. Additionally, Türkiye continues to depend on 

foreign technology for renewable energy systems. A large portion of 

critical equipment—such as wind turbines, solar panels, and energy 

storage systems—is imported, making it essential to strengthen 

domestic manufacturing capacity. 

For these strategic goals to be effectively implemented, it is necessary 

not only to formulate energy policies at the national level but also to 

conduct a detailed analysis of energy potential at the regional level. 

Such an approach ensures the efficient use of public resources and 

enables the design of targeted incentive mechanisms tailored to the 

specific needs of each region. Based on this necessity, this book 

clusters Türkiye’s provinces according to their sustainable energy 

potential using a range of variables and provides an in-depth analysis 

of the resulting clusters (Avcı Azkeskin & Aladağ, 2025). 

2. MACHINE LEARNING METHODS 

In this section, machine learning–based clustering and classification 

approaches are examined within a theoretical framework. 
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Machine learning is a branch of artificial intelligence that enables 

computer systems to learn autonomously by analyzing patterns within 

data, rather than relying on predefined rules. Machine learning is 

commonly categorized into three main types based on the learning 

paradigm: supervised learning, unsupervised learning, and semi-

supervised learning. Each learning type differs depending on the 

structure of the data used and the nature of the model’s learning 

process. 

2.1. Supervised Learning 

Supervised learning is a machine learning approach used when each 

input instance in the dataset is accompanied by a corresponding 

correct output (label). In this method, the model learns to make 

accurate predictions on new, unseen data by analyzing patterns within 

historical labeled data. The training process involves feeding the 

model with a labeled dataset, and the model parameters are optimized 

by minimizing the difference (error rate) between the model’s 

predictions and the true labels. 

Within supervised learning, the dataset is typically divided into 

training and test subsets. The training data are used during the learning 

phase, allowing the model to discover the relationships between inputs 

and outputs. The test data, which the model has not encountered 

previously, are used to evaluate the model’s performance and assess 

its generalization ability. Supervised learning is broadly categorized 

into two main tasks: classification and regression. Classification 

involves assigning data points to predefined categories, whereas 
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regression focuses on predicting continuous numerical values 

(Kotsiantis, 2007). 

The classification methods addressed within the scope of this book are 

explained in the following subsections. 

2.1.1. Multinomial Logistic Regression (MLR) 

Multinomial Logistic Regression (MLR) is a generalized version of 

logistic regression designed to analyze dependent variables that 

contain more than two categorical outcomes. This approach models 

the likelihood of each possible category of the response variable by 

relating it to a set of predictor variables. In MLR, these category 

probabilities are computed through a linear combination of the 

explanatory variables. The mathematical form of the model is given in 

Equation (1). In this formulation, 𝑃 ( 𝑌 = 𝑘 ∣ 𝑋 ) denotes the 

probability that the response falls into class k; X represents the vector 

of predictors; K indicates the total number of outcome categories; and 

𝛽𝑘 is the parameter vector associated with class k (Coughenour et al., 

2015). 

P( Y = k ∣ X ) =
eX⊤βk

1+∑ e
X⊤βjK−1

j=1

                                                              (1) 

2.1.2. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a straightforward yet powerful 

classification approach that predicts the class of an observation by 

examining the labels of the closest samples in the training dataset 
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(Tahtalı, 2020). Essentially, the algorithm assigns a class to a new data 

point by considering either the majority category among its  k nearest 

neighbors in the feature space or a weighted voting process based on 

their distances. The choice of the parameter k plays a key role, as it 

directly influences both the model’s predictive accuracy and overall 

performance. 

2.1.3. Support Vector Machines (SVM) 

Support Vector Machines (SVM) operate on the principle of 

identifying a hyperplane that can optimally separate two classes 

(Sasidharan, 2021). Initially designed for the classification of linearly 

separable binary problems, SVMs were later generalized to handle 

multiclass and non-linear datasets (Kaba & Kalkan, 2022). 

 

Figure 6: Support Vector Machines (SVM) 

Reference: Kaba & Kalkan, 2022 

As illustrated in Figure 6, multiple hyperplanes may be drawn to 

separate two classes. However, the primary objective of SVM is to 

identify the hyperplane that maximizes the margin—the distance 

between the hyperplane and the nearest data points from each class. To 

determine the optimal hyperplane, two parallel hyperplanes forming 
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the boundaries of the margin must be defined. The data points lying on 

these boundary hyperplanes are referred to as support vectors. 

SVM determines the optimal separating hyperplane by solving the 

optimization problem shown in Equation (2) (Sasidharan, 2021). In 

this formulation, 𝑤 represents the normal vector of the hyperplane; 𝑏 

denotes the bias term; 𝑦𝑖  indicates the class label; and 𝑥𝑖 represents the 

training data points. 

min
𝐰,b

1

2
|w|2                                                                                                    (2)    

Subject to:                                                                                                   

yi(wTxi + b) ≥ 1, ∀i 

The hinge loss function, used as the cost function of SVM, is defined 

in Equation (3). Here, 𝑦𝑖  denotes the true class label of the ith data 

instance, and 𝑓(𝑥𝑖) = 𝑤𝑇𝑥𝑖 + 𝑏 represents the predicted value. 

L(yi, f(xi)) = max(0,1 − yi f(xi))                                                   (3) 

This function penalizes classification errors by assigning a loss to 

instances that lie within the margin or are misclassified. If a data point 

is correctly classified and lies outside the margin, the loss becomes 

zero. However, if a data point is misclassified or correctly classified 

but located within the margin, the function produces a positive 

penalty. Thus, SVM simultaneously aims to maximize the margin 

while minimizing the risk of misclassification and margin violations. 
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The SVM optimization problem can be transformed into its dual form 

using Lagrange multipliers. In Equation (4), 𝛼𝑖 represents the 

Lagrange multipliers; 𝐶 is the regularization (penalty) parameter; 

K(𝑥𝑖 ⋅ 𝑥𝑗) denotes the kernel function; and 𝑦𝑖  and 𝑦𝑗  indicate the class 

labels. 

maks
α

∑ αi
N
i=1 −

1

2
∑ ∑ αiαjyiyj(xi ⋅ xj)

N
j=1

N
i=1                                           (4)      

Subject to:                                       

0 ≤ αi ≤ C, ∑ αiyi

N

i=1

= 0   

This transformation facilitates the solution of the optimization 

problem and enables classification, particularly for datasets that are 

not linearly separable, using kernel functions. Kernel functions map 

data points into a higher-dimensional feature space, thereby increasing 

the likelihood of linear separability. The most used kernel functions 

are the Linear, Polynomial, Radial Basis Function (RBF), and Sigmoid 

kernels, which are given in Equations (5), (6), (7), and (8), 

respectively. In the polynomial kernel, c is a constant and d denotes 

the degree of the polynomial. In the RBF kernel, σ represents the 

kernel parameter. In the sigmoid kernel, α and c are constant 

parameters. 

(xi, xj) = xi
⊤ ⋅ xj                                                                                         (5)                                                                                                        

K(xi, xj) = (xi
⊤ ⋅ xj + c)

d
                                                                   (6)                                                                             
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K(xi, xj) = exp(−σ|xi − xj|
2)                                                           (7)                                                                    

K(xi, xj) = tanh(αxi
⊤. xj + c)                                                            (8)                                                              

The linear kernel is preferred when the data are linearly separable, 

offering a simpler and more interpretable model from a computational 

perspective. The polynomial kernel provides greater flexibility for 

modeling non-linear decision boundaries, with its behavior determined 

by the degree of the polynomial. The sigmoid kernel resembles the 

activation functions used in artificial neural networks and can be 

effective for certain data distributions. 

SVM models using the RBF kernel are typically characterized by two 

main hyperparameters: 𝐶 (the regularization parameter) and 𝜎 (the 

kernel width parameter). Compared to other non-linear kernel 

functions, the RBF kernel involves fewer hyperparameters and 

generally yields higher classification performance (Schölkopf & 

Smola, 2002). For these advantages, it was selected for use in this 

study. 

2.1.4. Random Forest (RF) 

Decision trees are among the most used classification algorithms due 

to their strong learning capabilities. However, this powerful learning 

ability often leads to the disadvantage of overfitting. The Random 

Forest (RF) method is a classification approach based on decision 

trees. Introduced to the literature by Breiman (2001), the algorithm 

randomly selects samples through resampling, constructs multiple 
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decision trees based on these samples, aggregates their predictions, 

and produces the final output through voting with high accuracy. Since 

each tree grows freely without pruning, the method avoids the 

overfitting problem (Güleryüz, 2022). 

To construct an RF model, two main parameters are required: the 

number of trees (ntree) and the number of features considered at each 

split (mtry) (Andrade et al., 2020). 

Decision trees typically split the dataset based on entropy as shown in 

Equation (9) or information gain as shown in Equation (10): 

H(S) = − ∑ pi
c
i=1 log2 pi                                                                    (9) 

IG(T, a) = H(T) − ∑
|Tv|

|T|v∈a H(Tv)                                                   (10) 

In Equation (9), 𝑆 represents the dataset, 𝑐 denotes the number of 

classes, and 𝑝𝑖  indicates the probability of the ith class. In Equation 

(10), 𝑇 is the root node, 𝑎 is the feature on which the split is 

performed, 𝐼𝐺(𝑇, 𝑎) denotes the information gain obtained by splitting 

on feature 𝑎, 𝐻(𝑇) is the entropy of the entire set, and 𝑇𝑣 represents 

the subset of data for which feature 𝑎 takes the value 𝑣. Thus, the 

formula calculates the reduction in entropy —i.e., the gain— when a 

feature is used for splitting. 

2.1.5. Extreme Gradient Boosting (XGBoost) 

In recent years, boosting-based methods have gained substantial 

popularity in the field of data science. These algorithms rely on the 
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sequential combination of multiple weak classifiers to construct highly 

accurate (strong) predictive models. The fundamental objective of the 

boosting approach is to enhance model performance by focusing 

particularly on observations that contribute most to prediction errors. 

The process begins with building a single weak learner; subsequently, 

each new model is constructed sequentially to minimize the errors 

made by the previous model. The final model is produced by 

weighting the weak learners based on their performance, giving 

greater influence on better-performing models. As a result, a highly 

generalizable and powerful ensemble model emerges. 

XGBoost is a machine learning method based on Gradient Boosting 

Machines (GBM) and decision trees. The GBM algorithm was first 

introduced by Friedman (2002), and the XGBoost version, presented 

by Chen and Guestrin (2016) in a conference, quickly gained 

widespread adoption and became highly popular in the field of 

machine learning. XGBoost represents an optimized version of GBM, 

enhanced with various regularization techniques. In addition to its 

strong predictive power, XGBoost is superior to many traditional 

methods due to its ability to prevent overfitting, handle missing data 

effectively, and offer high computational efficiency. 

The main objective of XGBoost is to minimize a loss function 

together with a regularization term, as expressed in Equation (11) 

(Chen & Guestrin, 2016): 

L(ϕ) = ∑ l(yî, yi)
n
i=1 + ∑ Ω(fk)K

k=1                                                   (11) 
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Here, 𝑙 denotes the loss function (e.g., mean squared error – MSE); 𝑦𝑖̂ 

is the predicted value; and 𝛺(𝑓𝑘) represents the regularization term, 

that is, the complexity penalty of the kth weak learner (decision tree). 

The regularization term helps prevent overfitting by controlling the 

complexity of the model. It is typically defined as in Equation (12):  

Ω(f) = γT +
1

2
λ ∑ wj

2T
j=1                                                                  (12) 

Here, 𝛾 represents the fixed penalty coefficient for each leaf, 𝑇 

denotes the number of leaves, 𝜆 is the regularization parameter, and 𝑤𝑗 

indicates the weight of the jth leaf. XGBoost improves the model by 

adding a new tree at each iteration based on the current predictions. 

This process is expressed in Equation (13): 

yi
(t)̂

= yi
(t−1)̂

+ ft(xi)                                                                       (13) 

Here, 𝑦𝑖
(𝑡)̂

 denotes the prediction for observation 𝑖 at iteration 

𝑡;  𝑓𝑡(𝑥𝑖), represents the new decision tree trained at iteration 𝑡; 

and 𝑦𝑖
(𝑡−1)̂

 refers to the prediction from the previous iteration. 

XGBoost optimizes the loss function through a second-order Taylor 

expansion, as shown in Equation (14): 

L(t) ≈ ∑ [l (yi, yi
(t−1)̂

) + gift(xi) +
1

2
hift

2(xi)]n
i=1 + Ω(ft)              (14)       

Here,   𝑔𝑖 =
𝜕𝐿(𝑦𝑖,𝑦𝑖

(𝑡−1)̂
)

𝜕𝑦𝑖
(𝑡−1)̂   is the first derivative, and ℎ𝑖 =

𝜕2𝐿(𝑦𝑖,𝑦𝑖
(𝑡−1)̂

)

𝜕(𝑦𝑖
(𝑡−1)̂

)
2   

is the second derivative. Each iteration is formulated as in Equation 
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(15): 

L(t) = ∑ [Gjwj +
1

2
(Hj + λ)wj

2]T
j=1 + γT                                         (15)    

where  𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
 and 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

. The optimal weight of each 

leaf is computed using Equation (16): 

wj = −
Gj

Hj+λ
                                                                                      (16)                                                                                                   

2.1.6. Stacked Ensemble Learning Technique 

Stacking is an ensemble strategy that integrates the outputs of several 

machine learning algorithms (base learners) by employing an 

additional predictive model known as a meta-learner. Unlike boosting, 

which sequentially improves a single model, stacking trains multiple 

diverse models in parallel and then uses a meta-model to determine 

the most effective way to combine their predictions, thereby 

improving overall predictive capability. In this framework, the meta-

model receives the base models’ predictions as input features and 

learns how to merge them to produce the final prediction. 

Stacked ensemble methods are generally implemented in two phases:  

Base Models: In the first phase, multiple base learners are fitted using 

the same training data. Each algorithm attempts to estimate the target 

variable based on its own modeling principles. These models produce 

predicted values for each observation, forming the initial layer of 

outputs. 
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Meta-Model: During the second phase, the outputs generated by the 

base models are used as new input variables for the meta-learner. This 

model identifies the most effective way to combine these predictions 

and generates the final outcome. Meta-learners with lower 

complexity—such as linear regression or logistic regression—are 

frequently preferred due to their stability and interpretability 

(Solomon et al., 2023; Shih et al., 2024, Avcı Azkeskin & Aladağ, 

2025). 

In this book, two different stacked ensemble models were utilized:  

Ensemble Model 1: Predictions obtained from the RF and XGBoost 

algorithms were combined to create a stacked dataset. On this dataset, 

MLR, SVM, and KNN were trained as meta-models. The meta-

models were trained using the training portion of the stacked dataset, 

and their accuracy values were evaluated on the test set. 

Ensemble Model 2 (Majority Voting Model): The predictions from the 

RF and XGBoost models were combined using the majority voting 

approach. 

2.1.7. Evaluation of Classification Performance 

Classification performance can be assessed using several evaluation 

metrics, such as accuracy, Matthews Correlation Coefficient (MCC), 

and Cohen’s Kappa. 

Accuracy is one of the fundamental metrics used to evaluate the 

performance of classification models. It is calculated as the ratio of 
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correctly predicted instances to the total number of instances. 

However, accuracy may be misleading when the dataset contains class 

imbalance. For example, a model may achieve high accuracy simply 

by predicting the majority class consistently, even though it fails to 

distinguish between classes effectively. In multiclass models, accuracy 

is computed using Equation (17). Here, 𝑇𝑃 represents true positives, 

𝑇𝑁 true negatives, 𝐹𝑃 false positives, and 𝐹𝑁 false negatives. 

Accuracy =
∑ TPi

K
i=1

∑ (TPi+TNi+FPi+FNi)K
i=1

                                                    (17) 

MCC is a statistical metric used to evaluate the performance of 

classification models and is particularly useful for datasets with class 

imbalance, often providing a more reliable assessment than metrics 

such as accuracy. In multiclass problems, MCC is calculated using 

Equation (18). Here, 𝐶𝑖𝑖 represents the diagonal elements of the 

confusion matrix, while 𝐶𝑖𝑗 and 𝐶𝑗𝑖 denote the off-diagonal elements 

that represent misclassifications between classes. 

MCC =
∑ ∑ (Cii⋅Cjj−Cij⋅Cji)K

j=1
K
i=1

√(∑ (∑ Cij
K
j=1 )(∑ Cji

K
j=1 )K

i=1 )(∑ (∑ Cji
K
j=1 )(∑ Cij

K
j=1 )K

i=1 )
                       (18) 

Kappa measures how much the observed classification performance 

exceeds the performance expected by random chance. For multiclass 

classification, the Kappa statistic is calculated using Equation (19), 

where 𝑃𝑜 is the observed agreement (the proportion of correctly 

classified instances), and 𝑃𝑒 is the expected agreement under random 

classification. 
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κ =
Po−Pe

1−Pe
                                                                                          (19) 

2.2. Unsupervised Learning 

Unsupervised learning refers to a category of machine learning 

techniques designed to reveal underlying structures, patterns, and 

relationships within data without relying on labeled examples. In this 

framework, the model examines only the input variables to detect 

similarities or distinctions among observations, as no predefined class 

information is supplied. In essence, the algorithm autonomously 

identifies which data points resemble one another and groups them 

according to the natural organization of the dataset. 

Unsupervised learning approaches are primarily used for two tasks: 

“clustering” and “dimensionality reduction”. Dimensionality reduction 

methods aim to project high-dimensional data into a more compact 

form while maintaining its essential characteristics, allowing for more 

efficient and interpretable analyses. Clustering methods, on the other 

hand, focus on forming meaningful subgroups by gathering 

observations that share similar attributes. 

Cluster analysis, a widely applied multivariate statistical technique, 

partitions datasets into groups based on specified similarity or distance 

metrics. This process helps reveal hidden structures, supports data 

organization, and contributes to generating more interpretable insights. 

The most commonly applied clustering algorithms in the literature are 

discussed in the subsequent sections (Zorlutuna & Erilli, 2018). 
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2.2.1. K-Means Clustering 

The K-Means method is a popular clustering algorithm that aims to 

partition a dataset into k predefined, distinct clusters. The algorithm 

assigns each data point to the nearest cluster centroid, after which each 

centroid is updated based on the data points assigned to that cluster. 

This process continues until the cluster assignments stabilize or a 

predefined stopping criterion is met. Determining an appropriate value 

for k is critical for obtaining successful clustering results (Wu et al., 

2021). The algorithm proceeds through the following steps (Jain, 

2010): 

1. Initialization: The number of clusters k is selected, and k initial 

cluster centers 𝜇1, 𝜇2,…𝜇𝑘  are chosen randomly. 

2. Assignment step: Each data point 𝑥𝑖 is assigned to the nearest cluster 

center 𝜇𝑗, as shown in Equation (20), where |𝑥𝑖 − 𝜇𝑗| represents the 

distance between 𝑥𝑖 and 𝜇𝑗.  

ci = arg min
j

| xi − μj|                                                                      (20) 

3. Update step: Each cluster center is updated to the mean of the data 

points assigned to it, as formulated in Equation (21). Here, 𝜇𝑗 denotes 

the centroid of the 𝑗𝑡ℎ cluster, 𝐶𝑗 is the set of points assigned to cluster 

𝑗, and |Cj| is the number of points in the cluster. 

μj =
1

|Cj|
∑ xixi∈Cj

                                                                               (21) 
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4. Iteration: Steps 2 and 3 are repeated until the cluster centers change 

minimally or the stopping criterion is satisfied. The stopping criterion 

is typically defined using a threshold based on the degree of change in 

centroid locations or data point assignments. 

In this study, the distance metrics used for clustering were Euclidean, 

Manhattan, and Minkowski distances, shown respectively in 

Equations (22), (23), and (24): 

d(x, y) = √∑ (xi − yi)
2n

i=1                                                                 (22)                                                                          

d(x, y) = ∑ |xi − yi|
n
i=1                                                                      (23)                                                                            

d(x, y) = (∑ |xi − yi|
pn

i=1 )
1

p                                                              (24) 

As shown in Equation (24), the Minkowski distance can represent 

different distance metrics depending on the parameter 𝑝. For example, 

when 𝑝=1, Minkowski distance is equivalent to Manhattan distance; 

when 𝑝=2, it becomes Euclidean distance.  

2.2.2. Hierarchical Clustering 

Another widely used clustering method is hierarchical clustering. 

Hierarchical clustering algorithms construct clusters by successively 

merging or splitting the dataset into nested structures. This approach is 

based on two main strategies: agglomerative (bottom-up) and divisive 

(top-down). In the agglomerative approach, each data point initially 

starts as its own single cluster. At each step, the algorithm merges the 

two clusters that are closest to each other. This process continues until 

all data points are combined into a single cluster. Conversely, the 
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divisive approach begins with all data points grouped into one large 

cluster. This cluster is then recursively split into smaller subclusters at 

each step, and the process continues until each data point forms its 

own individual cluster. Both approaches produce a tree-like 

visualization known as a dendrogram. The dendrogram enables the 

examination of similarity levels between clusters and allows tracking 

of the clustering process visually. Because the dendrogram can be cut 

at any desired level to obtain different numbers of clusters, 

hierarchical clustering offers a flexible structure. Among hierarchical 

clustering techniques, one of the most preferred methods is Ward’s 

method. Ward’s method determines cluster merging decisions by 

minimizing within-cluster variance, which generally leads to the 

formation of balanced and homogeneous clusters. Unlike classical 

clustering methods such as K-Means and hierarchical clustering, 

which assign each data point to a single cluster absolutely, fuzzy 

clustering methods acknowledge that in some cases it may not be 

possible to assign observations to a single cluster definitively. 

Especially in datasets with ambiguous boundaries between clusters, 

fuzzy clustering techniques have been developed. In fuzzy clustering, 

an observation can belong to multiple clusters with different 

membership degrees ranging between 0 and 1. As in traditional 

clustering, distances are computed using distance metrics in fuzzy 

clustering as well. The Fuzzy C-Means (FCM) method, which was 

used in this study, is explained in the following subsection. 
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2.2.3. Fuzzy C-Means (FCM) 

The Fuzzy C-Means (FCM) algorithm is one of the most widely used 

fuzzy clustering methods. Similar to many other fuzzy clustering 

algorithms, it is based on minimizing a specific objective function, 

and the algorithm terminates when the improvement in this function 

falls below a predetermined threshold (Güleryüz, 2022). Initially, the 

membership matrix 𝑈(0) = [𝑢𝑖𝑗] with dimensions 𝑛×𝑐 is randomly 

initialized. Here, 𝑢𝑖𝑗 represents the degree of membership of the 𝑖𝑡ℎ 

data point in the 𝑗𝑡ℎ cluster, subject to the conditions 0 ≤𝑢𝑖𝑗 ≤1 and 

∑ uij
c
j=1 = 1. Cluster centers are computed using Equation (25) 

(Bezdek, 1981):  

vj =
∑ uij

mxi
n
i=1

∑ uij
mn

i=1

                                                                                     (25) 

where 𝑣𝑗 is the center of the 𝑗𝑡ℎ cluster, 𝑚 is the fuzzifier parameter, 

and 𝑥𝑖 is the 𝑖𝑡ℎ data point. Membership degrees are updated using 

Equation (26): 

uij =
1

∑ (
d(xi,vj)

d(xi,vk)
)

2
(m−1)

c
k=1

                                                                     (26) 

where 𝑑(𝑥𝑖 , 𝑣𝑗) denotes the distance between the 𝑖𝑡ℎ data point and the 

𝑗𝑡ℎ cluster center. In this study, Euclidean, Manhattan, and Minkowski 

distance metrics were used to measure this distance, and the effects of 

these metrics on the clustering outcomes were analyzed. Finally, the 

stopping criterion shown in Equation (27) checks whether the change 

in the membership matrix 𝑈 falls below a prescribed threshold. If the 
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change is smaller than this value, the algorithm terminates; otherwise, 

it returns to Equation (25). Here, 𝜀 is a small positive constant 

representing the stopping threshold. 

|U(k+1) − U(k)| < ε                                                                          (27) 

2.2.4. Evaluation of Clustering Performance  

The Silhouette score is one of the most commonly applied measures 

for judging the quality of clustering results. It evaluates how well a 

data point fits into its assigned cluster while also considering how 

different it is from other clusters. The score varies between –1 and +1. 

Values approaching +1 indicate that the observation is well matched 

to its cluster, whereas scores near 0 suggest that the point is positioned 

close to a cluster boundary. The Silhouette value for each observation 

is computed using Equation (28), where 𝑎(𝑖) represents the average 

distance from the 𝑖𝑡ℎ point to all other points within the same cluster, 

and 𝑏(𝑖) is the average distance from the 𝑖𝑡ℎ point to the closest other 

cluster. The overall Silhouette score S is calculated by averaging the 

individual scores of all observations, as shown in Equation (29) 

(Rousseeuw, 1987): 

s(i) =
b(i)−a(i)

max(a(i),b(i))
                                                                            (28)                                                                 

S =
1

N
∑ s(i)N

i=1                                                                                   (29)     

The Calinski–Harabasz Index (CHI) is another well-established metric 

used for assessing clustering effectiveness. This index evaluates the 
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clustering structure by jointly considering within-cluster compactness 

and between-cluster separation. CHI is defined in Equation (30), 

where SSB denotes the between-cluster sum of squares, SSW is the 

within-cluster sum of squares, K is the number of clusters, and N is the 

total number of observations. The quantities SSB and SSW are 

derived from Equations (31) and (32), respectively (Caliński & 

Harabasz, 1974):         

CHI =
SSB/(K−1)

SSW/(N−K)
                                                                              (30)                                                                                         

SSB= ∑ nk(μ
k
-μ)

2K
k=1                                                                                (31)                                                                                      

SSW = ∑ ∑ (xi − μk)2
xi∈Ck

K
k=1                                                               (32)         

In these expressions, 𝑛𝑘 refers to the number of data points in cluster, 

𝑘𝑡ℎ is the centroid of cluster, μ is the global mean, 𝑥𝑖  represents the 

data point, and 𝐶𝑘 denotes the set of observations that belong to the 

𝑘𝑡ℎ cluster. In conclusion, the Silhouette score focuses on how clearly 

separated clusters are from one another, whereas the CHI index 

provides an evaluation based on both cluster compactness and inter-

cluster distinctiveness. 

2.3. Semi-Supervised Learning 

Semi-supervised learning is a machine learning paradigm that 

incorporates both labeled and unlabeled data during model training. 

Because generating labeled datasets can be labor-intensive and 

expensive, this approach seeks to improve learning performance by 
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extending the information derived from a limited number of labeled 

samples to a substantially larger set of unlabeled observations. The 

model leverages the structural patterns recognized from the labeled 

portion of the data to make informed predictions about the unlabeled 

instances. As a result, semi-supervised techniques are capable of 

producing effective models while requiring far fewer labeled 

examples than traditional fully supervised methods. 

This approach is frequently applied in domains such as healthcare, 

text analytics, and image processing—areas characterized by abundant 

data availability but limited feasibility for comprehensive labeling. 

3. EVALUATION OF TÜRKİYE’S SUSTAINABLE ENERGY 

POTENTIAL USING MACHINE LEARNING METHODS 

In this section, the provinces of Türkiye are grouped according to their 

sustainable energy potentials based on a set of selected indicators. To 

this end, a general assessment of the application areas of machine 

learning methods will first be presented, supported by examples from 

the literature. Subsequently, the analyses conducted within the 

proposed methodology will be examined, and the findings will be 

presented. 

3.1. Related Work 

Various studies in the literature have analyzed countries or regions in 

terms of their Sustainable Energy Potential (SEP). In some of these 

studies, countries or regions were grouped using clustering methods 

according to their SEP levels, and different analyses were conducted 
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based on the resulting groups. In others, SEP was treated as a 

decision-making problem, and Multi-Criteria Decision-Making 

(MCDM) methods were employed to rank alternatives and identify the 

most suitable option. Most of these studies either focus on the 

selection of a renewable energy source for a specific region (Saraswat 

& Digalwar, 2021; Şahin, 2021; Afsordegan et al., 2016; Abdullah & 

Najib, 2016; Seddiki & Bennadji, 2019) or aim to contribute to the 

development of policies to enhance SEP (Marinakis et al., 2017; 

Solangi et al., 2019; Dall’O’ et al., 2013). 

A summary of clustering-based studies is presented in Table 2. The 

table includes information about the clustering method used in each 

study, the application area, the variables considered, and how the 

number of clusters was determined or how clustering performance 

was evaluated.  

Table 2: Summary of the Literature on SEP Assessment 

Author(s) Method 
Application 

Area 
Variables 

Cluster 

Number 

Determination 

Trappey et 

al. (2014) 

Self-Organizing 

Map (SOM) and 

AHP 

Assessment of 

renewable 

energy policies 

in Taiwan 

Economic indicators: 

facility/installation 

costs, incentive and tax 

policies, energy supply; 

Environmental 

indicators: CO₂ 

emissions, fossil fuel 

usage, greenhouse gas 

impacts 

Root Mean Square 

Error (RMSE) 

Grigoras & 

Scarlatache 

(2015) 

K-Means 

Analysis of 

renewable 

energy 

potential in 

Romania 

Installed capacity, 

voltage level, renewable 

technology type, 

geographic location 

Silhouette index 



41 

 

Author(s) Method 
Application 

Area 
Variables 

Cluster 

Number 

Determination 

Pelau & 

Chinie 

(2018) 

Ward 

Comparison of 

innovation and 

sustainability 

levels across 

European 

countries 

Number of PhD 

graduates, scientific 

publications, R&D 

expenditures, patents, 

product/service exports, 

electricity use, waste 

generation, air pollution, 

GHG emissions, 

recycling rates 

Dendrogram 

analysis, Elbow 

method 

Tutak et al. 

(2020) 

TOPSIS and 

Kohonen neural 

network 

Sustainable 

energy 

development in 

EU countries 

Total primary energy 

supply, final energy 

consumption, installed 

electricity capacity, 

energy efficiency, 

energy taxation, 

electricity prices, R&D 

spending, GHG 

emissions, air pollution, 

poverty rate 

Pi values obtained 

via TOPSIS 

Liu et al. 

(2020) 

Multidimensional 

goal-oriented 

clustering, 

Gaussian 

Mixture Model 

(GMM) 

Classification 

of energy 

investment 

options in 

Brisbane, 

Australia 

Daily energy 

consumption, daily solar 

output, maximum 

temperature, energy 

tariff, demand tariff 

Calinski–Harabasz 

Index (CHI) 

Wang & 

Yang (2020) 

Projection 

pursuit fuzzy 

clustering and 

accelerated 

genetic algorithm 

Evaluation of 

renewable 

energy 

sustainability 

in 27 EU 

countries 

Economic development, 

environmental pressure, 

energy conditions, social 

progress, governance 

and policy dimensions  

XB (Xie–Beni), 

PE (Partition 

Entropy), PC 

(Partition 

Coefficient) 

Kacperska et 

al. (2021) 
Ward 

Renewable 

energy usage 

patterns in EU 

and Visegrad 

Group 

countries 

Share of renewables in 

transport, electricity 

generation, and 

heating/cooling 

Dendrogram 

analysis 

Gostkowski 

et al. (2021) 

K-Means, 

DIANA 

(Hierarchical 

Clustering) 

Energy 

consumption 

structure in 

Visegrad 

Group 

countries 

Total primary energy 

supply (TPES), energy 

efficiency 

(energy/GDP), energy 

intensity (TPES/GDP), 

sectoral energy 

consumption 

Silhouette index, 

Rand–Jaccard 

index 

Matenga 

(2022) 
K-Means 

SDG7 

performance 

comparison in 

developed 

(USA, China) 

and developing 

regions (Sub-

Saharan Africa, 

South Asia) 

Access to energy, energy 

production sources, 

energy consumption, 

energy losses, short-term 

debt, per-capita income 

Elbow method 
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Author(s) Method 
Application 

Area 
Variables 

Cluster 

Number 

Determination 

Quatro¬si 

(2022) 
K-Medoids 

Environmental 

performance 

and clean 

energy 

modelling in 

EU countries 

Environmental 

performance scores, 

energy consumption, 

GDP per capita, 

industrial added value, 

population density, 

urbanization rate 

Elbow method 

Li et al. 

(2022) 

Bootstrap DEA 

and K-Medoids 

Regional 

sustainable 

development 

assessment in 

China 

Energy use, labor, 

capital, R&D stock, SO₂ 

emissions, GDP, patent 

counts 

Interpretation of 

bi-cluster graphs 

Kosowski et 

al. (2023) 
K-Means 

Structure of 

primary energy 

consumption in 

Europe 

Solid fossil fuels, crude 

oil, natural gas, nuclear 

energy, renewables, and 

other energy sources 

SSW and 

Silhouette index 

Table 2 shows that environmental and macroeconomic variables are 

frequently used in clustering studies. Unlike many others, Grigoras 

and Scarlatache (2015) also included “location” as an analysis 

criterion. Additionally, some studies incorporated social indicators 

such as the number of PhD graduates, scientific publications, R&D 

expenditures, and patent applications. 

3.2. Methodology 

3.2.1. Dataset 

In this study, the provinces of Türkiye were clustered based on their 

SEP. The criteria affecting SEP were examined under three main 

categories: socioeconomic structure, geographical characteristics, and 

renewable energy potential (REP). 

Within the socioeconomic category, the following variables were 

used: land area, population, annual population growth rate (‰), GDP 

per capita, total exports (thousand USD), total imports (thousand 
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USD), industrial volume (thousand TRY), and invoiced electricity 

consumption (MWh). Geographical position was incorporated into the 

model using latitude, longitude, northeastern boundary latitude, 

northeastern boundary longitude, southwestern boundary latitude, and 

southwestern boundary longitude. The REP category—directly related 

to sustainable energy planning—was defined more comprehensively. 

Numerous criteria associated with solar, wind, biomass, geothermal, 

and hydropower potential were included. These criteria are presented 

in Table 3. 

Table 3: REP Criteria 

No REP Criterion No REP Criterion 

REP1 Radiation value (kWh/m²-year) REP14 Agricultural land (ha) – 2020 

REP2 Average temperature (°C) REP15 
Total cultivated agricultural land 

(ha) – 2021 

REP3 
Average maximum temperature 
(°C) 

REP16 Artificial areas (ha) – 2020 

REP4 
Average minimum temperature 

(°C) 
REP17 

Forests and semi-natural areas 

(ha) – 2020 

REP5 
Average sunshine duration 
(hours) 

REP18 Wetlands (ha) – 2020 

REP6 Average wind speed (m/s) REP19 Water surfaces (ha) – 2010–2020 

REP7 
Average wind power density 

(W/m²) 
REP20 Irrigated land (ha) – 2020 

REP8 
Average wind capacity factor 
(%) 

REP21 
Forest biomass volume (m³) – 
2021 

REP9 Average number of rainy days REP22 
Total fertilizer consumption – 

2021 

REP10 Total precipitation amount REP23 
Crop production value (thousand 

TL) – 2021 

REP11 
Total average streamflow 

(m³/s) – 2021 
REP24 

Livestock production value 

(thousand TL) – 2021 

REP12 Elevation REP25 
Production of cereals and other 

crops (tons) – 2021 

REP13 
Groundwater (hm³/year) – 

2021 
REP26 

Average PM10 station values 

(µg/m³) – 2022 

 



44 

 

The dataset used in the study was obtained from publicly accessible 

databases in Türkiye (Turkish State Meteorological Service, 2024; 

Ministry of Energy and Natural Resources, 2024c; Ministry of 

Agriculture and Forestry, 2024; Ministry of Environment, 

Urbanization and Climate Change, 2024a; 2024b; General Directorate 

of State Hydraulic Works, 2024). 

The dataset covers all 81 provinces of Türkiye. Although the inclusion 

of many criteria may raise concerns regarding dimensionality, this 

approach is necessary to accurately reflect the multidimensional 

structure of SEP. SEP is influenced not only by technical indicators 

related to solar, wind, hydropower, geothermal, and biomass resources 

but also by environmental, socioeconomic, and geographical factors.  

Solar energy potential is largely determined by radiation levels; 

regions with higher radiation naturally exhibit stronger solar energy 

generation capacity. Average temperature, as well as maximum and 

minimum temperatures, affects the technical efficiency and seasonal 

performance of photovoltaic systems. Average sunshine duration is a 

direct determinant of regional solar potential. In the context of wind 

energy, average wind speed is a critical indicator. Furthermore, wind 

power density and capacity factor are essential parameters for 

assessing the technical and economic feasibility of wind energy in 

each region. Hydropower potential depends on factors such as 

precipitation levels, river discharge, and elevation. Biomass potential 

is influenced by agricultural land availability, crop production values, 

livestock activities, forest resources, and water availability—reflecting 
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the biophysical and agricultural capacity of a region. Environmental 

factors such as air quality (PM10) and forest stock serve as indicators 

both of sustainability performance and the need for renewable energy 

deployment. Among socioeconomic factors, population and 

population growth rate provide important insights into future regional 

energy demand. Geographical variables were incorporated into the 

model through latitude and longitude, given their direct influence on 

climatic conditions.  

All variables were normalized to the range [0,1] using the min–max 

scaling method to eliminate differences in measurement units. To 

avoid redundancy, one variable from each pair with correlation 

coefficients above 0.95 was removed from the dataset following a 

correlation analysis. 

Figure 7 presents the correlation matrix of REP criteria, and the 

variable codes shown in the figure correspond to those listed in Table 

3. 

Figure 8 presents the correlation matrix for the socioeconomic criteria. 

Here, SE1, SE2, SE3, SE4, SE5, SE6, SE7, and SE8 represent land 

area, population, annual population growth rate (‰), GDP per capita, 

total exports, total imports, industrial volume, and billed electricity 

consumption, respectively. 
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Figure 7: Correlation Matrix for REP Criteria 

 

Figure 8: Correlation Matrix for Socioeconomic Criteria 
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3.2.2. FCM Findings 

The FCM algorithm was implemented using three primary groups of 

criteria. FCM was chosen for the initial clustering phase because it can 

accommodate overlapping observations and assign each data point a 

degree of membership across clusters. This property is especially 

advantageous when working with complex datasets in which cluster 

boundaries are not sharply defined. The algorithm’s flexibility made it 

suitable for capturing the nuanced relationships among socioeconomic 

characteristics, geographical location, and REP. In this context, FCM 

served to uncover the multidimensional structure underlying SEP.  

The algorithm was executed with three different distance metrics—

Euclidean, Manhattan, and Minkowski—and with several alternative 

cluster numbers. Since Türkiye is divided into seven geographical 

regions, the algorithm was tested using 4, 5, 6, 7, 8, 9, and 10 clusters. 

The analysis was carried out in RStudio version 2024.12.1+563, an 

integrated development environment that provides extensive support 

for statistical programming and visualization in R. 

Because FCM is a fuzzy clustering technique, each observation 

receives a membership value between 0 and 1. This enabled the 

quantification of each province’s degree of association with each 

cluster. The membership values produced by the algorithm were then 

consolidated into a single dataset. For instance, when the cluster count 

is 4, the resulting dataset contains 12 variables (4 clusters × 3 main 

criteria). Likewise, when 10 clusters are used, the dataset includes 30 

variables. 
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Table 4 illustrates an example of the dataset generated by the FCM 

procedure, specifically the output obtained with Euclidean distance for 

k=4. 

Table 4: Dataset for Euclidean Distance and k = 4 

 Socioeconomic Location REP 

Province C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

P1 0.367 0.175 0.346 0.112 0.147 0.161 0.371 0.321 0.609 0.015 0.255 0.120 

P2 0.068 0.126 0.041 0.765 0.098 0.340 0.380 0.182 0.057 0.002 0.930 0.011 

P3 0.113 0.244 0.064 0.579 0.642 0.067 0.109 0.183 0.171 0.005 0.795 0.029 

P4 0.099 0.173 0.060 0.668 0.111 0.509 0.220 0.160 0.142 0.006 0.820 0.032 

P5 0.114 0.201 0.070 0.614 0.134 0.089 0.220 0.557 0.047 0.002 0.942 0.009 

P6 0.092 0.212 0.050 0.646 0.121 0.152 0.405 0.322 0.096 0.004 0.880 0.020 

P7 0.359 0.363 0.124 0.155 0.240 0.089 0.176 0.495 0.116 0.022 0.095 0.768 

P8 0.252 0.206 0.368 0.174 0.413 0.119 0.189 0.280 0.634 0.011 0.279 0.077 

P9 0.064 0.123 0.037 0.776 0.118 0.482 0.230 0.170 0.162 0.007 0.794 0.037 

P10 0.158 0.093 0.683 0.066 0.108 0.506 0.225 0.161 0.128 0.005 0.838 0.028 

P11 0.152 0.539 0.072 0.237 0.503 0.113 0.162 0.222 0.419 0.008 0.523 0.050 

P12 0.166 0.108 0.647 0.079 0.567 0.097 0.140 0.196 0.697 0.007 0.247 0.049 

P13 0.366 0.379 0.109 0.146 0.324 0.120 0.203 0.353 0.110 0.004 0.863 0.024 

P14 0.080 0.144 0.048 0.728 0.082 0.599 0.193 0.127 0.046 0.002 0.943 0.009 

P15 0.097 0.171 0.059 0.672 0.069 0.641 0.179 0.112 0.163 0.007 0.792 0.038 

P16 0.143 0.394 0.073 0.390 0.794 0.041 0.064 0.102 0.272 0.007 0.679 0.042 

P17 0.067 0.125 0.040 0.768 0.030 0.845 0.078 0.048 0.141 0.006 0.822 0.032 

P18 0.048 0.092 0.028 0.831 0.093 0.567 0.201 0.139 0.147 0.006 0.814 0.033 

P19 0.249 0.201 0.380 0.169 0.435 0.096 0.164 0.306 0.187 0.005 0.775 0.032 

P20 0.141 0.537 0.066 0.256 0.510 0.097 0.154 0.239 0.061 0.002 0.924 0.012 

P21 0.195 0.113 0.612 0.079 0.677 0.068 0.102 0.152 0.073 0.012 0.060 0.855 

P22 0.212 0.113 0.599 0.077 0.477 0.125 0.171 0.227 0.220 0.006 0.737 0.037 

P23 0.146 0.599 0.065 0.190 0.178 0.098 0.205 0.519 0.081 0.003 0.900 0.016 

P24 0.246 0.543 0.080 0.132 0.132 0.121 0.305 0.442 0.278 0.009 0.659 0.054 

P25 0.691 0.154 0.084 0.072 0.538 0.099 0.148 0.215 0.745 0.007 0.197 0.051 

P26 0.120 0.219 0.072 0.588 0.074 0.611 0.196 0.120 0.228 0.007 0.724 0.041 

P27 0.678 0.141 0.107 0.074 0.501 0.090 0.149 0.260 0.257 0.007 0.695 0.041 
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 Socioeconomic Location REP 

Province C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

P28 0.088 0.188 0.050 0.675 0.456 0.131 0.178 0.235 0.045 0.002 0.945 0.009 

P29 0.076 0.138 0.046 0.740 0.071 0.566 0.238 0.125 0.071 0.003 0.912 0.014 

P30 0.046 0.089 0.027 0.839 0.064 0.630 0.196 0.110 0.108 0.004 0.866 0.023 

P31 0.161 0.437 0.081 0.321 0.072 0.650 0.167 0.111 0.097 0.004 0.879 0.021 

P32 0.071 0.831 0.029 0.070 0.771 0.043 0.069 0.118 0.670 0.011 0.244 0.076 

P33 0.086 0.160 0.052 0.703 0.115 0.252 0.414 0.219 0.396 0.028 0.264 0.312 

P34 0.697 0.142 0.090 0.071 0.107 0.355 0.341 0.197 0.067 0.002 0.917 0.014 

P35 0.189 0.573 0.075 0.164 0.084 0.531 0.241 0.144 0.145 0.006 0.817 0.033 

P36 0.089 0.159 0.054 0.700 0.126 0.459 0.237 0.177 0.153 0.006 0.805 0.035 

P37 0.148 0.488 0.072 0.292 0.144 0.208 0.378 0.270 0.520 0.014 0.374 0.092 

P38 0.093 0.164 0.057 0.686 0.127 0.462 0.234 0.177 0.156 0.006 0.802 0.036 

P39 0.132 0.574 0.062 0.232 0.495 0.097 0.157 0.250 0.034 0.001 0.958 0.007 

P40 0.147 0.446 0.072 0.335 0.567 0.095 0.138 0.200 0.007 0.978 0.007 0.008 

P41 0.302 0.397 0.123 0.178 0.496 0.117 0.165 0.222 0.136 0.028 0.114 0.723 

P42 0.177 0.643 0.063 0.117 0.102 0.199 0.484 0.215 0.679 0.007 0.270 0.044 

P43 0.201 0.113 0.607 0.079 0.293 0.113 0.202 0.391 0.131 0.005 0.837 0.028 

P44 0.061 0.124 0.035 0.779 0.229 0.127 0.248 0.397 0.048 0.002 0.941 0.009 

P45 0.090 0.173 0.053 0.684 0.118 0.486 0.227 0.169 0.150 0.006 0.809 0.034 

P46 0.255 0.223 0.324 0.198 0.208 0.126 0.240 0.426 0.045 0.002 0.945 0.009 

P47 0.081 0.158 0.047 0.714 0.093 0.106 0.480 0.321 0.783 0.007 0.162 0.048 

P48 0.096 0.169 0.059 0.677 0.128 0.066 0.146 0.660 0.095 0.003 0.884 0.019 

P49 0.775 0.097 0.078 0.051 0.473 0.125 0.172 0.230 0.361 0.008 0.582 0.049 

P50 0.090 0.159 0.055 0.697 0.054 0.037 0.097 0.811 0.090 0.003 0.889 0.018 

P51 0.095 0.168 0.058 0.679 0.125 0.241 0.400 0.234 0.137 0.006 0.827 0.031 

P52 0.109 0.250 0.059 0.582 0.622 0.077 0.118 0.183 0.138 0.027 0.115 0.720 

P53 0.243 0.318 0.157 0.282 0.283 0.109 0.207 0.401 0.619 0.014 0.254 0.113 

P54 0.259 0.130 0.525 0.087 0.900 0.020 0.031 0.050 0.296 0.007 0.653 0.044 

P55 0.066 0.123 0.039 0.773 0.089 0.359 0.382 0.170 0.159 0.005 0.810 0.027 

P56 0.194 0.561 0.080 0.165 0.514 0.112 0.158 0.216 0.501 0.022 0.282 0.196 

P57 0.081 0.149 0.049 0.721 0.093 0.537 0.224 0.146 0.159 0.005 0.809 0.028 

P58 0.327 0.188 0.359 0.126 0.174 0.153 0.320 0.353 0.644 0.011 0.268 0.077 

P59 0.101 0.063 0.790 0.046 0.481 0.117 0.169 0.233 0.311 0.008 0.635 0.046 

P60 0.078 0.143 0.047 0.732 0.074 0.645 0.169 0.113 0.140 0.006 0.823 0.031 
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 Socioeconomic Location REP 

Province C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

P61 0.090 0.160 0.055 0.695 0.109 0.094 0.288 0.510 0.112 0.004 0.860 0.024 

P62 0.085 0.155 0.051 0.708 0.135 0.117 0.319 0.429 0.073 0.003 0.910 0.015 

P63 0.512 0.274 0.102 0.112 0.112 0.301 0.373 0.214 0.067 0.002 0.919 0.012 

P64 0.120 0.302 0.064 0.515 0.125 0.186 0.427 0.262 0.291 0.009 0.650 0.050 

P65 0.175 0.617 0.067 0.141 0.095 0.533 0.223 0.150 0.079 0.003 0.902 0.016 

P66 0.328 0.445 0.094 0.135 0.622 0.074 0.116 0.189 0.686 0.011 0.225 0.078 

P67 0.699 0.140 0.091 0.069 0.133 0.194 0.383 0.290 0.434 0.008 0.507 0.051 

P68 0.062 0.115 0.037 0.786 0.095 0.555 0.207 0.143 0.140 0.006 0.823 0.031 

P69 0.235 0.127 0.552 0.087 0.176 0.171 0.305 0.348 0.137 0.006 0.827 0.031 

P70 0.143 0.533 0.068 0.256 0.075 0.158 0.594 0.174 0.087 0.003 0.894 0.017 

P71 0.177 0.281 0.112 0.430 0.106 0.388 0.324 0.183 0.372 0.011 0.551 0.066 

P72 0.054 0.105 0.031 0.811 0.110 0.505 0.225 0.161 0.135 0.005 0.831 0.029 

P73 0.082 0.160 0.048 0.711 0.512 0.113 0.158 0.217 0.383 0.028 0.264 0.324 

P74 0.077 0.827 0.030 0.066 0.098 0.165 0.499 0.239 0.081 0.003 0.899 0.017 

P75 0.671 0.162 0.090 0.077 0.096 0.496 0.249 0.159 0.116 0.004 0.860 0.021 

P76 0.079 0.156 0.045 0.720 0.053 0.693 0.164 0.091 0.162 0.007 0.794 0.037 

P77 0.110 0.260 0.059 0.571 0.664 0.069 0.106 0.161 0.156 0.005 0.814 0.027 

P78 0.096 0.171 0.059 0.674 0.117 0.491 0.226 0.166 0.127 0.005 0.841 0.027 

P79 0.079 0.151 0.046 0.725 0.648 0.074 0.111 0.167 0.327 0.008 0.616 0.049 

P80 0.115 0.290 0.061 0.535 0.102 0.090 0.265 0.543 0.112 0.004 0.859 0.024 

P81 0.615 0.155 0.144 0.086 0.382 0.112 0.185 0.322 0.212 0.006 0.745 0.037 

The remaining FCM results are not included in the book due to page 

limitations. 

3.2.3. K-Means Findings 

The new datasets obtained from the FCM results were subsequently 

subjected to crisp clustering using the K-Means algorithm. This 

process ensured that the clustering analysis could represent the 

multidimensional structure of the energy system independently of the 

number of original variables. In this way, a novel two-stage 
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hierarchical clustering approach was proposed by integrating fuzzy 

and hard clustering methods. 

As an example, the visualizations of the 4-cluster and 10-cluster 

solutions generated using the Euclidean distance metric are presented 

in Figure 9 and Figure 10, respectively. 

 

Figure 9: k = 4, Metric = Euclidean 

 

Figure 10: k =10, Metric = Euclidean 

For the same number of clusters, the clustering results obtained using 

the Manhattan metric are presented in Figures 11 and 12, respectively. 
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Figure 11: k =4, Metric = Manhattan 

 

Figure 12: k =10, Metric = Manhattan 

Finally, the clustering results obtained using the Minkowski metric are 

presented in Figures 13 and 14, respectively. 
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.  

Figure 13: k =4, Metric = Minkowski 

 

Figure 14: k =10, Metric = Minkowski 

All cluster visualizations obtained using the K-Means algorithm are 

presented in Appendix A (Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, 

A.8, A.9, A.10, A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, 

A.20, and A.21). 

3.2.4. Analysis of Clustering Performance  

In the second stage of the methodology, the effectiveness of the 

clustering results was evaluated to determine the final cluster 
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structure. The class labels obtained from the clustering process were 

added to the dataset, and the problem was then treated as a 

classification task. Using the KNN, SVM, RF, and XGBoost 

algorithms, classification errors were computed. Additionally, voting 

and stacking ensemble learning techniques were applied to examine 

whether classification performance could be improved. The results 

were compared with widely used clustering performance metrics—

Silhouette and CHI indices—and the applicability of classification 

algorithms as a measure of clustering accuracy was critically assessed. 

The cluster configuration with the lowest classification error was 

selected as the final clustering solution. Furthermore, the effects of 

cluster number and distance metric on clustering performance were 

thoroughly analyzed. 

The classification algorithms utilized in this study were chosen based 

on their distinct strengths. KNN was preferred due to its simplicity 

and effectiveness. RF was selected for its strong generalization ability 

and robustness against overfitting, despite being based on decision 

trees. SVM was employed because of its high performance in cases 

where data are not linearly separable and its ability to maximize the 

margin between classes. XGBoost was chosen due to its high 

predictive accuracy, built-in regularization mechanisms that prevent 

overfitting, and computational efficiency. 

The CHI and Silhouette scores for all cluster configurations are 

presented in Table 5. 
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Table 5: CHI ve Silhoutte Scores for all Clusters 

Metric 
Cluster 

Number 

Average 

Silhouette 

Score 

CHI 
Silhouette 

Score Ranking   
CHI Ranking 

Euclidean 4 0.32 31.72 1 1 

Euclidean 5 0.27 25.05 4 3 

Euclidean 6 0.26 19.22 5 8 

Euclidean 7 0.17 13.46 20 15 

Euclidean 8 0.21 13.25 16 16 

Euclidean 9 0.21 11.85 17 20 

Euclidean 10 0.14 9.55 21 21 

Manhattan 4 0.26 22.64 10 6 

Manhattan 5 0.26 24.15 11 4 

Manhattan 6 0.26 18.01 7 11 

Manhattan 7 0.26 19.57 8 7 

Manhattan 8 0.26 19.22 5 8 

Manhattan 9 0.23 14.26 13 14 

Manhattan 10 0.20 12.36 19 19 

Minkowski 4 0.28 23.13 2 5 

Minkowski 5 0.25 18.57 12 10 

Minkowski 6 0.28 26.18 3 2 

Minkowski 7 0.26 17.87 9 12 

Minkowski 8 0.22 14.77 15 13 

Minkowski 9 0.21 12.58 18 17 

Minkowski 10 0.23 12.56 14 18 

 

According to Table 5, the most effective clustering configuration was 

achieved when the Euclidean distance metric was used with four 

clusters. Nonetheless, some clustering outcomes showed only minor 

performance differences. Additionally, discrepancies between the 

rankings of the validity indices are noteworthy. For example, while the 

Silhouette score identified the Minkowski distance with four clusters 

as the second-best solution, the CHI index ranked the Minkowski 

metric with six clusters as the second-best alternative. This 

inconsistency indicates that relying on a single validity measure may 

not provide a sufficiently robust assessment when comparing various 
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distance metrics and cluster counts. Therefore, this study incorporates 

classification algorithms as an additional approach to more accurately 

determine the optimal number of clusters. 

For the classification procedures, 75% of the data was used for model 

training and the remaining 25% for testing. Stratified sampling 

ensured that each cluster (class) was proportionally represented in 

both subsets, helping to reduce potential bias. Multiple precautions 

were taken to mitigate overfitting during model development. Cross-

validation was employed for hyperparameter tuning across all 

classifiers. In the KNN algorithm, the optimal value of k was selected. 

For the SVM model, the regularization parameter C and kernel width 

σ were optimized using grid search. In XGBoost and other ensemble 

techniques, key hyperparameters such as maximum tree depth (dmax) 

and learning rate (η) were fine-tuned through cross-validation to strike 

a balance between model complexity and generalization ability. An 

early-stopping rule was applied to halt the training process once the 

validation error stopped decreasing, preventing unnecessary 

complication of the model. 

Given the relatively limited sample size, ensemble learning methods 

were adopted to improve predictive performance. In total, 21 

clustering experiments were conducted by combining seven different 

cluster numbers with three distance metrics; however, not all cluster 

configurations yielded valid outcomes. 



57 

 

 

Figure 15: Confusion Matrix for k = 6, Metric = Euclidean 

For instance, Figure 15 displays the confusion matrix produced by the 

KNN classifier when the Euclidean distance metric was used and the 

number of clusters was set to k=6. As illustrated in the figure, the 

KNN algorithm identified 5 classes in the dataset, even though the 

original clustering specified 6 groups. Classification outputs that 

exhibited such inconsistencies were therefore removed from further 

evaluation. 

The classification errors observed in the analysis were not regarded as 

a shortcoming of the methodology. Instead, they were interpreted as 

indicators of clustering quality. When classification errors are low, this 

suggests that the resulting clusters are clearly separated and readily 

distinguishable, which in turn supports the appropriateness of the 

chosen clustering settings and distance metrics. Conversely, high 

classification error rates may point to overlaps between clusters or 

challenges in differentiating the underlying variables. The results 
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obtained using the KNN classifier are summarized in Table 6. For 

each clustering configuration, cross-validation was performed by 

adjusting the number of neighbors k from 1 to 20. 

Table 6: Result of KNN 

Number of 

clusters 

Distance metric MCC Kappa Accuracy Best k 

k=4 Euclidean 0.86 0.86 0.90 2 

k=5 Euclidean 0.94 0.93 0.95 2 

k=7 Euclidean 0.58 0.58 0.74 5 

k=8 Euclidean 0.70 0.74 0.78 4 

k=4 Manhattan 0.76 0.75 0.84 4 

k=5 Manhattan 0.86 0.86 0.89 3 

k=7 Manhattan 0.73 0.72 0.76 2 

k=4 Minkowski 0.87 0.87 0.90 4 

k=5 Minkowski 0.87 0.86 0.89 2 

k=7 Minkowski 0.69 0.68 0.74 2 

The results obtained from the SVM method are shown in Table 7. In 

the SVM approach, the RBF kernel was selected because, when 

appropriately tuned, it typically yields strong classification 

performance. The optimal values of the regularization parameter C 

and the kernel width parameter σ were identified using a grid search 

procedure, while the number of support vectors was determined 

automatically by the model. A smaller C value permits more 

classification errors and thus reduces the likelihood of overfitting, 

whereas a larger C value forces the model to fit the training data more 

closely, increasing the risk of overfitting. Similarly, a small σ value 

produces a more complex and flexible decision boundary (Cássia, 

2024).  
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Table 7: SVM Results 

Number 

of 

clusters 

Distance 

metric 

Regularization 

parameter (C) 

𝝈 Number of 

support 

vectors 

MCC Kappa Accuracy 

k=4 Euclidean 3.5 0.02 35 0.87 0.87 0.91 

k=5 Euclidean 2.5 0.02 44 0.79 0.76 0.81 

k=6 Euclidean 1.5 0.02 51 0.80 0.77 0.82 

k=4 Manhattan 2.5 0.02 38 0.92 0.93 0.95 

k=5 Manhattan 7 0.01 44 0.68 0.69 0.77 

k=6 Manhattan 2 0.02 48 0.80 0.77 0.82 

k=7 Manhattan 1.5 0.02 51 0.84 0.83 0.86 

k=4 Minkowski 10 0.02 37 0.88 0.87 0.90 

k=5 Minkowski 4.5 0.02 41 0.86 0.82 0.86 

k=6 Minkowski 5.5 0.01 47 0.67 0.76 0.81 

The results obtained using the RF method are presented in Table 8. 

Table 8: RF Results 

Number 

of 

clusters 

Distance 

metric 

mtry MCC Kappa Accuracy 

k=4 Euclidean 4 0.94 0.94 0.95 

k=5 Euclidean 2 0.94 0.93 0.95 

k=6 Euclidean 4 0.74 0.71 0.77 

k=4 Manhattan 3 0.81 0.80 0.86 

k=5 Manhattan 4 0.68 0.67 0.77 

k=6 Manhattan 2 0.78 0.77 0.82 

k=7 Manhattan 4 0.67 0.78 0.83 

k=4 Minkowski 3 0.87 0.87 0.90 

k=5 Minkowski 4 0.74 0.71 0.77 

k=6 Minkowski 6 0.89 0.89 0.91 

In Random Forest, the hyperparameter mtry—which specifies the 

number of variables considered at each split—was tuned through 

cross-validation. A smaller mtry increases the diversity among trees 

and helps mitigate overfitting. Conversely, a larger mtry value can 

improve the accuracy of individual trees but also raises the correlation 
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between them, potentially diminishing the ensemble’s generalization 

capability. 

The XGBoost results and the corresponding hyperparameter 

configurations are presented in Table 9.  

Table 9: XGBoost Results 

Number 

of 

clusters 

Distance 

metric 

MCC Kappa Accuracy Best parameter combination 

k=4 Euclidean 0.7559 0.8679 0.9048 
dmax= 3, wmin= 1, s = 1, sf = 0.75, γ = 0, η = 

0.05 

k=5 Euclidean 0.9366 0.9333 0.9474 
dmax= 9, wmin= 1, s = 1, sf = 0.5, γ = 0.2, η 

= 0.1 

k=7 Euclidean 0.7284 0.7224 0.7647 
dmax= 9, wmin= 1, s = 0.75, sf = 0.5, γ = 0.1, 

η = 0.1 

k=8 Euclidean 0.7169 0.7104 0.7500 
dmax= 9, wmin= 1, s = 1, sf = 1, γ = 0, η = 

0.05 

k=4 Manhattan 0.9331 0.9298 0.9500 
dmax= 9, wmin= 1, s = 0.8, sf = 1, γ = 0.1, η 

= 0.1 

k=6 Manhattan 0.6667 0.7627 0.8095 
dmax  = 6, wmin= 1, s = 1, sf = 1, γ = 0, η = 

0.1 

k=7 Manhattan 0.8281 0.8779 0.8571 
dmax= 3, wmin= 1, s = 1, sf = 1, γ = 0.2, η = 

0.1 

k=4 Minkowski 0.9386 0.9359 0.9545 
dmax= 9, wmin= 1, s = 1, sf = 1, γ = 0.1, η = 

0.1 

k=5 Minkowski 0.8070 0.8014 0.8421 
dmax= 9, wmin= 1, s = 1, sf = 1, γ = 0, η = 

0.1 

k=6 Minkowski 0.8373 0.8281 0.8636 
dmax=9, wmin= 1, s = 1, sf = 1, γ = 0, η = 0.1 

In this framework, dmax specifies the maximum depth of the trees; 

increasing this parameter creates more complex models but also 

heightens the likelihood of overfitting. The parameter wmin represents 

the minimum total Hessian (second derivative) weight required for a 

node to undergo a split. Conceptually, it functions as the model’s 

mathematical mechanism for determining whether a split is justified, 

thereby regulating tree growth and helping to control overfitting. 

Lower values make the model more responsive to variations in the 
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data, while higher values tend to enhance its ability to generalize. The 

parameter s refers to the fraction of data samples randomly selected 

for training each tree, whereas sf indicates the fraction of features 

randomly chosen for the same purpose. The parameter γ defines the 

minimum loss reduction needed to allow a leaf node to split; larger 

values require greater improvement in the objective function before a 

split is permitted. The learning rate η determines how much each 

additional tree contributes to the model’s final prediction. Although 

smaller values of η often produce more stable and potentially more 

accurate models, they can substantially increase the training duration 

(GitHub, 2024; Chen & Guestrin, 2016). 

Additionally, within the proposed methodology, the predictions of the 

RF and XGBoost algorithms were combined to create a stacked 

dataset. Then, MLR, SVM, and KNN models were used as meta-

models, and accuracy values were calculated. The meta-models that 

produced the best results in the stacked method and their performance 

metrics are presented in Table 10. 

Table 10: Results of Ensemble Model 1 

Number 

of 

clusters 

Distance metric  Best meta-model  MCC Kappa Accuracy 

k=4 Euclidean MLR-KNN 0.76 0.87 0.90 

k=5 Euclidean MLR-KNN-SVM 0.85 0.80 0.86 

k=4 Manhattan MLR-KNN-SVM 0.85 0.93 0.95 

k=5 Manhattan MLR-KNN-SVM 0.78 0.80 0.86 

k=6 Manhattan MLR-KNN-SVM 0.67 0.76 0.81 

k=7 Manhattan MLR-SVN 0.83 0.88 0.86 

k=4 Minkowski MLR-KNN 0.94 0.93 0.95 

k=5 Minkowski SVM 0.80 0.79 0.76 

k=6 Minkowski MLR-KNN-SVM 0.84 0.81 0.86 
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The cross-validation procedures previously applied to the RF, 

XGBoost, SVM, and KNN models were repeated, and the optimal 

hyperparameters identified through these validations were 

incorporated into the final model. However, the detailed cross-

validation outputs were not included in Table 10 due to page layout 

constraints. In the final stage, predictions generated by the RF and 

XGBoost algorithms were combined using a majority voting ensemble 

strategy, and the corresponding results are presented in Table 11. As in 

earlier steps, the necessary cross-validation processes for tuning the 

RF and XGBoost parameters were also carried out in this part of the 

analysis. 

Table 11: Results of Ensemble Model 2 

Number of 

clusters 

Distance metric MCC Kappa Accuracy 

k=4 Euclidean 0.94 0.94 0.95 

k=5 Euclidean 0.85 0.93 0.95 

k=6 Euclidean 1.00 1.00 1.00 

k=7 Euclidean 0.87 0.87 0.89 

k=8 Euclidean 0.81 0.80 0.83 

k=4 Manhattan 0.78 0.76 0.84 

k=5 Manhattan 1.00 1.00 1.00 

k=6 Manhattan 1.00 1.00 1.00 

k=7 Manhattan 0.88 0.87 0.89 

k=8 Manhattan 0.72 0.71 0.75 

k=10 Manhattan 0.52 0.50 0.56 

k=4 Minkowski 1.00 1.00 1.00 

k=5 Minkowski 0.93 0.93 0.95 

k=6 Minkowski 1.00 1.00 1.00 

k=7 Minkowski 0.43 0.42 0.53 

A review of Tables 6 through 11 shows that the KNN, SVM, RF, and 

XGBoost models each yielded 10 valid classification results, while 

Ensemble Model 1 produced 9 valid classifications and Ensemble 
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Model 2 produced 15. With the exception of a single valid outcome 

obtained from Ensemble Model 2 (k = 10, Manhattan), none of the 

methods generated acceptable classifications for cluster sizes of 9 or 

10. Table 12 summarizes the mean MCC, Kappa, and accuracy values 

computed for each model. 

Table 12: Comparison of Distance Metrics 

Method 
Number of 

Predictions 

Distance 

Metric 

Average 

MCC 

Average 

Kappa 

Average 

Accuracy 

KNN 4 Euclidean 0.77 0.78 0.84 

SVM 3 Euclidean 0.82 0.80 0.85 

RF 3 Euclidean 0.87 0.86 0.89 

XGBoost 4 Euclidean 0.78 0.81 0.84 

Ensemble 

Model 1 
2 Euclidean 0.80 0.84 0.88 

Ensemble 

Model 2 
5 Euclidean 0.89 0.91 0.93 

Based on these findings, Ensemble Model 2 was selected as the basis 

for determining the optimal number of clusters, as it outperformed the 

other approaches. The most successful clustering structures were 

identified through the results obtained by this ensemble. Initially, 

when the Euclidean distance metric was used, the 6-cluster solution 

achieved perfect classification performance, with MCC, Kappa, and 

accuracy values all equal to 1.00. Under the Manhattan distance 

metric, both the 5-cluster and 6-cluster solutions likewise produced 

perfect results across all performance measures. Similarly, the 

Minkowski metric yielded two fully accurate solutions, with the 4 -

cluster and 6-cluster configurations each reaching MCC, Kappa, and 

accuracy values of 1.00.  
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Table 13 provides a comparison between the clustering structures 

identified as completely successful by Ensemble Model 2 and the 

Silhouette and CHI indices reported in Table 5. 

Table 13: Evaluation of Ensemble Model 2 in Relation to the 

Silhouette and CHI  

Cluster 

number 

Distance 

metric 
MCC Kappa Accuracy 

Average 

Silhouette 

score ranking 

CHI 

ranking 

k=6 Euclidean 1.00 1.00 1.00 5 8 

k=5 Manhattan 1.00 1.00 1.00 11 4 

k=6 Manhattan 1.00 1.00 1.00 7 11 

k=4 Minkowski 1.00 1.00 1.00 2 5 

k=6 Minkowski 1.00 1.00 1.00 3 2 

As shown in Table 13, the clustering obtained using the Minkowski 

distance metric with a cluster count of 6 was selected as the final 

solution, as it consistently appears within the top three ranks across all 

evaluation criteria. 

Table 14: Final Clustering Results 

Cluster Province Group 

Cluster a 
Adana, Antalya, Burdur, Denizli, Gaziantep, Hatay, Isparta, Kahramanmaraş, 

Kayseri, Mersin, Şanlıurfa, Osmaniye 

Cluster b 

Adıyaman, Ağrı, Aksaray, Ardahan, Batman, Bayburt, Bingöl, Çorum, 

Diyarbakır, Elazığ, Erzincan, Hakkari, Iğdır, Karaman, Kars, Kırıkkale, 

Kırşehir, Malatya, Mardin, Muş, Nevşehir, Niğde, Tunceli, Van, Şırnak, Bitlis, 

Siirt 

Cluster c 
Amasya, Ankara, Artvin, Çankırı, Erzurum, Gümüşhane, Karabük, Konya, 

Rize, Sivas, Tokat, Yozgat 

Cluster d Bursa, İstanbul, Kocaeli 

Cluster e 
Afyonkarahisar, Aydın, Balıkesir, Bilecik, Bolu, Çanakkale, Eskişehir, İzmir, 

Kütahya, Manisa, Muğla, Uşak, Yalova 

Cluster f 
Bartın, Düzce, Edirne, Giresun, Kastamonu, Kırklareli, Ordu, Sakarya, 

Samsun, Sinop, Tekirdağ, Trabzon, Zonguldak 



65 

 

The list of provinces assigned to each cluster is given in Table 14, and 

the spatial representation of the clusters on the map of Türkiye is 

illustrated in Figure 16. 

 

Figure 16: Visualization of the Final Clustering on the Map of 

Türkiye 

Table 15 presents the cluster means for socioeconomic criteria, while 

Table 16 reports the cluster means for selected REP criteria. 

As presented in Table 15, the average values of the socioeconomic 

criteria offer important insights into the economic structures, energy 

demand levels, and regional development dynamics of the clusters. 

Evaluating each cluster based on indicators such as industrial capacity, 

population size, foreign trade volume, per capita income, and 

electricity consumption provides a more accurate understanding of 
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regional energy demand and supports more effective planning of 

sustainable energy investments. 

Table 15: Cluster Means for Socioeconomic Criteria 
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a 12055 1486881 12 63942 2696762 2626115 5132260 4567433 

b 8231 454644 3 48849 248297 184956 741051 776142 

c 14882 993522 11 63379 1344522 1186612 4107826 2330135 

d 6557 7060581 19 130287 47871234 56412045 52091641 20016168 

e 9912 1030761 18 83178 1857114 1371351 6502726 3376702 

f 5985 631005 9 68489 928029 707197 3399168 1922170 

Cluster d clearly distinguishes itself from all other clusters. This 

cluster represents the economic and demographic center of Türkiye, 

characterized by extremely high population density, a very large 

industrial capacity, a substantial share of the country's total exports 

and imports, and exceptionally high electricity consumption. These 

characteristics demonstrate the prevalence of intensive industrial 

activities, large-scale production facilities, organized industrial zones, 

and high-technology sectors. Consequently, this cluster is critical in 

terms of energy supply security and requires both strong electricity 

generation and transmission infrastructure. Clusters a and e have 

moderate levels of industrial activity but stand out with strong 

agricultural production, commercial capacity, and service sector 

dynamics. The relatively high electricity consumption observed in 

these clusters results from mixed economic structures in which 
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industrial and agricultural activities coexist. In these regions, 

renewable energy investments may be strengthened through 

distributed energy systems and flexible resources such as solar and 

wind power, especially to support areas with concentrated demand. 

Cluster b exhibits lower values in both population and economic 

indicators. Electricity consumption and industrial activities are 

relatively limited, which reflects a predominantly rural structure with 

low-density economic activity. In such areas, small-scale and locally 

targeted renewable energy projects—such as biomass systems, small 

hydropower plants, or micro-scale solar installations—are more 

feasible. This approach can enhance energy accessibility while 

contributing to regional economic development. Clusters c and f 

represent regions with moderate economic activity and industrial 

capacity, accompanied by a more balanced population structure. These 

clusters contain diversified agricultural and industrial elements, 

leading to a more balanced overall energy demand profile. As a result, 

hybrid systems combining different renewable energy technologies—

such as wind, solar, and biomass—may be particularly suitable for 

these areas. Overall, the clustering analysis reveals significant regional 

variations in Türkiye’s energy demand structure. Industrially intensive 

regions require large-scale generation facilities and robust grid 

infrastructure, while low-population rural regions benefit more from 

flexible, localized, and sustainable energy solutions. Therefore, 

shaping energy policies and investment strategies according to these 

regional differences is crucial for ensuring both economic efficiency 

and long-term sustainability. 
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Table 16: Cluster Averages for Selected REP Criteria 
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a 16.45 7.16 4.57 157.23 668.02 157.48 470.17 412.45 334148 8431778 3383013 

b 11.81 6.60 4.47 137.55 545.08 170.28 1144.57 173.30 287033 1856390 2613220 

c 11.27 6.12 4.15 118.62 617.09 182.03 836.17 172.81 556745 3709095 3906816 

d 14.90 4.27 4.83 160.58 727.70 168.70 92.67 192.44 188618 4264319 2226005 

e 13.92 6.63 4.79 171.27 638.95 106.75 445.85 283.25 379918 4264451 3926453 

f 13.71 5.08 4.26 143.93 829.35 112.40 100.31 119.88 233940 3113323 1561956 

The average values presented in Table 16 reveal the distinct renewable 

energy characteristics of each cluster. When temperature, solar 

radiation, wind indicators, hydrological parameters, and agricultural 

production variables are jointly considered, it becomes evident that the 

clusters exhibit significantly different profiles in terms of renewable 

energy planning and resource suitability. 

Cluster a exhibits relatively high temperatures and long sunshine 

durations compared to the other clusters, making it highly suitable for 

solar energy investments. The presence of moderate wind speeds and 

power density further indicates that certain areas within this cluster 

may also support wind energy applications. The moderate levels of 

precipitation and river discharge suggest that hydropower potential is 

present but not dominant. Additionally, the extensive agricultural land 
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and high levels of crop production highlight that biomass energy can 

serve as a meaningful option for this cluster. Cluster b displays lower 

levels of temperature and sunshine duration, which limits its 

suitability for solar energy applications. However, the high altitude 

strengthens the hydrological structure of the region, and the relatively 

high discharge values suggest considerable hydropower potential. The 

cluster’s extensive agricultural land and significant livestock 

production also indicate a favorable environment for biomass energy. 

Wind speeds are moderate, making wind power feasible in selected 

locations. Cluster c presents medium-level temperature and sunshine 

duration, indicating balanced potential for both solar and wind energy. 

With wind speeds above 4 m/s and reasonable power density, certain 

areas are suitable for wind farm development. Furthermore, high 

discharge levels coupled with notable elevation differences strengthen 

the hydropower potential of this cluster. Large agricultural areas and 

substantial crop production also provide a solid foundation for 

biomass energy. Overall, Cluster c represents a hybrid renewable 

energy profile suitable for integrated energy strategies. Cluster d has 

the lowest average sunshine duration among all clusters, limiting its 

suitability for solar power. In contrast, its wind speed and power 

density are notably high, positioning wind energy as the primary 

renewable resource for this region. Although precipitation and 

discharge values are relatively high, the low elevation limits 

hydropower feasibility. Agricultural and livestock indicators are 

moderate, suggesting that biomass potential exists but is not dominant. 

Overall, this cluster stands out primarily due to its strong wind energy 
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characteristics. Cluster e demonstrates a highly balanced structure 

with strong performance across multiple renewable energy indicators. 

High sunshine duration, strong wind speeds, and high-power density 

make this cluster one of the most favorable regions in Türkiye for both 

solar and wind energy. Additionally, extensive agricultural land and 

exceptionally high crop production values highlight biomass as 

another strong alternative. Although hydrological parameters are 

moderate, hydropower serves as a complementary rather than primary 

source. This cluster is well-suited for diverse and integrated renewable 

energy investments. Cluster f exhibits relatively low sunshine duration 

but possesses wind speeds and power density values that support wind 

energy development in specific areas. High rainfall and particularly 

high discharge values suggest that hydropower constitutes the most 

promising resource for this cluster. The relatively smaller agricultural 

land area and lower crop production values limit biomass potential. 

Given its geographical characteristics, hydropower and wind energy 

emerge as the dominant renewable resources for this cluster. 

Overall, the clusters reveal distinct renewable energy profiles, with 

each cluster demonstrating comparative advantages in different energy 

sources. Some clusters are dominated by a single resource (e.g., wind 

in Cluster d; hydropower in Clusters b and f), while others exhibit 

broad multi-resource suitability (e.g., Cluster e). These findings 

highlight the necessity of incorporating regional differences into 

Türkiye’s renewable energy transition strategies and suggest that 
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region-specific energy policies may lead to more efficient and 

sustainable outcomes. 

4. CONCLUSION AND DISCUSSION 

Climate change, rising energy demand, and the environmental impacts 

of fossil fuels have become the key drivers compelling countries to 

develop sustainable energy policies. In this context, the effective 

evaluation of renewable energy resources and the integration of 

scientific methods into energy planning processes are not only 

environmental necessities but also strategic requirements for 

enhancing economic competitiveness and ensuring long-term social 

welfare. Türkiye’s diverse geographical, climatic, and socioeconomic 

characteristics make it difficult to conduct energy planning through a 

homogeneous structure. Therefore, systematically analyzing regional 

differences in energy potential provides decision makers with valuable 

insights into which renewable energy source is most suitable for each 

region. 

This study was designed with this need in mind and aimed to examine 

Türkiye’s provinces based on their sustainable energy potential 

through a comprehensive machine learning–based clustering 

framework. Using socioeconomic structure, geographical 

characteristics, and REP as the primary criteria groups, the provinces 

were first clustered using the FCM algorithm. FCM was preferred due 

to its ability to assign membership degrees to multiple clusters, an 

important feature when analyzing multidimensional problems such as 

sustainable energy potential, where cluster boundaries are not sharply 
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defined. The algorithm was executed using three different distance 

metrics (Euclidean, Manhattan, and Minkowski) and seven different 

cluster numbers (from 4 to 10). The membership degrees obtained 

from each clustering configuration were then combined to form a new 

dataset, which was subsequently subjected to a second-stage crisp 

clustering process using the K-Means algorithm. In this two-tiered 

hierarchical structure, the fuzzy nature of the data was first captured, 

and then more explicit cluster structures were derived from this 

representation. 

To test the reliability of the clustering results, the cluster labels 

obtained from K-Means were incorporated into the dataset as response 

variables. Subsequently, several classification algorithms including 

KNN, SVM, RF, and XGBoost were applied, and cluster validity was 

assessed based on classification errors. Furthermore, ensemble 

learning strategies—specifically voting and stacking approaches that 

combined the predictive outputs of RF and XGBoost—were utilized 

to enhance classification performance. Supported by cluster validity 

metrics such as Silhouette and CHI indices, the structure with the 

lowest classification error was selected as the final clustering solution.  

According to these evaluations, the most successful clustering was 

achieved when using the Minkowski distance metric with six clusters. 

Among the identified clusters, Cluster d—which includes Bursa, 

İstanbul, and Kocaeli—stands out as Türkiye’s most strategically 

significant region in terms of energy demand. This cluster exhibits the 

highest population, the largest industrial capacity, and the most 
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intensive electricity consumption across the country. These 

characteristics are directly linked to the region’s high concentration of 

industrial facilities, strong economic activity, and developed urban 

infrastructure. As a result, this cluster requires prioritized 

consideration in energy supply planning, including the deployment of 

large-scale and reliable energy sources to support its substantial and 

continuously increasing energy demand. 

The findings highlight that Türkiye’s sustainable energy potential is 

far from uniform and that provinces with similar characteristics tend 

to group together in meaningful ways. This reinforces the importance 

of adopting region-specific strategies rather than relying on a single, 

national-level renewable energy policy. The results also demonstrate 

that machine learning–based clustering can provide significant support 

to policymakers by revealing regional energy profiles, identifying 

critical demand centers, and offering a scientific foundation for 

targeted investment planning. 

For future research, each cluster’s unique energy profile could be 

analyzed more comprehensively using MCDM techniques. 

Conducting MCDM analyses separately for each cluster would 

provide deeper insights into the most suitable renewable energy 

sources at the regional level and would help develop more precise and 

actionable energy investment strategies. Additionally, monitoring 

changes in cluster structures over time and performing long-term 

dynamic analyses would enable researchers to examine how climate 

change, demographic shifts, and economic transformations influence 
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regional energy potentials. Integrating cost, environmental impacts, 

carbon emissions, technical feasibility, and social acceptability 

indicators into the regional analyses may also support the 

development of more holistic and multidimensional energy planning 

models in future studies. 
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APPENDIX 

 

Figure A. 1. K-Means result for k = 4, metric = Euclidean 

 

 

Figure A. 2. K-Means result for k = 5, metric = Euclidean 
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Figure A. 3. K-Means result for k = 6, metric = Euclidean  

 

 

Figure A. 4. K-Means result for k = 7, metric = Euclidean 
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Figure A. 5. K-Means result for k = 8, metric = Euclidean 

 

 

Figure A. 6. K-Means result for k = 9, metric = Euclidean 
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Figure A. 7. K-Means result for k = 10, metric = Euclidean 

 

 

Figure A. 8. K-Means result for k = 4, metric = Manhattan 
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Figure A. 9. K-Means result for k = 5, metric = Manhattan 

 

 

Figure A. 10. K-Means result for k = 6, metric = Manhattan 
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Figure A. 11. K-Means result for k = 7, metric = Manhattan 

 

 

Figure A. 12. K-Means result for k = 8, metric = Manhattan 
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Figure A. 13. K-Means result for k = 9, metric = Manhattan 

 

 

Figure A. 14. K-Means result for k = 10, metric = Manhattan 
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Figure A. 15. K-Means result for k = 4, metric = Minkowski 

 

 

Figure A. 16. K-Means result for k = 5, metric = Minkowski 
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Figure A. 17. K-Means result for k = 6, metric = Minkowski 

 

 

Figure A. 18. K-Means result for k = 7, metric = Minkowski 
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Figure A. 19. K-Means result for k = 8, metric = Minkowski 

 

 

Figure A. 20. K-Means result for k = 9, metric = Minkowski  
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Figure A. 21. K-Means result for k = 10, metric = Minkowski 
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