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PREFACE 

Recently, the volume of biological and clinical data has increased 

rapidly, which has made biostatistics even more of a vital field for 

advancing data-driven health research. Data structures are becoming 

more complex in various current areas of study. This trend arises due to 

the growth of greater amounts of data, the emergence of more powerful 

computing tools, and the widespread application of machine learning 

techniques. The recent changes have generated significant interest in 

the proper classification of information. This book presents three 

interrelated chapters. This work examines the evolution of classification 

techniques, the fundamental concepts underlying these methods, and 

their practical applications in the medical field via biostatistics. 

The first chapter dives into classical and modern techniques of 

classification, including k-nearest neighbors, decision trees, logistic 

regression, and support vector machines. The chapter examines the 

methodological assumptions of each approach, demonstrating their 

strengths and weaknesses, and providing an objective assessment of 

their performance with various types of data. Contemporary research 

indicates an increasing integration of conventional methodologies with 

deep learning frameworks and ensemble techniques, resulting in hybrid 

models that enhance stability, precision, and interpretability. The 

chapter identifies several avenues for future research, including 

enhancing explainability, developing robust methods for small or 

imbalanced datasets, and creating integrated frameworks that combine 

statistical and machine learning concepts. 
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The second chapter presents a comprehensive bibliometric analysis of 

scientific literature concerning classification methods in biostatistics. 

This chapter provides an examination of 170 publications spanning 

almost four decades of research activity. The material illustrates 

primary trends in development, research clusters, patterns in 

international collaboration, and advancements in thematic areas. The 

results demonstrate a notable increase in research utilizing 

classification methods after 2015. The increase was mainly attributed 

to advancements in artificial intelligence, bioinformatics, and genomic 

data analysis, and the chapter further highlights a growing emphasis on 

classification studies designed for clinical application. This rise in 

number became especially evident during the COVID-19 pandemic, 

reflecting the multidimensional nature of modern biostatistical 

research. 

The third chapter applies these methodological insights to an important 

public health problem: identifying cervical cancer behavioral risk 

factors using Support Vector Machines. Addressing class imbalance 

with SMOTE and evaluating several SVM kernels, the study 

demonstrates that polynomial-kernel SVM yields the most effective 

performance, particularly in modeling complex, nonlinear behavioral 

and psychosocial attributes. The findings demonstrate how machine 

learning-based models can significantly improve women's health 

through early diagnosis and preventive measures. 

The chapters in this book collectively provide a comprehensive and 

prospective perspective on the integration of classification methods 

within biostatistics. They combine robust theory with practical 
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applications in contemporary healthcare systems. I sincerely hope this 

book becomes an essential resource for academics, physicians, data 

specialists, and students interested in the methodologies and practical 

aspects of biomedical classification. In summary, “Advances in 

Biostatistical Classification: Methods, Trends, and Medical 

Applications” is intended to be an important guide for the development 

of both ideas and real-world use in biostatistical classification. 

 

 

21/11/2025 

Assist. Prof. Dr. Elif  ÜNAL ÇOKER 

EDITOR 
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CHAPTER 1 

 

FOUNDATIONS AND ALGORITHMS OF CLASSIFICATION IN 

MACHINE LEARNING 

Assist. Prof. Dr. Ecem DEMİR 

 

INTRODUCTION 

In today's data-driven world, classification has become one of 

the most widely used techniques in machine learning and statistical 

analysis. Many real-world problems, such as diagnosing a disease in the 

healthcare sector or determining whether an email is spam, can be 

automatically solved using classification algorithms. In recent years, 

the development of artificial intelligence-based methods has 

significantly increased the accuracy and generalizability of 

classification techniques [Goodfellow et al., 2016].  

Classification falls under the category of supervised learning, 

and its purpose is to predict which class new observations belong to by 

learning from labeled examples in a given observation set. In this 

process, the advantages and limitations of different algorithms vary 

depending on the nature of the data set. 

This section will examine both classical and modern classification 

methods in detail, starting with the basic principles of classification. It 

will also cover how to evaluate, compare, and improve the performance 

of algorithms.  
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1. CLASSIFICATION 

Classification is the process of grouping objects based on their 

characteristics, allowing scientists to organize information into 

logically related categories for easier analysis and evaluation (Singh & 

Chauhan, 2012). The primary goal is to develop a model that can predict 

with the highest accuracy and in a generalizable manner which class an 

unlabeled new observation belongs to, based on examples with known 

labels during the training phase. In the context of data mining and 

machine learning, classification refers to learning a separation rule, 

decision surface, or probabilistic function from labeled (supervised) 

data to produce a mapping that can assign previously unseen examples 

to predefined classes (An, 2009; Kotsiantis, 2007). Therefore, 

classification is not only a descriptive but also a predictive task, and the 

success of the model is often evaluated using performance metrics such 

as accuracy, sensitivity/specificity, F1 score, ROC-AUC, or MCC for 

imbalanced datasets (James et al., 2021; Bishop, 2006). 

Current literature demonstrates that classification has an 

extensive and interdisciplinary range of applications: clinical decision 

support and disease classification (e.g., cancer subtypes, diabetes 

complications), omics/data-intensive biomedical analysis, credit 

scoring and financial risk prediction, customer segmentation and churn 

analysis, network/cyber attack detection, fraud detection, image and 

speech recognition, and text/document classification are just some of 

these areas (Mlouhi & Hamdi, 2020; Han, Pei & Kamber, 2012; 

Aggarwal, 2015; James et al., 2021). Particularly in medical diagnosis 
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and bioinformatics applications, classification algorithms play a critical 

role in extracting meaningful patterns from multidimensional and noisy 

data, generating second opinions to support physician decisions, and 

creating risk scores for early diagnosis (Esteva et al., 2017; Chicco & 

Jurman, 2020). Similarly, in the field of cybersecurity, supervised 

classification methods enhance the accuracy of anomaly-based 

intrusion detection systems. In the field of text and natural language 

processing, they form the basis of tasks such as sentiment analysis, 

topic-based tagging, and multi-label document classification (Manning, 

Raghavan, & Schütze, 2008).  

The application scope of classification remains very broad, 

encompassing early disease diagnosis, image and signal classification, 

network attack detection, credit risk scoring, churn prediction, and 

clinical phenotyping, among others (Esteva et al., 2021; Rajpurkar et 

al., 2022). Post-2020 literature reports that the hybrid use of deep 

learning-based classifiers with classical tabular methods (e.g., deep 

feature extraction combined with a tree-based classifier) yields 

meaningful gains in small and imbalanced clinical datasets (Huang et 

al., 2024). 

Classification techniques are data mining methods used to 

separate and predict data samples into predefined classes or groups 

based on their features. Several studies highlight a few fundamental 

classification techniques (Rajwinder Kaur et al., 2017; Narsaiah Putta 

et al., 2018): 
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- Decision Trees: Hierarchical model for categorization 

- k-Nearest Neighbor (k-NN): Classifies based on proximity to 

similar data points 

- Support Vector Machines (SVM): Creates optimal separation 

boundaries between classes 

- Artificial Neural Networks (ANN): Complex, brain-inspired 

computational models 

These techniques are widely applied in various fields, including 

financial analysis, telecommunications, healthcare, and scientific 

research (Ms. Nalini Jagtap et al., 2017). Applications span various 

fields, including medical diagnosis, fraud detection, handwriting 

recognition, and drug discovery (An, 2009). The power of classification 

lies in its ability to process various types of data, predict group 

memberships, and support knowledge-based decision-making (Soofi et 

al., 2017). 

2. CLASSIFICATION TECHNIQUES 

2.1 k-Nearest Neighbor (k-NN)  

The K-nearest neighbor (k-NN) algorithm is a distance-based 

classification and regression method. The method makes decisions 

based on the distance and similarity relationships between observations; 

in other words, it answers the question "Which class should an example 
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belong to?" by looking at the labels of the neighbors closest to that 

example in the feature space. For this purpose, data is represented as 

vectors in a multidimensional feature space, and each data point is 

positioned based on its distance from other points. Distances between 

data points are often calculated using metrics such as Euclidean, 

Manhattan, or cosine similarity; it is assumed that examples belonging 

to the same class are relatively closer to each other in this space (Alan, 

2020; Cover & Hart, 1967). Thus, the class of a new observation is 

determined by the majority vote or weighted vote of its k nearest 

neighbors in the training dataset. The distance function is given as 

follows. 

𝐷 = (∑ (|𝑥𝑖 − 𝑦𝑖|)𝑝
𝐾

𝑖=1
)

1
𝑝

 

Where 

p=1; Manhattan distance 

p=2; Euclidean distance 

p=3; Minkowski distance. 
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Figure 1. K-NN Algorithm 

The k-NN algorithm graph is as shown in Figure 1. In the k-NN 

technique, the k parameter is a critical hyperparameter that determines 

the number of neighbors to be examined and directly affects the model's 

generalizability properties. Minimal k values can cause the model to be 

overly sensitive to noise and prone to overfitting. In contrast, 

tremendous k values can excessively smooth class boundaries, leading 

to the mixing of different classes. Therefore, the literature generally 

recommends selecting the k value specifically for the dataset using 

methods such as cross-validation (James et al., 2021). The simple, non-

parametric structure of k-NN allows it to be easily applied to different 

types of datasets; however, because it is distance-based, it also makes 

preprocessing steps, such as feature scaling (normalization, 

standardization) and outlier control, critical.  
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The nearest neighbor approach can be categorized into two main 

types based on its structural assumptions: structured k-NN and 

unstructured k-NN (Wu et al., 2008; Bhatia, 2010). In unstructured k-

NN, all training examples are stored in their raw form; for each new 

example, the distance to all these points is calculated, and the k points 

with the smallest distance are selected as the nearest neighbors. This 

"brute-force" approach is conceptually straightforward and yields exact 

results; however, as the data size and number of examples increase, the 

computational cost also increases, making it impractical for large-scale 

datasets [28].  

In contrast, structure-based k-NN techniques focus on 

accelerating the search process by utilizing indexing and data 

organization mechanisms (e.g., k-d trees, ball trees, graph-based 

structures) that take into account the fundamental geometric structure 

of the dataset. In such structures, the training data is placed within a 

specific spatial or hierarchical structure; thus, for a new sample, the 

distance is calculated only on a limited number of regions or nodes that 

could be candidates, and the k-nearest neighbor search is significantly 

accelerated through this structure instead of performing a full scan 

across all data (Wu et al., 2008; Bhatia, 2010). 

In conclusion, despite its simple distance-based principle, the k-

NN algorithm is quite flexible and adaptable to different problem types 

when considered alongside decisions such as selecting the k parameter, 

determining the distance metric, and organizing the data structure. 

Structure-based approaches, in particular, contribute to the method's 
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applicability in high-dimensional and large-scale datasets by reducing 

the computational load of classical structureless k-NN. 

2.2. Decision Tree Algorithms 

The decision tree algorithm is a rule-based, hierarchical 

modeling approach used in both classification and regression problems 

within the scope of supervised learning. Decision trees are created in 

two steps: the first step is building the tree, and the second step is 

performing the classification. The basic idea is to divide the input space 

into more homogeneous subregions through successive binary (or 

multiple) splits and to obtain a relatively “pure” class distribution (or 

homogeneous numerical value) at each leaf node.  

Thus, each path from the root node to the leaf node becomes a 

decision rule that can be expressed in the form of "if–then," and the 

model provides a decision process that can be easily followed by 

experts, serving not only as a statistical tool but also as a clear guide for 

informed decision-making. (Breiman et al., 1984; James et al., 2021). 
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Figure 2. Decision Tree Algorithms 

Decision trees have a hierarchical structure composed of nodes, 

branches, and terminal nodes, also known as leaves. The first node at 

the top level of the tree, where the decomposition process begins, is 

referred to as the root node. The endpoints where the decomposition 

process ends, no further splitting is performed, and the final class or 

output value is assigned are referred to as leaf nodes or, more 

commonly, pure nodes. 

In the tree structure illustrated in the Figüre 2, although binary 

branching is performed from each decision node, multiple split 

branches from more than two nodes can also be designed, depending on 

the algorithm used and the problem structure. Therefore, decision trees 

are generally represented as binary structures, but they can also be 

generalized to include multi-way decision nodes when appropriate 

splitting criteria are defined. 
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In this type of decision tree representation, each node and leaf is 

more than just a schematic box; it also carries summary statistics related 

to the data set. Information such as the class distribution of the 

dependent variable, sample size, class ratios, and, when necessary, the 

error rate is typically included within the internal and leaf nodes. Thus, 

by looking at any point in the tree, one can quickly see the profile of the 

samples reaching that node in terms of the target variable. The branches 

indicate the value of the independent variable defining the split made at 

the relevant node, the category level, or the threshold range. For 

example, labels such as “Income > 5000 TL” or “Age ∈ [30, 45]” 

clearly show under which logical condition the data flow is directed to 

a sub-node. This structure enables the decision tree to be read both 

vertically (from root to leaf) and horizontally (between nodes at the 

same level), allowing for comparative interpretation. 

One of the most important functions of decision trees is their 

ability to convert this visual structure into decision rules. Every path 

extending from the root node to a specific leaf node can be formulated 

as an “if–then” rule consisting of sequential conditions. For example, 

rules expressed as “If age>50 and blood pressure is high and cholesterol 

level>threshold, then Class = High Risk” are actually the textual 

equivalent of the branching order in the tree. These rules provide a rule 

base that can be used directly in expert systems, clinical decision 

support tools, or information systems where business rules are 

converted to automation, in addition to explaining how the model 

works. 
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When performing branching in a decision tree, deciding which 

independent variable to split on is a critical decision. The criteria used 

to make this selection, along with their corresponding mathematical 

expressions, are presented below. 

Entropy is a measure that quantitatively expresses the level of 

uncertainty or disorder contained in a random variable or class 

distribution (Altunkaynak, 2017). In other words, it defines the degree 

of unpredictability in the system. If all observations of a variable are 

concentrated in a single value or a single class, i.e., if the variable has 

an entirely homogeneous structure, uncertainty is negligible and the 

entropy value is at a minimum. Conversely, if the possible values or 

classes of the variable are observed with approximately equal 

probability, the disorder and unpredictability in the system increase; in 

this case, entropy reaches its maximum value (Cover & Thomas, 2006; 

MacKay, 2003).  

When a random Y variable has k different levels (classes), the 

entropy associated with this variable can be defined as follows: 

𝐻(𝑌) = 𝐻(𝑝1, 𝑝2, … , 𝑝𝑘) = ∑ (𝑝𝑗 log𝑏 (1
𝑝𝑗

⁄ ))𝑘
𝑗=1   

Here, 𝑝𝑗 represents the probability of occurrence of level j 

(class) of the variable Y. b is the base of the logarithm. When the 

variable has two levels (k=2), the base of the logarithm is typically 

taken as b=2, and the resulting measure is known as Shannon entropy. 
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When the variable has more than two categories, b=10 is used, and 

Hartley entropy is employed. 

In the context of classification and decision trees, entropy is 

used to measure the degree of "mixedness" in the class distribution at a 

node. If all examples at a node belong to a single class, there is no 

uncertainty; in this case, the entropy approaches zero, and the node is 

considered "pure." Conversely, if the examples in a node are distributed 

approximately equally among different classes, it becomes difficult to 

predict which class they belong to; in this case, entropy reaches its 

maximum value (Bishop, 2006; James et al., 2021). Therefore, in 

decision trees, when branching decisions are made, the attribute and 

threshold values that reduce entropy the most (i.e., reduce uncertainty 

the most) are preferred; the information gain measure is also directly 

based on this principle (Han, Pei, & Kamber, 2012; Aggarwal, 2015). 

Gain, is a measure that quantitatively expresses how much 

“information” a split adds or how much uncertainty it reduces, 

particularly in the context of decision trees. In other words, when we 

branch a node based on a specific independent variable (feature), it 

measures whether this branching makes the class structure of the 

dependent variable more regular (more pure). For a categorical Xi 

independent variable, information gain can be defined as follows: 

𝐺𝑎𝑖𝑛(𝑋𝑖) = 𝐻(𝑌) − ∑ 𝑃(𝑋𝑖𝑗)𝐻(𝑌|𝑋𝑖𝑗)
𝑘𝑖

𝑗=1
;         𝑖 = 1,2, … , 𝑚 
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H(Y): It shows the initial entropy value of the dependent 

variable Y, that is, the level of uncertainty before any division is made. 

𝑘𝑖:  Number of categories of the independent variable 𝑋𝑖 

𝑃(𝑋𝑖𝑗): It is the probability of occurrence of level j of the 

independent variable 𝑋𝑖, and therefore represents the weight of the 

relevant subgroup within the entire data set.  

𝐻(𝑌|𝑋𝑖𝑗):  When the independent variable 𝑋𝑖 is at level j, that 

is, under the condition,  𝑋𝑖= 𝑋𝑖𝑗, it is the conditional entropy value of 

the dependent variable Y; in other words, it measures the level of 

uncertainty regarding the class distribution in this subgroup. 

𝑚: It shows the total number of independent variables in the 

model. 

An independent variable with high information gain divides the 

data set into more homogeneous subsets in terms of classes, thereby 

further reducing uncertainty. Therefore, when selecting the feature to 

branch on in decision tree algorithms, the variable with the highest 

𝐺𝑎𝑖𝑛(𝑋𝑖) value is preferred. 

2.3. Logistic Regression 

Logistic regression is a probabilistic and parametric model used 

for classification problems. In its most common form, binary logistic 

regression, the dependent variable Y has two categories (0/1), where 1 
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indicates the occurrence of the event and 0 indicates its non-occurrence. 

The primary objective is to develop a model that best explains the 

behavior of the dependent variable using the smallest possible vector of 

independent variables, X, and produces the most accurate predictions 

for future observations, thereby determining the probability that an 

observation belongs to a specific class (Y=1). (Hosmer, Lemeshow & 

Sturdivant, 2013; James et al., 2021; Alan and Karabatak, 2020).  

In some cases, the researcher can control the levels of 

independent variables through experimental design. In applications 

where this is possible, having at least 30 observations in each “cell” 

(group) corresponding to the levels of (Xi) significantly increases the 

model's fit to the data and the reliability of the results due to large 

sample properties (asymptotic convergence, normal approximation) 

(Bircan, 2004).  

Binary logistic regression models the probability 𝑃(𝑌 = 1|𝑋) 

using the logit link function, rather than the class label directly: 

𝜋(𝑋) = 𝑃(𝑌 = 1|𝑋), 

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑋)) = 𝑙𝑜𝑔 (
𝜋(𝑋)

1 − 𝜋(𝑋)
) = 𝛽0 + 𝛽1𝑥1

+ ⋯ + 𝛽𝑝𝑥𝑝
, 

From here,  

𝜋(𝑋) =
1

1 + 𝑒𝑥𝑝 (− (𝛽0 + 𝛽1𝑥1
+ ⋯ + 𝛽𝑝𝑥𝑝

))
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The expression is obtained. Thus, the linear combination of 

explanatory variables is defined in terms of the log-odds, and the output 

probability is modeled in the 0-1 range (Hastie, Tibshirani, & Friedman, 

2009). 

One of the most important features of logistic regression is that 

the coefficients can be interpreted in terms of odds ratios. The 𝛽𝑗  

coefficient represents the marginal effect of a one-unit increase in 𝑥𝑗 on 

the log-odds, holding other variables constant;  exp(𝛽𝑗) represents the 

multiplier effect of the same increase on the odds ratio. For example, if 

exp(𝛽𝑗) = 1,5 , a one-unit increase in 𝑥𝑗 increases the odds of the event 

occurring by a factor of 1.5. This feature makes logistic regression 

particularly suitable for applications in medical risk factor analysis, 

epidemiology, and the social sciences (Kleinbaum & Klein, 2010; 

Menard, 2010). 

2.4. Support Vector Machines (SVM) 

Support vector machines (SVM) are a family of methods 

explicitly developed for binary classification problems within the scope 

of supervised learning. They have a strong theoretical foundation and 

are widely used in practice (Schölkopt & Smola, 2002; Jabardi, 2025). 

SVMs are considered one of the most fundamental yet theoretically 

advanced classification approaches used in machine learning. 

Compared to neural network-based models, SVMs can deliver stable 

results even with relatively small sample sizes and, due to their convex 
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optimization-based structure, are less prone to overfitting (Jabardi, 

2025). 

Within the SVM framework, each observation is represented as 

a point in an N-dimensional feature space; the coordinates of these 

points indicate the feature values of the corresponding unit. The 

classification process is performed by defining a hyperplane in this 

feature space. A hyperplane corresponds to a line in two-dimensional 

space, a plane in three-dimensional space, and a generalized version of 

this concept in higher dimensions. The goal is to obtain a separating 

surface where all points belonging to one class remain on one side of 

the hyperplane and all points belonging to the other class remain on the 

other side (Sarker, 2021; Prasad et al., 2023). 

Suppose multiple hyperplanes can separate the same dataset. In 

that case, the SVM attempts to select the hyperplane that best separates 

the classes, i.e., the one that maximizes the distance between the 

hyperplane and the closest points belonging to both classes. This 

minimum distance is referred to as the "margin." The points closest to 

the separating hyperplane that define the margin are called support 

vectors and play a critical role in determining the model's decision 

boundary (Jabardi, 2025). For a SVM to learn a separating hyperplane, 

it requires a training dataset where each observation belongs to a 

predefined class and is correctly labeled. Therefore, SVM falls under 

the class of supervised learning algorithms that operate based on input-

output mapping. 
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The method solves a convex optimization problem in the 

background that maximizes the margin between classes and ensures that 

the points belonging to each class remain as close as possible to the 

"correct" side of the hyperplane. This convex structure supports the 

conclusion that the obtained solution is a global optimum and that the 

model exhibits statistically good generalization properties (Otchere et 

al., 2021; Zulfiqar et al., 2022). Although SVMs are fundamentally 

designed for binary classification problems, in practice, multi-class 

situations can also be handled through various strategies. The most 

common approaches are one-vs-all, which separates each class from all 

others, and one-vs-one, where a separate binary classifier is trained for 

each class pair (Alwahedi et al., 2024). Thanks to such schemes, SVM 

can be effectively used in multi-class classification problems as well. 

Maximum margin hyperplane 

In the context of binary classification, each observation is 

represented by 𝑥 ∈ ℝ𝑁 and class labels 

𝑦𝑖 ∈ {−1, +1},       𝑖 = 1,2, … , 𝑛 

 SVM defines a hyperplane that separates these observations: 

𝑤𝑇𝑥 + 𝑏 = 0 

Where: 

𝑤: Weight (parameter) vector, 

𝑏: Bias term. 
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The classification rule is as follows: 

𝑦̂(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏) 

That is, 𝑤𝑇𝑥 + 𝑏 > 0, the class is predicted as +1, and if 𝑤𝑇𝑥 +

𝑏 < 0, the class is predicted as -1. The margin is expressed as the 

distance between the hyperplane and the nearest points (support 

vectors). ‖𝑤‖ is the Euclidean norm of the weight vector 𝑤. 

𝑀𝑎𝑟𝑗 =
2

‖𝑤‖
 

SVM minimizes ‖𝑤‖ in order to maximize this margin. A 

graphical representation of the SVM algorithm is provided in Figure 3 

(Jacardi, 2025). 

 

Figure 3. Support Vector Machines 

3. DISCUSSION  

The k-nearest neighbors, decision trees, logistic regression, and 

support vector machines discussed in this section are among the most 
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fundamental and frequently used methods in the field of supervised 

classification. The fact that each algorithm has different assumptions, 

data requirements, and computational costs highlights the importance 

of selecting methods based on problem characteristics and/or using 

hybrid structures that combine methods, rather than a "single best 

method" approach in real-world applications. Recent studies have 

shown that, particularly in critical areas such as healthcare, energy, and 

cybersecurity, classical classifiers are often used in conjunction with 

deep learning or ensemble models, thereby producing balanced 

solutions in terms of both accuracy and interpretability (Esteva et al., 

2021; Rajpurkar et al., 2022).  

k-NN offers competitive performance in small and medium-

sized, low-dimensional datasets due to its non-parametric and heuristic 

structure; however, it is known that computational costs increase 

rapidly as the number and size of examples increase. Therefore, recent 

studies report that k-NN is used in conjunction with data structure-

sensitive indexing techniques (k-d trees, ball-trees, graph-based 

structures) or dimension reduction methods, thereby reducing both 

search time and noise sensitivity (Kulkami & Babu, 2013; KR et al., 

2025). Cui et al. (2003) provide a concrete example using a Δ-tree that 

employs Principal Component Analysis to reduce dimensionality, 

enabling more efficient search by pruning search areas and reducing 

distance calculation costs. These techniques collectively address 

fundamental challenges of k-NN, such as computational complexity 

and high sensitivity to high-dimensional noise. 
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While decision trees are highly interpretable, the high variability 

of individual tree models and their tendency toward overfitting have led 

to the extension of these methods with tree-based ensemble approaches, 

such as Random Forest, XGBoost, LightGBM, and CatBoost. These 

models have been shown to provide meaningful performance gains, 

particularly on complex, heterogeneous, and imbalanced datasets 

(Breiman, 2001; Chen & Guestrin, 2016; Ke et al., 2017; 

Prokhorenkova et al., 2018; Lundberg et al., 2020). 

Logistic regression remains the reference method, particularly 

in medicine and the social sciences, where risk factors need to be 

interpreted quantitatively, thanks to its linear log-odds assumption and 

robust statistical foundation (Hosmer et al., 2013; James et al., 2021). 

However, post-2020 literature shows that logistic regression models 

with L1/L2 or elastic-net regularization applied to high-dimensional 

and multicollinear datasets demonstrate superior performance 

compared to classical models in terms of both variable selection and 

generalizability (Friggeirsson et al., 2024; El Guide et al., 2022). 

Support vector machines, on the other hand, offer a powerful 

alternative for problems involving high-dimensional and nonlinear 

decision boundaries, thanks to the maximum margin principle and 

kernel functions; its flexibility is highlighted in studies such as oil 

reservoir property estimation (Otchere et al., 2021), electricity load 

forecasting (Zulfiqar et al., 2022), and robust SVM variants (Prasad et 

al., 2023). 



29 

 

Support vector machines provide a powerful alternative for 

problems involving high-dimensional and nonlinear decision 

boundaries, thanks to the maximum margin principle and kernel 

functions. They have demonstrated superior performance compared to 

traditional neural networks in petroleum engineering, achieving 

outstanding success in reservoir property estimation (Otchere et al., 

2021). In electricity load prediction, SVMs effectively model complex 

nonlinear relationships and provide accurate predictions by 

incorporating multiple input factors (Türkay et al., 2011; Acera, 2010). 

Their robustness stems from not assuming prior data distribution and 

effectively processing high-dimensional, complex datasets (Prasad et 

al., 2023; Van Messem, 2020). 

On the other hand, explainable AI discussions, particularly in 

regulated fields such as healthcare and finance, demonstrate that not 

only prediction accuracy but also the transparency and interpretability 

level of model decisions are at least as important as accuracy. The 

combined use of explainability techniques developed for tree-based 

ensemble models, such as SHAP and similar methods (Lundberg et al., 

2020), with statistical interpretability-rich methods like logistic 

regression and decision tree types, is a prominent trend of recent times 

(Molnar, 2022; Huang et al., 2024). In this context, the classical 

classification algorithms discussed in this section remain an important 

fundamental reference and the first set of methods to be considered in 

most applications, alongside modern deep learning and ensemble 

approaches. 
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4. CONCLUSION and FUTURE WORK 

This section discusses the theoretical framework and 

fundamental components of classification problems, including KNN, 

decision trees, logistic regression, and support vector machines, which 

are discussed in detail. 

The strengths and weaknesses of each method, model 

assumptions, and application areas are evaluated comparatively in light 

of the current literature. In general, the non-parametric and 

straightforward nature of k-NN, the rule-based and interpretable 

structure of decision trees, the probabilistic and statistically rich 

framework of logistic regression, and the strong generalization capacity 

of SVM based on maximum margin and kernel methods make these 

methods indispensable for both educational purposes and real-world 

applications. However, current data issues such as large and high-

dimensional datasets, class imbalance, missing observations, and label 

noise indicate that these algorithms require careful preprocessing, 

appropriate model selection, and hyperparameter tuning rather than 

direct and “out-of-the-box” application (James et al., 2021). 

Post-2020 studies reveal that classical classification methods are 

increasingly being used as components of hybrid and ensemble 

structures. For example, combining representations learned with deep 

neural networks (deep features) with tree-based classifiers or SVM 

provides meaningful performance improvements, especially in small 

and imbalanced medical datasets (Esteva et al., 2021; Huang et al., 
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2024). Similarly, the use of ensemble learning approaches (Random 

Forest, XGBoost, LightGBM, CatBoost) alongside base classifiers in 

fields such as energy demand, financial risk, and engineering processes 

enables the development of more stable and generalizable models in 

complex and noisy data structures (Breiman, 2001; Chen & Guestrin, 

2016; Ke et al., 2017; Prokhorenkova et al., 2018; Zulfiqar et al., 2022). 

Future work is likely to focus on three main areas:  

(i) Developing methods that enhance the explainability of 

classification algorithms and ensuring these methods comply with 

regulatory requirements;  

(ii) Designing robust classification strategies with high sample 

efficiency for small, imbalanced, and high-dimensional datasets;  

(iii) Practical testing of hybrid frameworks that integrate classical 

statistical models with deep learning architectures. 

In this context, both the theoretical foundations and practical 

advantages of the methods presented in this section provide a solid 

foundation for the development of complex models in the future and 

contribute to shaping the research agenda in the field of classification. 

 

 



32 

 

REFERENCES 

Acera, M. M. M. (2010). Electricity Load Forecasting Using Machine 

Learning Techniques. In Business Intelligence in Economic 

Forecasting: Technologies and Techniques, pp. 318-336. IGI 

Global Scientific Publishing. https://doi.org/10.4018/978-1-

60960-818-7.ch313. 

Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer. 

Alan, A., & Karabatak, M. (2020). Veri seti-sınıflandırma ilişkisinde 

performansa etki eden faktörlerin değerlendirilmesi. Fırat 

Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), pp. 531-540. 

https://doi.org/10.35234/fumbd.738007. 

Altunkaynak B. (2017). Veri Madenciliği Yöntemleri ve R 

Uygulamaları. Seçkin yayınevi, Ankara. 

Alwahedi F, Aldhaheri A, Ferrag MA, Battah A, Tihanyi N. (2024). 

Machine learning techniques for IoT security: Current research 

and future vision with generative AI and large language models. 

Internet of Things and Cyber-Physical Systems. 4, pp. 167-185. 

https://doi.org/10.1016/j.iotcps.2023.12.003. 

An, A. (2005). Classification Methods. In J. Wang (Ed.), Encyclopedia 

of Data Warehousing and Mining, pp. 144-149. IGI Global 

Scientific Publishing. https://doi.org/10.4018/978-1-59140-557-

3.ch028. 

https://doi.org/10.4018/978-1-60960-818-7.ch313
https://doi.org/10.4018/978-1-60960-818-7.ch313
https://doi.org/10.35234/fumbd.738007
https://doi.org/10.1016/j.iotcps.2023.12.003
https://doi.org/10.4018/978-1-59140-557-3.ch028
https://doi.org/10.4018/978-1-59140-557-3.ch028


33 

 

Bhatia N. (2010). Survey of nearest neighbor techniques. arXiv preprint 

arXiv:1007.0085. 

Bircan, H. (2004). Lojistik regresyon analizi: Tıp verileri üzerine bir 

uygulama. Kocaeli Üniversitesi Sosyal Bilimler Dergisi, 8, pp. 

185-208. 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. 

Springer. 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). 

Classification and regression trees. Wadsworth. 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), pp. 5–

32. https://doi.org/10.1023/A:1010933404324. 

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting 

system. In Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, pp. 785-

794. https://doi.org/10.1145/2939672.2939785. 

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews 

correlation coefficient (MCC). BMC Genomics, 21(6). 

Cover T., Hart P. (1967). Nearest neighbor pattern classification. IEEE 

Transactions on Information Theory 1967. 13, pp. 21-27. 

https://doi.org/10.1109/TIT.1967.1053964. 

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TIT.1967.1053964


34 

 

Cui, B., Ooi, B. C., Su, J., & Tan, K. L. (2003). Contorting high 

dimensional data for efficient main memory KNN processing. 

In Proceedings of the 2003 ACM SIGMOD international 

conference on Management of data, pp. 479-490. 

https://doi.org/10.1145/872757.87281. 

Esteva, A. et al. (2017). Dermatologist-level classification of skin 

cancer with deep neural networks. Nature. 542, pp. 115–118. 

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., 

Liu, Y. et al. (2021). Deep learning-enabled medical computer 

vision. npj Digital Medicine. 4(1), 5. 

          https://doi.org/10.1038/s41746-020-00376-2. 

El Guide, M., Jbilou, K., Koukouvinos, C., & Lappa, A. (2022). 

Comparative study of L1 regularized logistic regression methods 

for variable selection. Communications in Statistics-Simulation 

and Computation. 51(9), pp. 4957-4972. 

         https://doi.org/10.1080/03610918.2020.1752379. 

Fridgeirsson, E. A., Williams, R., Rijnbeek, P., Suchard, M. A., & Reps, 

J. M. (2024). Comparing penalization methods for linear models 

on extensive observational health data. Journal of the American 

Medical Informatics Association. 31(7), pp. 1514-1521. 

https://doi.org/ 10.1093/jamia/ocae109. 

https://doi.org/10.1145/872757.872815
https://doi.org/10.1080/03610918.2020.1752379


35 

 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. 

MIT Press. 

Han, J., Pei, J., & Kamber, M. (2012). Data Mining: Concepts and 

Techniques. Morgan Kaufmann. 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of 

statistical learning: Data mining, inference, and prediction (2nd 

ed.). Springer. 

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied 

logistic regression. John Wiley & Sons. 

Huang, Y. et al. (2024). Hybrid deep feature extraction and tree-based 

classification for small-scale medical datasets. IEEE Journal of 

Biomedical and Health Informatics, 28(2). 

https://doi.org/10.1109/ACCESS.2023.3304628. 

Jabardi, M. (2025). Support Vector Machines: Theory, Algorithms, and 

Applications. Infocommunications Journal, 17(1). 

         https://doi.org/10.36244/ICJ.2025.1.8. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An 

introduction to statistical learning with applications in R (2nd 

ed.). Springer.  

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & 

Liu, T.-Y. (2017). LightGBM: A highly efficient gradient 

https://doi.org/10.36244/ICJ.2025.1.8


36 

 

boosting decision tree. In Advances in neural information 

processing systems, 30. 

Kleinbaum, D. G., & Klein, M. (2010). Logistic regression: A self-

learning text (3rd ed.). Springer. 

KR, M., Kurban, H., Kulekci, O. M., & Dalkilic, M. M. (2025). 

Telescope indexing for k-nearest neighbor search algorithms over 

high-dimensional data & large data sets. Scientific 

Reports, 15(1), 24788.  

         https://doi.org/10.1038/s41598-025-09856-5. 

Kotsiantis, S. (2007). Supervised machine learning: A review of 

classification techniques. Informatica, 31, pp. 249–268. 

Kulkarni, S. G., & Babu, M. V. (2013). Introspection of various K-

nearest neighbor techniques. UACEE International Journal of 

Advances in Computer Science and Its Applications, 3(2), pp. 

103-106. 

Lundberg, S. M., Erion, G., & Lee, S.-I. (2020). From local 

explanations to global understanding with explainable AI for 

trees. Nature Machine Intelligence, 2(1), pp. 56–67. 

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to 

Information Retrieval. Cambridge. 

Menard, S. (2010). Logistic regression: From introductory to advanced 

concepts and applications. Sage. 

https://doi.org/10.1038/s41598-025-09856-5


37 

 

Mlouhi, Y., & Hamdi, M. A. (2020). Statistical Analysis and 

Segmentation IVUS Images. In 2020, the 4th International 

Conference on Advanced Systems and Emergent Technologies 

(IC_ASET), pp. 253-256. 

         https://doi.org/10.1109/IC_ASET49463.2020.9318252. 

Molnar, C. (2022). Interpretable machine learning: A guide for making 

black box models explainable (Updated ed.). Lulu. 

Nikam, S. S. (2015). A comparative study of classification techniques 

in data mining algorithms. Oriental Journal of Computer Science 

and Technology, 8(1), pp. 13-19. 

Otchere, D. A., Ganat, T. O. A., Gholami, R., & Ridha, S. (2021). 

Application of supervised machine learning paradigms in the 

prediction of petroleum reservoir properties: Comparative 

analysis of ANN and SVM models. Journal of Petroleum Science 

and Engineering, 200, 108182. 

         https://doi.org/10.1016/j.petrol.2020.108182. 

Prasad, S.C., Anagha, P. & Balasundaram, S. (2023). Robust Pinball 

Twin Bounded Support Vector Machine for Data 

Classification. Neural Process Lett, 55, pp. 1131–1153. 

https://doi.org/10.1007/s11063-022-10930-6. 

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, 

A. (2018). CatBoost: unbiased boosting with categorical 

https://doi.org/10.1016/j.petrol.2020.108182
https://doi.org/10.1007/s11063-022-10930-6


38 

 

features. Advances in Neural Information Processing 

Systems, 31. https://doi.org/10.48550/arXiv.1706.09516. 

Rajpurkar P, Chen E, Banerjee O, Topol EJ. (2022). AI in health and 

medicine. Nature Medicine;28(1), pp. 31-38. 

https://doi.org/10.1038/s41591-021-01614-0.  

Sarker, I.H. (2021). Machine Learning: Algorithms, Real-World 

Applications and Research Directions. SN COMPUT. SCI. 2, 

160. https://doi.org/10.1007/s42979-021-00592-x. 

Singh, M., & Chauhan, B. (2012). Classification: A holistic 

view. International Journal for computer science and 

communication, 3(1), pp. 69-72. 

Soofi, A. A., & Awan, A. (2017). Classification techniques in machine 

learning: applications and issues. Journal of Basic & Applied 

Sciences, 13, pp. 459-465. https://doi.org/10.6000/1927-

5129.2017.13.76. 

Türkay, B. E., & Demren, D. (2011). Electrical load forecasting using 

support vector machines. In 2011 7th International Conference on 

Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 

pp. 49-53. 

Van Messem, A. (2020). Support vector machines: A robust prediction 

method with applications in bioinformatics. In Handbook of 

https://doi.org/10.48550/arXiv.1706.09516
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.6000/1927-5129.2017.13.76
https://doi.org/10.6000/1927-5129.2017.13.76


39 

 

statistics, 43, pp. 391-466. Elsevier. 

https://doi.org/10.1016/bs.host.2019.08.003. 

Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, et al. 

(2008.) Top 10 algorithms in data mining. Knowledge and 

Information Systems; 14, pp. 1-37. 

https://doi.org/10.1007/s10115-007-0114-2. 

Zulfiqar M, Kamran M, Rasheed MB, Alquthami T, Milyani AH. 

(2022). Hyperparameter optimization of support vector machine 

using adaptive differential evolution for electricity load 

forecasting. Energy Reports, 8, pp. 13333-13352. 

https://doi.org/10.1016/j.egyr.2022.09.188. 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/bs.host.2019.08.003
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.egyr.2022.09.188


40 

 

 



41 

CHAPTER 2 

DEVELOPMENT OF CLASSIFICATION APPROACHES IN 

BIOSTATISTICS: A BIBLIOMETRIC REVIEW BASED ON 

WEB OF SCIENCE 

Assist. Prof. Dr. Ecem DEMİR 

INTRODUCTION 

Biostatistics is a science that deals with the collection, analysis, 

interpretation, and presentation of biological and medical data. It plays 

an important role in the development of decision support systems and 

diagnostic models in modern medicine. 

Classification problems are supervised learning approaches that 

aim to classify data into predefined categories. Classification methods, 

as one of the basic building blocks of statistical learning, are of 

increasing importance, especially in the field of biostatistics. The 

generation of health data in increasingly larger volumes and more 

complex structures necessitates the use of practical classification 

algorithms on these data. Classification algorithms play a crucial role 

in the analytical support of clinical processes, including diagnosis, 

treatment decisions, and risk assessment. In this context, classification-

based scientific production in the field of biostatistics is increasing, 

allowing for multidisciplinary applications. This book chapter aims to 

examine the directions of scientific production, collaboration networks, 
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thematic clusters, and research trends by analyzing publications in 

biostatistics with a bibliometric approach in the context of classification 

methods. Especially in recent years, the increasing use of machine 

learning and artificial intelligence algorithms with health data has 

increased the interest in classification algorithms (Kourou et al., 2015). 

In this chapter, the developmental trends, production volumes, 

and research focuses of scientific publications on classification methods 

in the field of biostatistics are analyzed using bibliometric methods. 

Classification algorithms form the basis of critical decision support 

systems, such as diagnosis, risk stratification, and prediction, in the 

analysis of biomedical data. In recent years, academic interest in these 

methods has increased rapidly, accompanied by a significant rise in the 

number of publications. This increase is associated with both advances 

in computational technologies and the growth in the volume of 

biological and clinical data. This book chapter aims to guide researchers 

by analyzing the structural and contextual characteristics of 

publications in this field. 

1. CONCEPTUAL FRAMEWORK

1.1. Definition and Importance of Classification Methods 

Classification is a statistical process that aims to categorize 

samples in a dataset into specific groups or classes. These methods 

enable individuals or samples to be classified according to a specific 

outcome (e.g., presence or absence of a disease). Classification is a 

crucial data mining technique used to categorize items into predefined 
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classes or groups based on their characteristics (Kesavaraj & 

Sukumaran, 2013; Archana & Elangovan, 2014). Among the standard 

algorithms, there are various classification methods such as decision 

trees, neural networks, support vector machines, k-nearest neighbors, 

and Naive Bayes, which are applied in various fields such as text 

classification, healthcare, and image recognition (Archana & 

Elangovan, 2014; Kaur & Verma, 2017; Sabouri et. al., 2022). The main 

goal of these methods is to develop predictive models to facilitate 

decision-making in multivariate data environments. These techniques 

are applied in various industries to identify and group data efficiently 

(Gupta & Aggarwal, 2010). In image classification, specialized 

techniques such as, Minimum Distance, Maximum Likelihood, 

Artificial Neural Networks, and Support Vector Machines are used to 

extract information from digital images (Thakur & Maheshwari, 2017). 

Classification algorithms have different advantages and disadvantages 

that researchers analyze to determine their suitability for specific 

applications (Khujaev et. al. 2023).  

Researchers analyze these algorithms based on criteria such as 

accuracy, speed, efficiency, and scalability to determine their suitability 

for different tasks (Sabouri et al., 2022). Algorithm selection depends 

on the specific problem and dataset characteristics, as there is no 

universal method that works best for all scenarios (Kalcheva et al., 

2020). Challenges in classification include model reliability and 

performance evaluation. Techniques such as K-Fold Cross-Validation 

have been proposed to facilitate more accurate evaluations (Khujaev et 
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al., 2023). As the field evolves, researchers continue to develop new 

algorithms and improve existing algorithms to address existing 

challenges in classification (Fan-Zi & Qiu, 2004). 

In general, classification techniques play a vital role in 

transforming large datasets into understandable and actionable 

information. The primary goal of these methods is to develop predictive 

models that facilitate informed decision-making in multivariate data 

environments. Especially in the health sciences, classification 

techniques are widely used for early disease diagnosis, determining 

individual risk levels, and creating personalized medical approaches. 

1.2. Areas of Use in Biostatistics 

Classification techniques play a crucial role in biostatistics and 

healthcare applications. These methods are used for disease diagnosis, 

predicting patient outcomes, and identifying risk factors (Goel & 

Kumar, 2023). Various algorithms, including decision trees, logistic 

regression, support vector machines, and neural networks, are used in 

medical data analysis (Khan et al., 2020). The performance of these 

classifiers is evaluated using statistical metrics and significance tests, 

with caution advised when interpreting results from imbalanced 

datasets (Wang et al., 2018).  

Classification techniques have evolved from traditional statistical 

methods to more advanced machine learning approaches, enabling the 

handling of the increasing volume of biological and medical data 

(Fielding, 2006). Applications extend to image recognition in radiology 
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and pathology (Goel & Kumar, 2023). Ensemble methods, such as 

boosting, bagging, and stacking, are also employed in healthcare 

decision-making systems (Khan et al., 2020). The effectiveness of 

classification methods in healthcare applications has been demonstrated 

across various medical conditions, including thyroid, cancer, heart 

disease, and diabetes (Jha et al., 2018). Overall, classification 

techniques enable healthcare professionals to make more informed 

decisions based on patient data (Goel & Kumar, 2023).  

2. MATERIALS AND METHODS

In this study, the WoS Core Collection database was used to 

search for articles published between 18 July 2025, starting from the 

first publication on classification techniques in biostatistics in 1988. 

Study data were obtained by Boolean search using keywords 

(TS='Classification' AND TS='Biostatistics'). Although there were 177 

publications in total, only 170 research articles, book chapters, reviews, 

and proceedings were included in the analysis. Duplicate records and 

irrelevant studies were excluded during the data cleaning and pre-

processing stages. 

The open-source R-based Bibliometrix package (Aria & 

Cuccurullo, 2017) and VOSviewer software (Van Eck & Waltman, 

2010) were used for data analysis and visualization. In addition, 

descriptive statistics, co-authorship networks, and keyword co-

occurrence analysis were performed for thematic analysis and inference 

of collaboration networks. 
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RESULTS 

Descriptive analyses were conducted utilizing Biblioshiny. The 

primary data insights are depicted in Figure 1. 

Figure 1. Main Information 

This bibliometric overview provides a quantitative snapshot of 

the scholarly landscape within the specified research domain between 

1988 and 2025. The dataset comprises a total of 170 documents 

contributed by 1,017 authors, reflecting a collaborative and expanding 

body of literature. The timespan from 1988 to 2025 encompasses nearly 

four decades of academic output. An annual growth rate of 5.4% 

suggests a steady and positive increase in publication activity over time, 

indicating growing interest and scholarly engagement in the field. 

Publications are distributed across 118 different sources (e.g., journals 

or conference proceedings), evidencing a moderately diverse 

dissemination of research. The relatively compact volume of 170 

documents implies a focused but active area of investigation. With only 

10 documents authored by a single researcher, the field is highly 

collaborative, as also supported by the average of 6.57 co-authors per 

document. Notably, 28.24% of contributions involve international 
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collaboration, underscoring the global nature of research efforts in this 

area. The presence of 666 unique author keywords (DE: Author’s 

Keywords) reveals a broad and evolving conceptual scope, suggesting 

multidimensional thematic diversity.  

An impressive average of 75.89 citations per document reflects 

the high scholarly impact of publications within this field. A total of 

5,961 references across 170 documents indicates deep engagement with 

the literature. In contrast, the average document age of 9.64 years 

suggests that the field maintains relevance through both historical and 

contemporary studies.  

2.1 The Annual Publication Distribution Map Index: 

The annual scientific production chart illustrates the annual 

volume of scientific publications over a 37-year period. The data 

reveals several distinct phases in the evolution of scholarly activity:  

Figure 2. The Annual Number of Scientific Production 
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During the early decades, publication rates remained modest, 

typically fewer than five articles per year. This period likely represents 

the foundational phase of the field, characterized by limited but 

pioneering contributions. A gradual increase in annual output is 

observed, with intermittent fluctuations. This phase marks the 

emergence of growing scholarly interest and the establishment of the 

field as a distinct research area.  

Scientific production surged sharply, peaking around 2021 with 

over 17 articles published in a single year. This likely corresponds to 

intensified research activity driven by technological advances, funding 

influxes, or societal relevance. A moderate decline in output has been 

noted in recent years. While this may reflect stabilization or shifts in 

research priorities, it could also be influenced by data incompleteness 

for ongoing years (especially 2025).  

Figure 3 shows the average number of citations per year, which 

serves as a proxy for the impact and recognition of published work over 

time.  
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Figure 3. The Average Citation per Year 

Citations remained minimal for over two decades. This may be 

attributed to the niche status of the field or the slow accumulation of 

scholarly attention. A slight increase is observable, reflecting the 

gradual integration of earlier works into mainstream literature. 

Two notable spikes especially in 2020 suggest the publication of 

seminal works or highly influential studies that significantly shaped 

subsequent research. These peaks may correspond to paradigm-shifting 

articles or widely cited review papers.  

A sharp decline in citation averages is visible after 2021. This is 

a common bibliometric artifact due to the recency of publications: 

newer articles have had less time to accumulate citations. 
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2.2 Most Productive Authors and Institutions: 

Figure 4 identifies the individual researchers with the highest 

number of contributions in the dataset: 

Figure 4. Most Relevant Authors 

Rami-Porta, R. leads the author list with six documents, 

indicating a sustained and influential presence in the literature. 

Authors such as Asamura, H., and Ciampi, A. (with 5 publications 

each), followed by Goldstraw, P. (with 4 publications), suggest a core 

group of authors actively shaping the discourse within this field. Several 

scholars, including Chansky, K., Chicco, D., Crowley, J., Datema, F.R., 

De Jong, R.J.B. and Feinstein, A.R., contributed 3 papers each. 

In Figure 5 the visualization of institutional affiliations reflects 

the distribution of scholarly output by contributing organizations, 

measured by the number of articles produced: 
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Figure 5. Most Relevant Affiliations 

Harvard Medical School stands out with 15 publications, 

indicating its dominant position and sustained engagement in the field. 

This suggests a well-established research infrastructure and consistent 

academic output in the domain. Other high-performing institutions 

include Fudan University (13 articles), Yale University (12 articles), 

Leiden University (11 articles), and McGill University (11 articles). 

The strong presence of universities from North America, Europe, and 

Asia illustrates a globally distributed research network. 

Institutions such as the University of Pittsburgh, Westlake 

University, Katholieke Universiteit Leuven, and the Medical University 

of Vienna each contributed between 7 and 8 publications, showing 

active but comparatively moderate engagement. 
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Figure 6. Corresponding Author's Countries 

The countries with the highest number of publications are the 

USA, China, Canada, Germany, and Italy. While most of the 

publications in the field originated from a single country, all 

publications in Singapore were published with international 

cooperation. 

2.3 The Most Relevant Sources: 

The graph below highlights the distribution of documents across 

academic journals, providing insight into where the most influential or 

frequently published works in the field are located. 
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Figure 7. Most Relevant Sources 

The Journal of Medical Virology is the most prolific source, with 

24 publications, suggesting it serves as a primary outlet for research 

dissemination in the domain. This dominance may reflect the journal's 

thematic alignment with the subject area, particularly if it relates to 

virology, infectious diseases, or epidemiology. 

The Journal of Thoracic Oncology follows with eight documents, 

positioning it as a key specialized journal, likely emphasizing clinical 

or oncological aspects within the field. 

Several other journals  including Biometrical Journal, 

Biostatistics, Cancer Causes & Control, and Computational Statistics 

& Data Analysis   have each published three articles. These venues 

are strongly associated with methodological rigor and 

quantitative modeling, indicating a statistically intensive research 

approach in many contributions. 
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Figure 8. Sources' Production over Time 

Figure 8 illustrates the publication output of journals that publish 

articles on the relevant topic over time. The Journal of Medical 

Virology, which has the highest number of publications, published its 

first issue in 1977 and experienced a rapid increase in publications after 

2020, driven by the intense demand for virological research during the 

COVID-19 pandemic. Since 2008, the Journal of Thoracic Oncology 

has been a leading publication in the field of research, and the number 

of publications has increased significantly since 2015. 

2.4 The Most Cited Articles: 

The most highly cited documents in scientific research are the 

publications that are most cited by other studies in the literature and 

thus have the highest academic impact. Such documents are not only 

highly cited but also central in terms of setting the direction of the field, 



55 

 

shaping methodological approaches, and forming the basis for 

subsequent studies. Therefore, these publications are fundamental 

contributions to the body of knowledge of the research field. The 

citations to these studies generally focus on both content and 

methodological contributions. In this context, the top ten most cited 

documents in the analyzed study cluster are presented in detail in Table 

1. 

Table 1: Most Cited Documents 

Paper DOI TC 

TC per 

Year 

Goldstraw P, 2016, J Thorac 
Oncol 10.1016/j.jtho.2015.09.009 3414 341,40 

Chıcco D, 2020, Bmc Genomıcs 10.1186/s12864-019-6413-7 3195 532,50 

Sımon R, 2007, Cancer Inform NA 620 32,63 

Park Sh, 2018, Radıology 10.1148/radiol.2017171920 557 69,63 

Westreıch D, 2010, J Clın 
Epıdemıol 10.1016/j.jclinepi.2009.11.020 367 22,94 

Eberhardt Wee, 2015, J Thorac 
Oncol 10.1097/JTO.0000000000000673 311 28,27 

Fan J, 2009, Ann Appl Stat 10.1214/08-AOAS215 284 16,71 

Ceraolo C, 2020, J Med Vırol 10.1002/jmv.25700 266 44,33 

Chıcco D, 2020, Bmc Med 
Inform Decıs Mak 10.1186/s12911-020-1023-5 243 40,50 

Pıccırıllo Jf, 1996, Cancer NA 196 6,53 

When the 10 most cited publications are analyzed, the study by 

Goldstraw et al. 2016) titled "The IASLC Lung Cancer Staging Project: 

Proposals for Revision of the TNM Stage Groupings in the 

Forthcoming (Eighth) Edition of the TNM Classification for Lung 

Cancer" was the most cited study. Goldstraw and colleagues presented 

the 8th version of the Tumor-Node-Metastasis (TNM) system for lung 

cancer and performed Kaplan-Meier survival analyses according to 
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different TNM combinations, evaluating the prognostic discriminative 

power of the staging system.  

The second most cited study in the field is "The advantages of the 

Matthews correlation coefficient (MCC) over F1 score and accuracy in 

binary classification evaluation published by Chicco and Jurman in 

2020. In this study, the authors adopt an experimental method to 

compare the performance measures of classification algorithms. The 

primary focus is to measure and compare the performance of the 

Matthews correlation coefficient (MCC) with F1 score and accuracy 

metrics. 

The 3rd most cited paper is "Analysis of Gene Expression Data 

Using BRB-Array Tools" by Simon et al. in 2007. In this study, gene 

expression data were classified using Diagonal Linear Discriminant 

Analysis, Nearest Centroid, Support Vector Machines (SVM), and k-

Nearest Neighbors methods. 

2.5 Thematic Maps and Keyword Analysis:  

The frequency of use of keywords related to classification 

techniques in biostatistics studies and their changes over time are 

presented in the figures below. The word "classification" in the 

literature occupies 13% of the field, indicating that classification 

problems are at the forefront. Terms such as "prediction," "diagnosis," 

"survival," "biostatistics," "disease," epidemiology," and "model" are 

basic methodological and clinical keywords. 
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Figure 9. Treemap of Keywords 
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Figure 10. Common asset analysis 

 

The most dominant keyword is "biostatistics," indicating that 

studies in this field utilize biostatistical methods. Terms such as 

"survival," "mortality," and "accuracy" were used in early studies from 

2010 and before, indicating more classical epidemiological metrics 

(blue-green tones). Modern analysis techniques such as "machine 

learning," "artificial intelligence," and "classification" are more recent 

(yellow tones). The clustering of "virus classification," "infection," and 

"blast algorithm" indicates a subfield where bioinformatics and 

infectious diseases are prominent. These groups have become 

particularly visible in publications since 2020, mainly due to the impact 

of COVID-19. A shift from classical epidemiological metrics to 
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artificial intelligence-assisted classification approaches is observed 

after 2015. 

 

Figure 11. Co-Authorship network by country 

 

According to Figure 10, the country with the most co-authorships 

is the USA. The USA has established direct collaborations not only with 

developed countries, such as Germany, the UK, and Canada, but also 

with developing countries, including Nigeria and Ethiopia. The USA 

and European countries constitute the center of the relevant literature. 
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3. DISCUSSION and CONCLUSION 

This study employed bibliometric methods to examine the 

structure, trends, and collaboration networks of scientific production in 

biostatistics, based on a classification of 170 publications published 

between 1988 and 2025. The findings shed light on both the historical 

development of the field and its current scientific dynamics. 

Interest in classification methods among academics has increased 

significantly in recent years. Although a limited number of studies were 

published prior to 2010, a significant acceleration in annual production 

was observed after 2015. This increase is primarily attributed to 

technological advancements in fields such as machine learning, 

artificial intelligence, bioinformatics, and genomic data analysis. A 

significant increase in publications on virological classification systems 

and diagnostic models was observed, particularly during the COVID-

19 pandemic. 

The analyzed publications had a very high co-authorship rate, 

prominent international collaborations, and an average author count of 

over 6.5 per publication. This demonstrates that classification research 

in biostatistics is essentially a multidisciplinary and collective effort. 

Countries such as the United States, China, Canada, the United 

Kingdom, and Germany are at the center of the research network, with 

developing countries often contributing scientifically through joint 

projects with these centers. 
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An examination of the journals in which the publications were 

published revealed that thematically focused journals, such as the 

Journal of Medical Virology and the Journal of Thoracic Oncology, 

stand out, while methodological journals, such as the Biometrical 

Journal and Biostatistics, offer more limited but impactful 

contributions. This finding suggests that the field has undergone a two-

way development, both in terms of clinical applications and 

methodological depth. 

Keyword analyses also reveal the fundamental conceptual 

framework of the research. Concepts such as "Classification," 

"Prediction," "Diagnosis," and "Survival" are prominent, while 

contemporary terms like "Machine Learning," "Artificial Intelligence," 

and "Virus Classification" have gained more prevalence since 2020. 

This trend demonstrates that the field has evolved from classical 

epidemiological models to modern computational approaches. Finally, 

an examination of the most cited studies reveals that both publications 

providing clinical guidelines (e.g., the TNM classification) and those 

offering methodological evaluations (e.g., a comparison of MCC and 

F1) have generated high scientific impact. This demonstrates that both 

content-based and methodological contributions to the field of 

classification have a lasting impact on the literature. 

This bibliometric analysis revealed that classification methods in 

biostatistics have gained increasing attention over time, and scientific 

production in this field has accelerated, particularly in the last decade. 

Classification algorithms have become fundamental tools for 
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developing diagnostic and predictive models, as well as for 

systematically evaluating health data. 

Research is increasingly utilizing advanced machine learning 

techniques to analyze the growing volume of data while integrating 

these approaches with classical statistical methods. This process is 

increasing interdisciplinary collaboration in the field and contributing 

to the development of new clinical decision support systems. 

In future studies, focusing on comparative success analyses of 

classification methods, addressing data imbalance problems, and 

implementing explainable artificial intelligence will improve the 

quality of both scientific and clinical outputs.  
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DETERMINATION OF CERVICAL CANCER BEHAVIORAL 

RISK FACTORS USING SUPPORT VECTOR MACHINES 
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Prof. Dr. Öznur İŞÇİ GÜNERİ 

Assist. Prof. Dr. Aynur İNCEKIRIK 

INTRODUCTION 

Cancer, known as the most common disease today, is a growing 

health problem worldwide. It is crucial for individuals to understand 

different types of cancer and adopt lifestyle behaviors that help protect 

them from the disease. Furthermore, early diagnosis is crucial for 

cancer (İncekırık et al., 2021). 

Cervical cancer is one of the most common gynaecological 

cancers in women and has a high morbidity and mortality rate, 

especially in developing countries (Sadia, 2022). İncekırık et al. (2021) 

conducted a study using classification techniques and revealed that 

gynaecological cancers are much more common in women than in men. 

According to World Health Organization data, approximately half a 

million new cases occur each year, and more than 300,000 women die 

from cervical cancer (Farajimakin, 2024). The most important cause of 

the disease is high-risk Human Papillomavirus (HPV) infections; 

however, behavioural and environmental factors such as early sexual 

initiation, multiple sexual partners, smoking, parity, inadequate 
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personal hygiene and low socioeconomic status also contribute to 

increased risk (Kadir et al., 2024; Sadia, 2022). 

In today's world, there has been a significant increase in the 

application of data mining techniques in the healthcare field. Güldoğan 

et al. (2017) conducted a clinical study demonstrating the performance 

of support vector machine kernel functions. In their study, conducted 

for the detection of diabetes, they revealed that support vector machines 

exhibited high classification performance. 

In recent years, the use of machine learning methods in 

identifying cervical cancer risk factors has increased. These 

approaches, which overcome the limitations of traditional statistical 

methods, can more accurately model the relationships between complex 

risk factors and contribute to early diagnosis/prevention strategies (Ijaz, 

2020). In this context, powerful classification algorithms such as 

Support Vector Machines (SVM) provide results with both high 

accuracy and generalizability in medical data (Zhang, 2025). The 

"Cervical Cancer (Risk Factors)" dataset, published by UCI, is widely 

used for such studies and includes various behavioural, 

sociodemographic and medical attributes (Dweekat, et al., 2022; UCI, 

2017). 

 The literature demonstrates that SVM-based models exhibit 

high performance in cervical cancer diagnosis and risk classification. 

For example, Ijaz (2020) compared SVM with decision trees and 

extreme learning machine algorithms, reporting that SVM provides 

higher accuracy in some cases. Similarly, Zhang (2025) demonstrated 
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that SVM offers better discriminatory performance than other methods 

in classifying the clinical stages of cervical cancer. Kadir et al. (2024) 

also reported that an SVM model developed using behavioural risk 

factors (early sexual intercourse, poor hygiene and poor nutritional 

habits) was successful in cervical cancer risk prediction. 

These studies demonstrate that SVM models developed based 

on behavioural and social factors can be an important tool in 

determining cervical cancer risk at an early stage. Therefore, the current 

study aims to model cervical cancer behavioural risk factors using 

Support Vector Machines. 

 

MATERIAL AND METHODS 

Dataset 

The dataset used in the current study is the Cervical Cancer 

Behavior Risk dataset (Dua & Graff, 2019) from the UCI Machine 

Learning Repository. This dataset was created to identify behavioural 

risk factors for cervical cancer and is available to researchers for use in 

classification studies. 

The dataset was donated to UCI on July 16, 2017, and published 

under the Creative Commons Attribution 4.0 International (CC BY 4.0) 

license (UCI, 2017). The DOI number is 10.24432/C5402W, and the 

dataset can be accessed through the UCI Machine Learning Repository. 
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Dataset structure and general characteristics: 

 Total number of observations: 72 

 Number of attributes: 20 (19 independent attributes + 1 class 

label) 

 All variables are fully numerical and consist of quantitative data. 

 No missing values; data is available for all variables for each 

observation. There is no missing data. 

 Task type: Classification 

 

Variables/Attributes 

The attributes in the dataset consist of sub-dimensions of eight 

main variables, and the first words of their names indicate that main 

variable. In Table 1 below, each attribute is accompanied by its brief 

description (based on dataset descriptions). 

Table 1. Roles and Descriptions of Variables 

 Attribute Name Role Description / Note 

1 behavior_sexualRisk attribute 
Risk of sexual 

behaviour 

2 behavior_eating attribute 
Behavioural eating 

habits 

3 behavior_personalHygine attribute 
Personal hygiene 

behaviour 

4 intention_aggregation attribute Aggregation intention 
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5 intention_commitment attribute 
Commitment 

intention 

6 attitude_consistency attribute Attitude consistency 

7 attitude_spontaneity attribute 
Attitude spontaneity 

Natural attitude 

8 norm_significantPerson attribute 
Significant person's 

perception of norm 

9 norm_fulfillment attribute 
Perception of norm 

fulfillment 

10 perception_vulnerability attribute 
Perceived 

vulnerability 

11 perception_severity attribute 
Perceived disease 

severity 

12 motivation_strength attribute Motivation strength 

13 motivation_willingness attribute 
Motivation 

willingness 

14 socialSupport_emotionality attribute 
Social support – 

emotionality 

15 socialSupport_appreciation attribute 
Social support – 

appreciation 

16 socialSupport_instrumental attribute 
Social support – 

instrumental support 

17 empowerment_knowledge attribute 
Empowerment – 

knowledge level 



73 

 

18 empowerment_abilities attribute 
Empowerment – 

skill/capacity 

19 empowerment_desires attribute 
Empowerment – 

desires/wishes 

20 ca_cervix class 

Cervical cancer status 

(1 = present, 

0 = absent) 

 

The class label ca_cervix variable indicates whether the 

observation is cervical cancer: a value of 1 indicates the presence of 

cancer and a value of 0 indicates its absence. 

 

Advantages of the Dataset: 

 The relatively small size of the data allows for rapid model 

prototyping. 

 The absence of missing values facilitates data cleaning. 

 It provides a wide range of risk factors encompassing different 

behavioural, social and psychological variables. 

Limitations of the Dataset: 

 Because it contains only 72 observations, generalization 

capacity may be limited and the risk of overfitting is high. 

 The data is drawn from only one sample; therefore, its direct 

applicability to different populations may be limited. 
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 Class imbalance is possible (observations with cancer status = 1 

may be fewer than those with 0). 

Statistical Analysis 

Weka 3.9.6 (Waikato Environment for Knowledge Analysis), 

one of the software programs used for implementing machine learning 

methods, is widely used in health and biomedical research. This Java-

based, open-source software offers numerous functions such as data 

pre-processing, classification, clustering, attribute selection and model 

evaluation through its user-friendly interface (Hall, et al., 2009). 

WEKA, particularly in health data, allows for rapid comparison of 

different algorithms, making it a prominent tool for epidemiological 

and clinical data analysis. In the current study, the Support Vector 

Machines (SVM) algorithm was implemented in the WEKA 

environment to analyze behavioural risk factors for cervical cancer. 

Different kernel functions and parameter settings were tested to achieve 

the highest classification performance. Thus, the integrated analysis 

environment offered by WEKA software supported the methodological 

robustness of the study. 

Data Pre-processing 

Class imbalance is one of the fundamental problems frequently 

encountered in machine learning applications and classification 

problems. In this case, when the number of examples belonging to one 

class is very low compared to the other, the developed model learns the 

majority class better and tends to ignore the minority class (He & 

Garcia, 2009). A similar situation exists in the cervical cancer dataset; 
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the number of observations belonging to the "cancer present" class is 

significantly lower than the "no cancer present" class. This decreases 

the sensitivity (recall) of the model, making it difficult to accurately 

classify individuals with cancer. Therefore, data pre-processing steps to 

address class imbalance are critical. 

To overcome this problem, the SMOTE (Synthetic Minority 

Over-sampling Technique) method was used in the current study. 

Instead of directly replicating observations belonging to the minority 

class, SMOTE generates synthetic examples based on attribute 

similarities between these observations (Chawla et al., 2002). This 

approach balances the distribution between classes, allowing the model 

to better represent the minority class during the training process. It also 

reduces the risk of overfitting by not adding randomly duplicated 

examples to the dataset. Thus, Support Vector Machines (SVM) 

running on a balanced dataset with SMOTE can more reliably predict 

cervical cancer risk. 

Support Vector Machines 

Support Vector Machines (SVM) are powerful supervised 

machine learning algorithms widely used in classification and 

regression problems. The primary goal of SVM is to find the optimal 

separating hyperplane (Cortes & Vapnik, 1995). This hyperplane is 

determined to maximize the margin between classes. The margin is the 

distance between the data points closest to the hyperplane, called 

"support vectors". A wider margin generally provides better 

generalization performance (Cristianini & Shawe-Taylor, 2000). 
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Support vector machines are one of the most fundamental 

statistical methods used for classification analysis in data mining. This 

method is based on predictive logic for linear data and regression logic 

for nonlinear data (Tezer, 2018). In the support vector machine method, 

a boundary is drawn to classify the data. This boundary can be drawn 

in many different ways. The algorithm builds a model based on the line 

or plane that maximizes classification. Figure 1 shows the support 

vectors and boundary planes for a two-class problem. 

 

Figure 1. Boundary Planes and Support Vectors (Durmuş & 

Güneri, 2020). 

The primary goal of support vector machines is to approximate 

the function given by Equation 1. 

𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 

𝑅𝑆𝑉𝑀𝑠(𝐶) =
1

2
||𝑤||2 + 𝐶

1

𝑙
∑ 𝐿ɛ(𝑥𝑖, 𝑑𝑖)

𝑙

𝑖=1
 

(1) 
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Here, 𝑅𝑆𝑀𝑆𝑠(𝐶) represents the risk function, 
1

2
||𝑤||2 represents the 

regularization term and 𝐶
1

𝑙
∑ 𝐿ɛ(𝑥𝑖, 𝑑𝑖)
𝑙
𝑖=1  represents the empirical 

error. The algorithm works with different kernel functions (Durmuş & 

Güneri, 2020). 

SVM is quite effective when the data can be linearly separated. 

However, in most real-world problems, classes are not linearly 

separable. In such cases, SVM transforms the data into a higher-

dimensional space using kernel functions and attempts to perform linear 

separation in this space (Schölkopf & Smola, 2002). This approach is 

called the "kernel trick". 

Kernel Functions 

Kernel functions are used to calculate the similarity between 

data and offer different advantages for different problem types. The 

most commonly used kernel functions in SVM are: 

Linear Kernel: This is the simplest kernel function. It is particularly 

preferred for high-dimensional datasets (e.g., text mining, 

bioinformatics). Its computational cost is low (Hsu, Chang & Lin, 

2010). 

Polynomial Kernel: This allows for polynomial modelling of 

relationships between data. It can represent complex, nonlinear 

distinctions between classes. The selection of the polynomial degree is 

critical to the success of the model (Cristianini & Shawe-Taylor, 2000). 
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Radial Basis Function (RBF Kernel): This is the most widely used 

kernel function. It creates highly flexible decision boundaries by 

transforming the data into an infinite-dimensional space. It provides 

high accuracy, especially for complex problems where classes are not 

linearly separated (Schölkopf & Smola, 2002). 

The most important advantage of SVM is its resistance to 

overfitting in high-dimensional datasets. Furthermore, it can flexibly 

adapt to different data distributions by using different kernel functions 

(Noble, 2006). However, training time can be quite long on large 

datasets and parameter selections (C, gamma, kernel parameters) 

significantly affect model performance. 

 

RESULTS 

The class distribution in the dataset used in the current study was 

observed to be unbalanced. Because this imbalance can negatively 

affect class prediction performance, it was first addressed by applying 

the SMOTE method. Using SMOTE, the minority class samples were 

synthetically increased, resulting in a more balanced distribution in the 

dataset. The results are shown in Figure 2. This aimed to increase the 

sensitivity of the classification algorithms, particularly on the minority 

class. 
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Figure 2. Representation of Data with SMOTE Method 

Application 

In the current study, classification was performed on the class-

imbalanced SMOTE dataset using three different Support Vector 

Machine (SVM) kernels: linear, polynomial and radial (RBF) kernels. 

The results of the analyses performed with different kernel functions 

were evaluated in terms of performance criteria such as accuracy, 

precision, sensitivity and F-measure. The findings and the success 

levels of the models are presented comparatively in Table 2. 

Table 2. SVM Kernel Function Results (Default Selection) 

  Linear Polynomial Radial (RBF) 

Accuracy 95.098 97.059 86.275 

Precision 96.0 94.4 79.4 

Recall 94.1 1.0 98.0 

F-Measure 95.0 97.1 87.7 

MCC 90.2 94.3 74.6 

ROC Area 95.1 97.1 86.3 

PRC Area 93.3 94.4 78.8 

Kappa 

Statistics 

0.902 0.941 0.726 

 

21

5151 51

dataset SMOTE

1 0
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Analysis results show that the polynomial kernel (SVM-

polynomial) provides the highest performance on the balanced data set. 

The accuracy (Accuracy = 97.1%), F-Measure (97.1%) and MCC 

(0.943) values obtained with the polynomial kernel clearly 

outperformed the other kernels. Furthermore, with Recall = 1.0, all 

samples in the minority class were successfully classified, 

demonstrating the advantage of the SMOTE-balanced dataset. The 

ROC area (97.1%) and Kappa statistic (0.941) values also confirm the 

superiority of the polynomial kernel in inter-class balance and accurate 

predictions. 

The linear kernel (SVM-linear) demonstrated balanced 

performance with high precision (96.0%) and accuracy (95.1%). 

Although the recall value (94.1%) was slightly lower than the 

polynomial kernel, the overall F-Measure (95.0%) and MCC (0.902) 

values indicate that the linear kernel is a reliable option. This suggests 

that the linear kernel may be preferred, especially in scenarios where 

minimizing false positives is important.  

The radial kernel (SVM-rbf) performed lower than the other 

kernels (Accuracy = 86.3%, F-Measure = 87.7%). Precision (79.4%) 

and MCC (0.746) values reveal that it is weaker than linear and 

polynomial kernels in class separation. Although the Recall value 

(98.0%) was high, some false positive classifications were produced 

due to the low precision. 

In general, datasets balanced with SMOTE significantly 

improve classification performance and ensure the correct classification 
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of the minority class. The polynomial kernel stands out as the most 

suitable kernel for this dataset, providing both high accuracy and 

balanced class prediction. 

 

DISCUSSION 

In the current study, the SMOTE method addressed class 

imbalance in the dataset containing cervical cancer behavioural risk 

factors. The SMOTE application balances the inter-class distribution by 

synthetically increasing the samples in the minority class and improves 

the model's prediction performance, particularly on the minority class 

(Chawla et al., 2002; He & Garcia, 2009). Classification was performed 

on the balanced dataset using three different Support Vector Machine 

(SVM) kernels - linear, polynomial and radial (RBF) - and performance 

metrics were analyzed. 

The analysis results show that the polynomial kernel (SVM-

polynomial) provides the highest performance on the balanced dataset. 

Accuracy (97.1%), F-Measure (97.1%) and MCC (0.943) values clearly 

outperformed the other kernels. In particular, the Recall value (1.0) 

indicates that all samples in the minority class were successfully 

classified, confirming the effectiveness of the balancing provided by 

SMOTE. The ROC area (97.1%) and Kappa statistic (0.941) values of 

the polynomial kernel reinforce its superior performance in inter-class 

balance and accurate predictions.  
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The linear kernel (SVM-linear) demonstrated balanced 

performance with high precision (96.0%) and accuracy (95.1%). While 

the Recall value (94.1%) was slightly lower than the polynomial kernel, 

the overall F-Measure (95.0%) and MCC (0.902) values indicate that 

the linear kernel is a reliable alternative. This suggests that the linear 

kernel may be preferred, especially in clinical scenarios where 

minimizing false positives is important. 

The radial kernel (SVM-RBF) performed lower than the other 

kernels (Accuracy = 86.3%, F-Measure = 87.7%). The precision 

(79.4%) and MCC (0.746) values reveal that it is weaker than the linear 

and polynomial kernels in class discrimination. Despite the high Recall 

value (98.0%), the low precision indicates that some false positive 

classifications occurred.  

Analyses reveal that the polynomial kernel performs 

particularly well in datasets containing high-dimensional and complex 

relationships. The attributes in the cervical cancer dataset encompass 

various psychosocial dimensions, such as behavioural (e.g., eating 

habits, personal hygiene), intention (adherence, collecting), attitude, 

perception and social support.  

The relationships between these attributes are generally non-

linear, interactive and complex. The polynomial kernel is capable of 

modelling these non-linear relationships by transforming the data into 

a higher-dimensional space (Cristianini & Shawe-Taylor, 2000).  
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This allows for more successful discrimination between both 

minority and general class examples.  

While the linear kernel captures linear relationships in the data 

well, it cannot adequately represent the complex interactions between 

attributes. This resulted in high precision and accuracy, but a slightly 

lower recall value.  

This is reflected in the lower Recall value. From a clinical 

perspective, the linear kernel's ability to minimize false positives can be 

useful in screening and preventive strategies, but it may not capture all 

instances of the minority class (cancer). 

The radial basis function (RBF) kernel generally performs well 

on complex and nonlinear boundaries; however, in this dataset, the low 

precision and MCC values indicate that the model does not 

overgeneralize the effects of some attributes.  

This suggests that while the radial kernel improves precision for 

minority class prediction, it is limited in controlling false positives. 

Table 3 summarizes the performance metrics, attribute-based 

contributions and clinical interpretation of each kernel. 
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Table 3. Results and Interpretations of Kernel Functions 

 

Kernel 
Performanc

e Metrics 

Attribute-Based 

Contribution 

Clinical 

Interpretation 

Polynomial 

Accuracy = 

97.1%, 

F-Measure = 

97.1%, 

MCC = 

0.943, 

Recall = 1.0 

Successfully 

captured complex, 

nonlinear attribute 

interactions; 

behavioural, 

intention, and 

social support 

attributes were 

fully classified 

correctly in the 

model. 

The high-

impact 

minority class 

(cancer 

present) was 

correctly 

classified. The 

most suitable 

model for early 

diagnosis and 

risk 

assessment. 
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Linear 

Accuracy = 

95.1%, 

Precision = 

96.0%, 

F-Measure = 

95.0%, 

MCC = 0.902 

Recall = 94.1 

Successfully 

captured linear 

relationships; 

limited 

representation of 

interactions 

between attributes. 

Reliable in 

clinical 

scenarios 

where false 

positives must 

be minimized. 

However, some 

cancerous 

samples may 

be missed. 

Radial 

(RBF) 

Accuracy = 

86.3%, 

Precision = 

79.4%, 

F-Measure = 

87.7%, 

MCC = 

0.746, 

Recall = 98.0 

It can model high-

dimensional data; 

however, it 

increased false 

positives by 

overgeneralizing 

some attribute 

relationships. 

Sensitivity for 

the minority 

class is high, 

but false 

positives are 

high; 

additional 

validation may 

be required in 

screening tests. 

 

Consequently, datasets balanced with SMOTE significantly 

improve classification performance and ensure accurate classification 

of the minority class. The current study, conducted on the cervical 

cancer dataset, demonstrates that the polynomial kernel is the most 
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suitable model, providing both high accuracy and balanced class 

prediction. This finding highlights the importance of data structure in 

kernel selection for the clinical use of machine learning-based risk 

prediction models and can improve the effectiveness of early diagnosis 

and preventive interventions, especially in health data where 

behavioural and social attributes are interdependent. 
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